Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 274
Filter
1.
J Clin Immunol ; 44(6): 143, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847936

ABSTRACT

Despite advancements in genetic and functional studies, the timely diagnosis of common variable immunodeficiency (CVID) remains a significant challenge. This exploratory study was designed to assess the diagnostic performance of a novel panel of biomarkers for CVID, incorporating the sum of κ+λ light chains, soluble B-cell maturation antigen (sBCMA) levels, switched memory B cells (smB) and the VISUAL score. Comparative analyses utilizing logistic regression were performed against established gold-standard tests, specifically antibody responses. Our research encompassed 88 subjects, comprising 27 CVID, 23 selective IgA deficiency (SIgAD), 20 secondary immunodeficiency (SID) patients and 18 healthy controls. We established the diagnostic accuracy of sBCMA and the sum κ+λ, achieving sensitivity (Se) and specificity (Spe) of 89% and 89%, and 90% and 99%, respectively. Importantly, sBCMA showed strong correlations with all evaluated biomarkers (sum κ+λ, smB cell and VISUAL), whereas the sum κ+λ was uniquely independent from smB cells or VISUAL, suggesting its additional diagnostic value. Through a multivariate tree decision model, specific antibody responses and the sum κ+λ emerged as independent, signature biomarkers for CVID, with the model showcasing an area under the curve (AUC) of 0.946, Se 0.85, and Spe 0.95. This tree-decision model promises to enhance diagnostic efficiency for CVID, underscoring the sum κ+λ as a superior CVID classifier and potential diagnostic criterion within the panel.


Subject(s)
Biomarkers , Common Variable Immunodeficiency , Humans , Common Variable Immunodeficiency/diagnosis , Common Variable Immunodeficiency/immunology , Male , Female , Adult , Middle Aged , Logistic Models , Young Adult , Adolescent , Aged , Immunoglobulin kappa-Chains/blood , Immunoglobulin kappa-Chains/genetics , Sensitivity and Specificity , B-Lymphocytes/immunology , Immunoglobulin lambda-Chains , Memory B Cells/immunology
2.
Front Immunol ; 15: 1360219, 2024.
Article in English | MEDLINE | ID: mdl-38745667

ABSTRACT

Background: Regulatory B cells (Bregs) play a pivotal role in suppressing immune responses, yet there is still a lack of cell surface markers that can rigorously identify them. In mouse models for multiple sclerosis (MS), TIM-1 or TIGIT expression on B cells is required for maintaining self-tolerance and regulating autoimmunity to the central nervous system. Here we investigated the activities of human memory B cells that differentially express TIM-1 and TIGIT to determine their potential regulatory function in healthy donors and patients with relapsing-remitting (RR) MS. Methods: FACS-sorted TIM-1+/-TIGIT+/- memory B (memB) cells co-cultured with allogenic CD4+ T cells were analyzed for proliferation and induction of inflammatory markers using flow cytometry and cytokine quantification, to determine Th1/Th17 cell differentiation. Transcriptional differences were assessed by SMARTSeq2 RNA sequencing analysis. Results: TIM-1-TIGIT- double negative (DN) memB cells strongly induce T cell proliferation and pro-inflammatory cytokine expression. The TIM-1+ memB cells enabled low levels of CD4+ T cell activation and gave rise to T cells that co-express IL-10 with IFNγ and IL-17A or FoxP3. T cells cultured with the TIM-1+TIGIT+ double positive (DP) memB cells exhibited reduced proliferation and IFNγ, IL-17A, TNFα, and GM-CSF expression, and exhibited strong regulation in Breg suppression assays. The functional activity suggests the DP memB cells are a bonafide Breg population. However, MS DP memB cells were less inhibitory than HC DP memB cells. A retrospective longitudinal study of anti-CD20 treated patients found that post-treatment DP memB cell frequency and absolute number were associated with response to therapy. Transcriptomic analyses indicated that the dysfunctional MS-derived DP memB/Breg population exhibited increased expression of genes associated with T cell activation and survival (CD80, ZNF10, PIK3CA), and had distinct gene expression compared to the TIGIT+ or TIM-1+ memB cells. Conclusion: These findings demonstrate that TIM-1/TIGIT expressing memory B cell subsets have distinct functionalities. Co-expression of TIM-1 and TIGIT defines a regulatory memory B cell subset that is functionally impaired in MS.


Subject(s)
B-Lymphocytes, Regulatory , Hepatitis A Virus Cellular Receptor 1 , Receptors, Immunologic , Humans , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , B-Lymphocytes, Regulatory/immunology , B-Lymphocytes, Regulatory/metabolism , Hepatitis A Virus Cellular Receptor 1/metabolism , Hepatitis A Virus Cellular Receptor 1/genetics , Female , Male , Adult , Memory B Cells/immunology , Multiple Sclerosis, Relapsing-Remitting/immunology , Multiple Sclerosis, Relapsing-Remitting/metabolism , Cytokines/metabolism , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , Lymphocyte Activation/immunology , Middle Aged , Cells, Cultured , Cell Differentiation/immunology , Immunologic Memory
3.
BMC Immunol ; 25(1): 25, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702630

ABSTRACT

BACKGROUND: Breast cancer is the most common cancer in females. The immune system has a crucial role in the fight against cancer. B and T cells, the two main components of the adaptive immunity, are critical players that specifically target tumor cells. However, B cells, in contrast to T cells, and their role in cancer inhibition or progression is less investigated. Accordingly, in this study, we assessed and compared the frequency of naïve and different subsets of memory B cells in the peripheral blood of patients with breast cancer and healthy women. RESULTS: We found no significant differences in the frequencies of peripheral CD19+ B cells between the patients and controls. However, there was a significant decrease in the frequency of CD19+IgM+ B cells in patients compared to the control group (P=0.030). Moreover, the patients exhibited higher percentages of atypical memory B cells (CD19+CD27‒IgM‒, P=0.006) and a non-significant increasing trend in switched memory B cells (CD19+CD27+IgM‒, P=0.074). Further analysis revealed a higher frequency of atypical memory B cells (aMBCs) in the peripheral blood of patients without lymph node involvement as well as those with a tumor size greater than 2cm or with estrogen receptor (ER) negative/progesterone receptor (PR) negative tumors, compared with controls (P=0.030, P=0.040, P=0.031 and P=0.054, respectively). CONCLUSION: Atypical memory B cells (CD19+CD27‒IgM‒) showed a significant increase in the peripheral blood of patients with breast cancer compared to the control group. This increase seems to be associated with tumor characteristics. Nevertheless, additional research is necessary to determine the precise role of these cells during breast cancer progression.


Subject(s)
Breast Neoplasms , Lymph Nodes , Memory B Cells , Humans , Female , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Breast Neoplasms/blood , Middle Aged , Adult , Lymph Nodes/immunology , Lymph Nodes/pathology , Memory B Cells/immunology , Aged , Antigens, CD19/metabolism , Immunologic Memory , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism , B-Lymphocyte Subsets/immunology
4.
Front Immunol ; 15: 1396592, 2024.
Article in English | MEDLINE | ID: mdl-38736874

ABSTRACT

Introduction: Osteomyelitis (OMS) is a bone infection causing bone pain and severe complications. A balanced immune response is critical to eradicate infection without harming the host, yet pathogens manipulate immunity to establish a chronic infection. Understanding OMS-driven inflammation is essential for disease management, but comprehensive data on immune profiles and immune cell activation during OMS are lacking. Methods: Using high-dimensional flow cytometry, we investigated the detailed innate and adaptive systemic immune cell populations in OMS and age- and sex-matched controls. Results: Our study revealed that OMS is associated with increased levels of immune regulatory cells, namely T regulatory cells, B regulatory cells, and T follicular regulatory cells. In addition, the expression of immune activation markers HLA-DR and CD86 was decreased in OMS, while the expression of immune exhaustion markers TIM-3, PD-1, PD-L1, and VISTA was increased. Members of the T follicular helper (Tfh) cell family as well as classical and typical memory B cells were significantly increased in OMS individuals. We also found a strong correlation between memory B cells and Tfh cells. Discussion: We conclude that OMS skews the host immune system towards the immunomodulatory arm and that the Tfh memory B cell axis is evident in OMS. Therefore, immune-directed therapies may be a promising alternative for eradication and recurrence of infection in OMS, particularly in individuals and areas where antibiotic resistance is a major concern.


Subject(s)
Osteomyelitis , Humans , Osteomyelitis/immunology , Female , Male , Middle Aged , Adult , T-Lymphocytes, Regulatory/immunology , Aged , Lymphocyte Activation , Biomarkers , Immunity, Innate , Memory B Cells/immunology , T Follicular Helper Cells/immunology , Immune System Exhaustion
5.
Am J Hematol ; 99(6): 1084-1094, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38708915

ABSTRACT

Early mortality in sickle cell disease (SCD) is attributed to increased infections due to loss of splenic function. Marginal zone B cells are important for initial opsonization of pathogens and can be absent in spleen histopathology in SCD. The frequency of unswitched memory B cells (UMBC), the circulating correlate of marginal zone B cells, reflects the immunologic function of the spleen. We hypothesized that asplenia in SCD is associated with alterations in the peripheral blood lymphocyte population and explored whether UMBC deficiency was associated with a clinical phenotype. We analyzed B cell subsets and clinical history for 238 children with SCD and 63 controls. The median proportion of UMBCs was lower in children with SCD compared with controls (4.7% vs. 6.6%, p < .001). Naïve B cells were higher in SCD compared with controls (80.6 vs. 76.3%, respectively, p = .02). UMBC frequency declined by 3.4% per year increase in age in SCD (95% CI: 2%, 4.7%, p < .001), but not in controls. A majority of children in all cohorts had an IgM concentration in the normal range for age and there were no differences between groups (p = .13). Subjects developed titers adequate for long-term protection to fewer serotypes in the polysaccharide vaccine than controls (14.7 vs. 19.4, p < .001). In this cohort, bacteremia was rare and specific clinical complications were not associated with UMBC proportion. In summary, UMBC deficiency occurs in SCD and is associated with age. Future studies should investigate B cell subsets prospectively and identify the mechanism of B cell loss in the spleen.


Subject(s)
Anemia, Sickle Cell , Memory B Cells , Pneumococcal Vaccines , Humans , Anemia, Sickle Cell/immunology , Anemia, Sickle Cell/complications , Pneumococcal Vaccines/immunology , Pneumococcal Vaccines/therapeutic use , Child , Male , Female , Child, Preschool , Memory B Cells/immunology , Adolescent , B-Lymphocyte Subsets/immunology , Pneumococcal Infections/immunology , Pneumococcal Infections/prevention & control , Spleen/immunology , Spleen/pathology , Immunoglobulin M/blood
6.
Sci Immunol ; 9(95): eadq0015, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701192

ABSTRACT

Initial imprinting by type 1 interferons shapes memory B cell generation in chronic viral infection.


Subject(s)
B-Lymphocytes , Humans , Animals , B-Lymphocytes/immunology , Interferon Type I/immunology , Memory B Cells/immunology , Virus Diseases/immunology
7.
Front Immunol ; 15: 1382911, 2024.
Article in English | MEDLINE | ID: mdl-38807606

ABSTRACT

Introduction: COVID-19 vaccines are highly effective in inducing protective immunity. While the serum antibody response to COVID-19 vaccination has been studied in depth, our knowledge of the underlying plasmablast and memory B cell (Bmem) responses is still incomplete. Here, we determined the antibody and B cell response to COVID-19 vaccination in a naïve population and contrasted it with the response to a single influenza vaccination in a primed cohort. In addition, we analyzed the antibody and B cell responses against the four endemic human coronaviruses (HCoVs). Methods: Measurement of specific plasma IgG antibodies was combined with functional analyses of antibody-secreting plasmablasts and Bmems. SARS-CoV-2- and HCoV-specific IgG antibodies were quantified with an in-house bead-based multiplexed immunoassay. Results: The antibody and B cell responses to COVID-19 vaccination reflected the kinetics of a prime-boost immunization, characterized by a slow and moderate primary response and a faster and stronger secondary response. In contrast, the influenza vaccinees possessed robust immune memory for the vaccine antigens prior to vaccination, and the recall vaccination moderately boosted antibody production and Bmem responses. Antibody levels and Bmem responses waned several months after the 2nd COVID-19 vaccination, but were restored upon the 3rd vaccination. The COVID-19 vaccine-induced antibodies mainly targeted novel, non-cross-reactive S1 epitopes of the viral spike protein, while cross-reactive S2 epitopes were less immunogenic. Booster vaccination not only strongly enhanced neutralizing antibodies against an original SARS-CoV-2 strain, but also induced neutralizing antibodies against the Omicron BA.2 variant. We observed a 100% plasma antibody prevalence against the S1 subunits of HCoVs, which was not affected by vaccination. Discussion: Overall, by complementing classical serology with a functional evaluation of plasmablasts and memory B cells we provide new insights into the specificity of COVID-19 vaccine-induced antibody and B cell responses.


Subject(s)
Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Cross Reactions , Immunity, Humoral , Immunoglobulin G , Memory B Cells , Plasma Cells , SARS-CoV-2 , Humans , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , Memory B Cells/immunology , SARS-CoV-2/immunology , COVID-19 Vaccines/immunology , Male , Adult , Cross Reactions/immunology , Female , Plasma Cells/immunology , Middle Aged , Immunoglobulin G/immunology , Immunoglobulin G/blood , Vaccination , Influenza Vaccines/immunology , Immunologic Memory/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Epitopes, B-Lymphocyte/immunology , B-Lymphocytes/immunology , Spike Glycoprotein, Coronavirus/immunology , Kinetics
9.
Front Immunol ; 15: 1373537, 2024.
Article in English | MEDLINE | ID: mdl-38812520

ABSTRACT

Sex-based differences in immune cell composition and function can contribute to distinct adaptive immune responses. Prior work has quantified these differences in peripheral blood, but little is known about sex differences within human lymphoid tissues. Here, we characterized the composition and phenotypes of adaptive immune cells from male and female ex vivo tonsils and evaluated their responses to influenza antigens using an immune organoid approach. In a pediatric cohort, female tonsils had more memory B cells compared to male tonsils direct ex vivo and after stimulation with live-attenuated but not inactivated vaccine, produced higher influenza-specific antibody responses. Sex biases were also observed in adult tonsils but were different from those measured in children. Analysis of peripheral blood immune cells from in vivo vaccinated adults also showed higher frequencies of tissue homing CD4 T cells in female participants. Together, our data demonstrate that distinct memory B and T cell profiles are present in male vs. female lymphoid tissues and peripheral blood respectively and suggest that these differences may in part explain sex biases in response to vaccines and viruses.


Subject(s)
Palatine Tonsil , Humans , Female , Male , Child , Palatine Tonsil/immunology , Adult , Influenza Vaccines/immunology , Influenza, Human/immunology , Sex Characteristics , Child, Preschool , Adolescent , Antibodies, Viral/blood , Antibodies, Viral/immunology , Memory B Cells/immunology , Organ Specificity/immunology , Young Adult , Sex Factors , CD4-Positive T-Lymphocytes/immunology , B-Lymphocytes/immunology , Immunologic Memory
10.
Clin Transl Med ; 14(5): e1699, 2024 May.
Article in English | MEDLINE | ID: mdl-38783408

ABSTRACT

BACKGROUND: The gut is an important site for human immunodeficiency virus (HIV) infection and immune responses. The role of gut mucosal immune cells in immune restoration in patients infected with HIV undergoing antiretroviral therapy remains unclear. METHODS: Ileocytes, including 54 475 immune cells, were obtained from colonoscopic biopsies of five HIV-negative controls, nine immunological responders (IRs), and three immunological non-responders (INRs) and were analyzed using single-cell RNA sequencing. Immunohistochemical assays were performed for validation. The 16S rRNA gene was amplified using PCR in faecal samples to analyze faecal microbiota. Flow cytometry was used to analyze CD4+ T-cell counts and the activation of T cells. RESULTS: This study presents a global transcriptomic profile of the gut mucosal immune cells in patients infected with HIV. Compared with the IRs, the INRs exhibited a lower proportion of gut plasma cells, especially the IGKC+IgA+ plasma cell subpopulation. IGKC+IgA+ plasma cells were negatively associated with enriched f. Prevotellaceae the INRs and negatively correlated with the overactivation of T cells, but they were positively correlated with CD4+ T-cell counts. The INRs exhibited a higher proportion of B cells than the IRs. Follicular and memory B cells were significantly higher in the INRs. Reduced potential was observed in the differentiation of follicular or memory B cells into gut plasma cells in INRs. In addition, the receptor-ligand pairs CD74_MIF and CD74_COPA of memory B/ follicular helper T cells were significantly reduced in the INRs, which may hinder the differentiation of memory and follicular B cells into plasma cells. CONCLUSIONS: Our study shows that plasma cells are dysregulated in INRs and provides an extensive resource for deciphering the immune pathogenesis of HIV in INRs. KEY POINTS: An investigation was carried out at the single-cell-level to analyze gut mucosal immune cells alterations in PLWH after ART. B cells were significantly increased and plasma cells were significantly decreased in the INRs compared to the IRs and NCs. There are gaps in the transition from gut follicular or memory B cellsinto plasma cells in INRs.


Subject(s)
HIV Infections , Intestinal Mucosa , Plasma Cells , Humans , HIV Infections/immunology , HIV Infections/drug therapy , Male , Plasma Cells/immunology , Intestinal Mucosa/immunology , Female , Adult , Middle Aged , Memory B Cells/immunology , B-Lymphocytes/immunology
11.
Mult Scler ; 30(7): 857-867, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38767224

ABSTRACT

BACKGROUND: Ocrelizumab (OCR) is an anti-CD20 monoclonal antibody approved for the treatment of relapsing-remitting and primary-progressive multiple sclerosis (MS). We aimed to evaluate the effectiveness of an individualized OCR extended interval dosing (EID), after switching from standard interval dosing (SID). METHODS: This was a retrospective, observational, single-centre study including MS patients regularly followed at the Neurocenter of Southern Switzerland. After a cumulative OCR dose ⩾1200 mg, stable patients were switched to EID (OCR infusions following CD19+ 27+ memory B cell repopulation). RESULTS: A total of 128 patients were included in the study, and 113 (88.3%) were switched to EID with a median interval of 9.9 (8.8-11.8) months between infusions. No clinical relapses occurred; 2 (1.8%) patients experienced disability worsening. Three (2.7%) and 2 (1.8%) patients experienced new T2 brain and spinal lesions, respectively. There was a mild decrease in IgG and IgM concentrations during both SID and EID OCR regimens (ß = -0.23, p = 0.001 and ß = -0.07, p < 0.001, respectively). CONCLUSION: Switch to personalized dosing of OCR based on CD19+ 27+ memory B cell repopulation led to a great extension of the interval between infusions, with maintained clinical and radiological efficacy. Given the potential advantages in terms of safety and health costs, EID OCR regimens should be further investigated.


Subject(s)
Antibodies, Monoclonal, Humanized , Memory B Cells , Humans , Female , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/pharmacology , Male , Adult , Retrospective Studies , Middle Aged , Memory B Cells/immunology , Immunologic Factors/administration & dosage , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Multiple Sclerosis, Relapsing-Remitting/immunology , Treatment Outcome , Multiple Sclerosis/drug therapy , Multiple Sclerosis/immunology
12.
Front Immunol ; 15: 1382638, 2024.
Article in English | MEDLINE | ID: mdl-38715601

ABSTRACT

Recovery from respiratory pneumococcal infections generates lung-localized protection against heterotypic bacteria, mediated by resident memory lymphocytes. Optimal protection in mice requires re-exposure to pneumococcus within days of initial infection. Serial surface marker phenotyping of B cell populations in a model of pneumococcal heterotypic immunity revealed that bacterial re-exposure stimulates the immediate accumulation of dynamic and heterogeneous populations of B cells in the lung, and is essential for the establishment of lung resident memory B (BRM) cells. The B cells in the early wave were activated, proliferating locally, and associated with both CD4+ T cells and CXCL13. Antagonist- and antibody-mediated interventions were implemented during this early timeframe to demonstrate that lymphocyte recirculation, CD4+ cells, and CD40 ligand (CD40L) signaling were all needed for lung BRM cell establishment, whereas CXCL13 signaling was not. While most prominent as aggregates in the loose connective tissue of bronchovascular bundles, morphometry and live lung imaging analyses showed that lung BRM cells were equally numerous as single cells dispersed throughout the alveolar septae. We propose that CD40L signaling from antigen-stimulated CD4+ T cells in the infected lung is critical to establishment of local BRM cells, which subsequently protect the airways and parenchyma against future potential infections.


Subject(s)
CD4-Positive T-Lymphocytes , CD40 Ligand , Lung , Memory B Cells , Streptococcus pneumoniae , Animals , Mice , CD4-Positive T-Lymphocytes/immunology , CD40 Ligand/metabolism , CD40 Ligand/immunology , Chemokine CXCL13/metabolism , Disease Models, Animal , Immunologic Memory , Lung/immunology , Memory B Cells/immunology , Memory B Cells/metabolism , Mice, Inbred C57BL , Pneumococcal Infections/immunology , Signal Transduction , Streptococcus pneumoniae/immunology
13.
Science ; 384(6697): eadk0582, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38753770

ABSTRACT

Germline-targeting (GT) HIV vaccine strategies are predicated on deriving broadly neutralizing antibodies (bnAbs) through multiple boost immunogens. However, as the recruitment of memory B cells (MBCs) to germinal centers (GCs) is inefficient and may be derailed by serum antibody-induced epitope masking, driving further B cell receptor (BCR) modification in GC-experienced B cells after boosting poses a challenge. Using humanized immunoglobulin knockin mice, we found that GT protein trimer immunogen N332-GT5 could prime inferred-germline precursors to the V3-glycan-targeted bnAb BG18 and that B cells primed by N332-GT5 were effectively boosted by either of two novel protein immunogens designed to have minimum cross-reactivity with the off-target V1-binding responses. The delivery of the prime and boost immunogens as messenger RNA lipid nanoparticles (mRNA-LNPs) generated long-lasting GCs, somatic hypermutation, and affinity maturation and may be an effective tool in HIV vaccine development.


Subject(s)
AIDS Vaccines , Broadly Neutralizing Antibodies , Germinal Center , HIV Antibodies , HIV-1 , Immunization, Secondary , Nanoparticles , mRNA Vaccines , Animals , Humans , Mice , AIDS Vaccines/immunology , B-Lymphocytes/immunology , Broadly Neutralizing Antibodies/immunology , Cross Reactions , Gene Knock-In Techniques , Germinal Center/immunology , HIV Antibodies/immunology , HIV Envelope Protein gp120/immunology , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/genetics , HIV Infections/immunology , HIV Infections/prevention & control , HIV-1/immunology , HIV-1/genetics , Liposomes , Memory B Cells/immunology , Receptors, Antigen, B-Cell/immunology , Receptors, Antigen, B-Cell/genetics , Somatic Hypermutation, Immunoglobulin , mRNA Vaccines/immunology , Female , Mice, Inbred C57BL
14.
Science ; 384(6697): eadj8321, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38753769

ABSTRACT

Germline-targeting immunogens hold promise for initiating the induction of broadly neutralizing antibodies (bnAbs) to HIV and other pathogens. However, antibody-antigen recognition is typically dominated by heavy chain complementarity determining region 3 (HCDR3) interactions, and vaccine priming of HCDR3-dominant bnAbs by germline-targeting immunogens has not been demonstrated in humans or outbred animals. In this work, immunization with N332-GT5, an HIV envelope trimer designed to target precursors of the HCDR3-dominant bnAb BG18, primed bnAb-precursor B cells in eight of eight rhesus macaques to substantial frequencies and with diverse lineages in germinal center and memory B cells. We confirmed bnAb-mimicking, HCDR3-dominant, trimer-binding interactions with cryo-electron microscopy. Our results demonstrate proof of principle for HCDR3-dominant bnAb-precursor priming in outbred animals and suggest that N332-GT5 holds promise for the induction of similar responses in humans.


Subject(s)
AIDS Vaccines , Broadly Neutralizing Antibodies , Complementarity Determining Regions , Germinal Center , HIV Antibodies , Animals , Humans , AIDS Vaccines/immunology , B-Lymphocytes/immunology , Broadly Neutralizing Antibodies/immunology , Complementarity Determining Regions/immunology , Cryoelectron Microscopy , env Gene Products, Human Immunodeficiency Virus/immunology , Germinal Center/immunology , HIV Antibodies/immunology , HIV Infections/immunology , HIV Infections/prevention & control , HIV-1/immunology , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Heavy Chains/genetics , Macaca mulatta , Memory B Cells/immunology
15.
Front Immunol ; 15: 1360627, 2024.
Article in English | MEDLINE | ID: mdl-38646525

ABSTRACT

Background: Repeated exposure to sensitizing events can activate HLA-specific memory B cells, leading to the production of donor-specific memory B cell antibodies (DSAm) that pose a risk for antibody-mediated rejection (ABMR) in kidney transplant recipients (KTRs). This single-center retrospective study aimed to identify DSAm and assess their association with outcomes in a cohort of KTRs with pretransplant serum donor-specific antibodies (DSA). Methods: We polyclonally activated pretransplant peripheral blood mononuclear cells (PBMCs) from 60 KTRs in vitro, isolated and quantified IgG from the culture supernatant using ELISA, and analyzed the HLA antibodies of eluates with single antigen bead (SAB) assays, comparing them to the donor HLA typing for potential DSAm. Biopsies from 41 KTRs were evaluated for rejection based on BANFF 2019 criteria. Results: At transplantation, a total of 37 DSAm were detected in 26 of 60 patients (43%), of which 13 (35%) were found to be undetectable in serum. No significant association was found between pretransplant DSAm and ABMR (P=0.53). Similar results were observed in a Kaplan-Meier analysis for ABMR within the first year posttransplant (P=0.29). Additionally, MFI levels of DSAm showed no significant association with ABMR (P=0.28). Conclusion: This study suggests no significant association between DSAm and biopsy-proven clinical ABMR. Further prospective research is needed to determine whether assessing DSAm could enhance existing immunological risk assessment methods for monitoring KTRs, particularly in non-sensitized KTRs.


Subject(s)
Graft Rejection , HLA Antigens , Isoantibodies , Kidney Transplantation , Humans , Kidney Transplantation/adverse effects , Retrospective Studies , Male , Female , Middle Aged , Graft Rejection/immunology , Isoantibodies/immunology , Isoantibodies/blood , Adult , HLA Antigens/immunology , Memory B Cells/immunology , Tissue Donors , Aged , Transplant Recipients , Graft Survival/immunology
16.
BMC Infect Dis ; 24(1): 371, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566017

ABSTRACT

BACKGROUND: There is an urgent clinical need for developing novel immunoprophylaxis and immunotherapy strategies against Staphylococcus aureus (S. aureus). In our previous work, immunization with a tetra-branched multiple antigenic peptide, named MAP2-3 that mimics lipoteichoic acid, a cell wall component of S. aureus, successfully induced a humoral immune response and protected BALB/c mice against S. aureus systemic infection. In this study, we further investigated whether vaccination with MAP2-3 can elicit immunologic memory. METHODS: BALB/c mice were immunized with MAP2-3 five times. After one month of the last vaccination, mice were challenged with heat-killed S. aureus via intraperitoneal injection. After a 7-day inoculation, the percentage of plasma cells, memory B cells, effector memory T cells, and follicular helper T cells were detected by flow cytometry. The levels of IL-6, IL-21, IL-2, and IFN-γ were measured by real-time PCR and ELISA. Flow cytometry results were compared by using one-way ANOVA or Mann-Whitney test, real-time PCR results were compared by using one-way ANOVA, and ELISA results were compared by using one-way ANOVA or student's t-test. RESULTS: The percentage of plasma cells and memory B cells in the spleen and bone marrow from the MAP2-3 immunized mice was significantly higher than that from the control mice. The percentage of effector memory T cells in spleens and lymphoid nodes as well as follicular helper T cells in spleens from the MAP2-3 immunized mice were also higher. Moreover, the levels of IL-6 and IL-21, two critical cytokines for the development of memory B cells, were significantly higher in the isolated splenocytes from immunized mice after lipoteichoic acid stimulation. CONCLUSIONS: Immunization with MAP2-3 can efficiently induce memory B cells and memory T cells.


Subject(s)
Interleukin-6 , Lipopolysaccharides , Memory B Cells , Teichoic Acids , Mice , Animals , Mice, Inbred BALB C , Staphylococcus aureus , Immunization , Vaccination , Peptides
17.
J Exp Med ; 221(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38661717

ABSTRACT

During secondary infection with influenza virus, plasma cells (PCs) develop within the lung, providing a local source of antibodies. However, the site and mechanisms that regulate this process are poorly defined. Here, we show that while circulating memory B cells entered the lung during rechallenge and were activated within inducible bronchus-associated lymphoid tissues (iBALTs), resident memory B (BRM) cells responded earlier, and their activation occurred in a different niche: directly near infected alveoli. This process required NK cells but was largely independent of CD4 and CD8 T cells. Innate stimuli induced by virus-like particles containing ssRNA triggered BRM cell differentiation in the absence of cognate antigen, suggesting a low threshold of activation. In contrast, expansion of PCs in iBALTs took longer to develop and was critically dependent on CD4 T cells. Our work demonstrates that spatially distinct mechanisms evolved to support pulmonary secondary PC responses, and it reveals a specialized function for BRM cells as guardians of the alveoli.


Subject(s)
CD4-Positive T-Lymphocytes , Lung , Orthomyxoviridae Infections , Plasma Cells , Animals , Plasma Cells/immunology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Lung/immunology , Lung/virology , Lung/pathology , Mice , CD4-Positive T-Lymphocytes/immunology , Mice, Inbred C57BL , Killer Cells, Natural/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Memory B Cells/immunology , Lymphocyte Activation/immunology , Orthomyxoviridae/immunology , Orthomyxoviridae/physiology
18.
Sci Immunol ; 9(94): eadi8039, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38579013

ABSTRACT

Vaccine adjuvants increase the breadth of serum antibody responses, but whether this is due to the generation of antigen-specific B cell clones with distinct specificities or the maturation of memory B cell clones that produce broadly cross-reactive antibodies is unknown. Here, we longitudinally analyzed immune responses in healthy adults after two-dose vaccination with either a virus-like particle COVID-19 vaccine (CoVLP), CoVLP adjuvanted with AS03 (CoVLP+AS03), or a messenger RNA vaccination (mRNA-1273). CoVLP+AS03 enhanced the magnitude and durability of circulating antibodies and antigen-specific CD4+ T cell and memory B cell responses. Antigen-specific CD4+ T cells in the CoVLP+AS03 group at day 42 correlated with antigen-specific memory B cells at 6 months. CoVLP+AS03 induced memory B cell responses, which accumulated somatic hypermutations over 6 months, resulting in enhanced neutralization breadth of monoclonal antibodies. Furthermore, the fraction of broadly neutralizing antibodies encoded by memory B cells increased between day 42 and 6 months. These results indicate that AS03 enhances the antigenic breadth of B cell memory at the clonal level and induces progressive maturation of the B cell response.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Polysorbates , Squalene , alpha-Tocopherol , Adult , Humans , Memory B Cells , COVID-19 Vaccines , Antibodies, Viral , COVID-19/prevention & control , Drug Combinations
19.
Immunity ; 57(5): 1037-1055.e6, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38593796

ABSTRACT

Memory B cells (MBCs) are key providers of long-lived immunity against infectious disease, yet in chronic viral infection, they do not produce effective protection. How chronic viral infection disrupts MBC development and whether such changes are reversible remain unknown. Through single-cell (sc)ATAC-seq and scRNA-seq during acute versus chronic lymphocytic choriomeningitis viral infection, we identified a memory subset enriched for interferon (IFN)-stimulated genes (ISGs) during chronic infection that was distinct from the T-bet+ subset normally associated with chronic infection. Blockade of IFNAR-1 early in infection transformed the chromatin landscape of chronic MBCs, decreasing accessibility at ISG-inducing transcription factor binding motifs and inducing phenotypic changes in the dominating MBC subset, with a decrease in the ISG subset and an increase in CD11c+CD80+ cells. However, timing was critical, with MBCs resistant to intervention at 4 weeks post-infection. Together, our research identifies a key mechanism to instruct MBC identity during viral infection.


Subject(s)
Epigenesis, Genetic , Interferon Type I , Lymphocytic Choriomeningitis , Lymphocytic choriomeningitis virus , Memory B Cells , Animals , Interferon Type I/metabolism , Interferon Type I/immunology , Lymphocytic Choriomeningitis/immunology , Lymphocytic Choriomeningitis/virology , Mice , Lymphocytic choriomeningitis virus/immunology , Memory B Cells/immunology , Mice, Inbred C57BL , Receptor, Interferon alpha-beta/genetics , Immunologic Memory/immunology , Chronic Disease , B-Lymphocyte Subsets/immunology , Single-Cell Analysis
20.
Nat Med ; 30(5): 1373-1383, 2024 May.
Article in English | MEDLINE | ID: mdl-38689059

ABSTRACT

The paucity of information on longevity of vaccine-induced immune responses and uncertainty of the correlates of protection hinder the development of evidence-based COVID-19 vaccination policies for new birth cohorts. Here, to address these knowledge gaps, we conducted a cohort study of healthy 5-12-year-olds vaccinated with BNT162b2. We serially measured binding and neutralizing antibody titers (nAbs), spike-specific memory B cell (MBC) and spike-reactive T cell responses over 1 year. We found that children mounted antibody, MBC and T cell responses after two doses of BNT162b2, with higher antibody and T cell responses than adults 6 months after vaccination. A booster (third) dose only improved antibody titers without impacting MBC and T cell responses. Among children with hybrid immunity, nAbs and T cell responses were highest in those infected after two vaccine doses. Binding IgG titers, MBC and T cell responses were predictive, with T cells being the most important predictor of protection against symptomatic infection before hybrid immunity; nAbs only correlated with protection after hybrid immunity. The stable MBC and T cell responses over time suggest sustained protection against symptomatic SARS-CoV-2 infection, even when nAbs wane. Booster vaccinations do not confer additional immunological protection to healthy children.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19 , SARS-CoV-2 , T-Lymphocytes , Vaccination , Humans , Child , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/immunology , Antibodies, Viral/blood , Child, Preschool , Female , Male , BNT162 Vaccine/immunology , BNT162 Vaccine/administration & dosage , T-Lymphocytes/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Memory B Cells/immunology , Spike Glycoprotein, Coronavirus/immunology , Cohort Studies , Immunization, Secondary , Immunoglobulin G/immunology , Immunoglobulin G/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...