Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Front Immunol ; 15: 1382638, 2024.
Article in English | MEDLINE | ID: mdl-38715601

ABSTRACT

Recovery from respiratory pneumococcal infections generates lung-localized protection against heterotypic bacteria, mediated by resident memory lymphocytes. Optimal protection in mice requires re-exposure to pneumococcus within days of initial infection. Serial surface marker phenotyping of B cell populations in a model of pneumococcal heterotypic immunity revealed that bacterial re-exposure stimulates the immediate accumulation of dynamic and heterogeneous populations of B cells in the lung, and is essential for the establishment of lung resident memory B (BRM) cells. The B cells in the early wave were activated, proliferating locally, and associated with both CD4+ T cells and CXCL13. Antagonist- and antibody-mediated interventions were implemented during this early timeframe to demonstrate that lymphocyte recirculation, CD4+ cells, and CD40 ligand (CD40L) signaling were all needed for lung BRM cell establishment, whereas CXCL13 signaling was not. While most prominent as aggregates in the loose connective tissue of bronchovascular bundles, morphometry and live lung imaging analyses showed that lung BRM cells were equally numerous as single cells dispersed throughout the alveolar septae. We propose that CD40L signaling from antigen-stimulated CD4+ T cells in the infected lung is critical to establishment of local BRM cells, which subsequently protect the airways and parenchyma against future potential infections.


Subject(s)
CD4-Positive T-Lymphocytes , CD40 Ligand , Lung , Memory B Cells , Streptococcus pneumoniae , Animals , Mice , CD4-Positive T-Lymphocytes/immunology , CD40 Ligand/metabolism , CD40 Ligand/immunology , Chemokine CXCL13/metabolism , Disease Models, Animal , Immunologic Memory , Lung/immunology , Memory B Cells/immunology , Memory B Cells/metabolism , Mice, Inbred C57BL , Pneumococcal Infections/immunology , Signal Transduction , Streptococcus pneumoniae/immunology
2.
Chem Biol Interact ; 394: 110969, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38522565

ABSTRACT

It is well-established that the reduced Memory B cells (MBCs) play an important role in the pathogenesis of ulcerative colitis (UC), rendering them a potential therapeutic target for UC intervention. Astragalus polysaccharide (APS), a primary active constituent derived from the classic traditional Chinese medicine Astragalus membranaceus (AM), has been used for centuries in the treatment of UC in both human and animal subjects due to its renowned immunomodulatory properties. However, it is unknown whether APS can regulate MBCs to alleviate experimental colitis. In the present investigation, the murine colitis was successfully induced using dextran sulphate sodium (DSS) and subsequently treated with APS for a duration of 7 days. APS exhibited significant efficacy in reducing the disease activity index (DAI), colonic weight index, the index of colonic weight/colonic length. Furthermore, APS mitigated colonic pathological injuries, restored the colonic length, elevated the immunoglobulin A (IgA), transforming growth factor-ß1 (TGF-ß1) and interleukin (IL)-10 levels, while concurrently suppressing IgG, IgM, IL-6, tumor necrosis factor alpha (TNF-α) levels. Crucially, the quantities of MBCs, IgA+MBCs and forkhead box P3 (Foxp3+) MBCs were notably increased along with a concurrent decrease in IgG1+MBCs, IG2a+MBCs, IgG2b+MBCs after APS administration in colitis mice. Additionally, the Mitotracker red expressions of MBCs and their subgroups demonstrated a significantly up-regulation. Meanwhile, the transcriptomics analysis identified mitochondrial metabolism as the predominant and pivotal mechanism underlying APS-mediated mitigation of DSS-induced colitis. Key differentially expressed genes, including B-cell linker (BLNK), aldehyde dehydrogenase 1A1 (ALDH1A1), B-cell lymphoma 6 (BCL-6), B-lymphocyte-induced maturation protein 1 (Blimp-1), paired box gene 5 (PAX5), purinergic 2 × 7 receptor (P2X7R), B Cell activation factor (BAFF), B Cell activation factor receptor (BAFFR), CD40, nuclear factor kappa-B (NF-κB), IL-6 and so on were implicated in this process. These mRNA expressions were validated through quantitative polymerase chain reaction (qPCR) and immunohistochemistry. These findings revealed that APS effectively restored MBCs and their balance to ameliorate DSS-induced colitis, which was potentially realized via promoting mitochondrial metabolism to maintain MBCs activation.


Subject(s)
Astragalus Plant , Colitis , Dextran Sulfate , Polysaccharides , Animals , Polysaccharides/pharmacology , Polysaccharides/chemistry , Mice , Colitis/drug therapy , Colitis/chemically induced , Colitis/metabolism , Colitis/pathology , Astragalus Plant/chemistry , Memory B Cells/drug effects , Memory B Cells/metabolism , Male , Mice, Inbred C57BL , Colon/drug effects , Colon/pathology , Colon/metabolism , Immunoglobulin A/metabolism , Disease Models, Animal , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/metabolism
3.
Nat Commun ; 14(1): 2327, 2023 04 22.
Article in English | MEDLINE | ID: mdl-37087495

ABSTRACT

Immunomodulatory Siglecs are controlled by their glycoprotein and glycolipid ligands. Siglec-glycolipid interactions are often studied outside the context of a lipid bilayer, missing the complex behaviors of glycolipids in a membrane. Through optimizing a liposomal formulation to dissect Siglec-glycolipid interactions, it is shown that Siglec-6 can recognize glycolipids independent of its canonical binding pocket, suggesting that Siglec-6 possesses a secondary binding pocket tailored for recognizing glycolipids in a bilayer. A panel of synthetic neoglycolipids is used to probe the specificity of this glycolipid binding pocket on Siglec-6, leading to the development of a neoglycolipid with higher avidity for Siglec-6 compared to natural glycolipids. This neoglycolipid facilitates the delivery of liposomes to Siglec-6 on human mast cells, memory B-cells and placental syncytiotrophoblasts. A physiological relevance for glycolipid recognition by Siglec-6 is revealed for the binding and internalization of extracellular vesicles. These results demonstrate a unique and physiologically relevant ability of Siglec-6 to recognize glycolipids in a membrane.


Subject(s)
Extracellular Vesicles , Sialic Acid Binding Immunoglobulin-like Lectins , Female , Humans , Pregnancy , Extracellular Vesicles/metabolism , Glycolipids/chemistry , Glycolipids/metabolism , Liposomes , Mast Cells/metabolism , Memory B Cells/metabolism , Placenta/metabolism , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism
4.
Nat Commun ; 13(1): 5446, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36114169

ABSTRACT

The increasing incidence of hepatitis C virus (HCV) infections underscores the need for an effective vaccine. Successful vaccines to other viruses generally depend on a long-lasting humoral response. However, data on the half-life of HCV-specific responses are lacking. Here we study archived sera and mononuclear cells that were prospectively collected up to 18 years after cure of chronic HCV infection to determine the role of HCV antigen in maintaining neutralizing antibody and B cell responses. We show that HCV-neutralizing activity decreases rapidly in potency and breadth after curative treatment. In contrast, HCV-specific memory B cells persist, and display a restored resting phenotype, normalized chemokine receptor expression and preserved ability to differentiate into antibody-secreting cells. The short half-life of HCV-neutralizing activity is consistent with a lack of long-lived plasma cells. The persistence of HCV-specific memory B cells and the reduced inflammation after cure provide an opportunity for vaccination to induce protective immunity against re-infection.


Subject(s)
Hepatitis C, Chronic , Hepatitis C , Memory B Cells , Antibodies, Neutralizing , Hepacivirus/genetics , Hepatitis C, Chronic/therapy , Humans , Memory B Cells/metabolism , Memory B Cells/virology , Receptors, Chemokine , Viral Hepatitis Vaccines
5.
Cell Rep ; 39(13): 111019, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35767961

ABSTRACT

Binding of BAFF to BAFFR activates in mature B cells PI3K/AKT signaling regulating protein synthesis, metabolic fitness, and survival. In humans, naive and memory B cells express the same levels of BAFFR, but only memory B cells seem to survive without BAFF. Here, we show that BAFF activates PI3K/AKT only in naive B cells and changes the expression of genes regulating migration, proliferation, growth, and survival. BAFF-induced PI3K/AKT activation requires direct interactions between BAFFR and the B cell antigen receptor (BCR) components CD79A and CD79B and is enhanced by the AKT coactivator TCL1A. Compared to memory B cells, naive B cells express more surface BCRs, which interact better with BAFFR than IgG or IgA, thus allowing stronger responses to BAFF. As ablation of BAFFR in naive and memory B cells causes cell death independent of BAFF-induced signaling, BAFFR seems to act also as an intrinsic factor for B cell survival.


Subject(s)
B-Cell Activation Factor Receptor , Memory B Cells , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Receptors, Antigen, B-Cell , B-Cell Activating Factor/immunology , B-Cell Activating Factor/metabolism , B-Cell Activation Factor Receptor/immunology , B-Cell Activation Factor Receptor/metabolism , Humans , Memory B Cells/immunology , Memory B Cells/metabolism , Phosphatidylinositol 3-Kinases/immunology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/immunology , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Antigen, B-Cell/immunology , Receptors, Antigen, B-Cell/metabolism
6.
Med ; 3(7): 468-480.e5, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35716665

ABSTRACT

BACKGROUND: Much remains unknown regarding the response of the immune system to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccination. METHODS: We employed circulating cell-free DNA (cfDNA) to assess the turnover of specific immune cell types following administration of the Pfizer/BioNTech vaccine. FINDINGS: The levels of B cell cfDNA after the primary dose correlated with development of neutralizing antibodies and memory B cells after the booster, revealing a link between early B cell turnover-potentially reflecting affinity maturation-and later development of effective humoral response. We also observed co-elevation of B cell, T cell, and monocyte cfDNA after the booster, underscoring the involvement of innate immune cell turnover in the development of humoral and cellular adaptive immunity. Actual cell counts remained largely stable following vaccination, other than a previously demonstrated temporary reduction in neutrophil and lymphocyte counts. CONCLUSIONS: Immune cfDNA dynamics reveal the crucial role of the primary SARS-CoV-2 vaccine in shaping responses of the immune system following the booster vaccine. FUNDING: This work was supported by a generous gift from Shlomo Kramer. Supported by grants from Human Islet Research Network (HIRN UC4DK116274 and UC4DK104216 to R.S. and Y.D.), Ernest and Bonnie Beutler Research Program of Excellence in Genomic Medicine, The Alex U Soyka Pancreatic Cancer Fund, The Israel Science Foundation, the Waldholtz/Pakula family, the Robert M. and Marilyn Sternberg Family Charitable Foundation, the Helmsley Charitable Trust, Grail, and the DON Foundation (to Y.D.). Y.D. holds the Walter and Greta Stiel Chair and Research Grant in Heart Studies. I.F.-F. received a fellowship from the Glassman Hebrew University Diabetes Center.


Subject(s)
BNT162 Vaccine , COVID-19 , Cell-Free Nucleic Acids , SARS-CoV-2 , Adult , Aged , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/genetics , Antibodies, Viral/immunology , BNT162 Vaccine/administration & dosage , COVID-19/immunology , COVID-19/prevention & control , Cell-Free Nucleic Acids/genetics , Cell-Free Nucleic Acids/immunology , Female , Humans , Immunization, Secondary , Male , Memory B Cells/immunology , Memory B Cells/metabolism , Middle Aged , SARS-CoV-2/immunology , Young Adult
7.
Front Immunol ; 13: 812317, 2022.
Article in English | MEDLINE | ID: mdl-35250986

ABSTRACT

Multiple sclerosis (MS) is an immune-mediated inflammatory disease of the central nervous system that results in demyelination of axons, inefficient signal transmission and reduced muscular mobility. Recent findings suggest that B cells play a significant role in disease development and pathology. To further explore this, B cell profiles in peripheral blood from 28 treatment-naive patients with early MS were assessed using flow cytometry and compared to 17 healthy controls. Conventional and algorithm-based analysis revealed a significant increase in MS patients of IgA+ memory B cells (MBC) including CD27+, CD27- and Tbet+ subsets. Screening circulating B cells for markers associated with B cell function revealed a significantly decreased expression of the B cell activation factor receptor (BAFF-R) in MS patients compared to controls. In healthy controls, BAFF-R expression was inversely associated with abundance of differentiated MBC but this was not observed in MS. Instead in MS patients, decreased BAFF-R expression correlated with increased production of proinflammatory TNF following B cell stimulation. Finally, we demonstrated that reactivation of Epstein Barr Virus (EBV) in MS patients was associated with several phenotypic changes amongst MBCs, particularly increased expression of HLA-DR molecules and markers of a T-bet+ differentiation pathway in IgM+ MBCs. Together, these data suggest that the B cell compartment is dysregulated in MS regarding aberrant MBC homeostasis, driven by reduced BAFF-R expression and EBV reactivation. This study adds further insights into the contribution of B cells to the pathological mechanisms of MS, as well as the complex role of BAFF/BAFF-R signalling in MS.


Subject(s)
B-Cell Activation Factor Receptor , Epstein-Barr Virus Infections , Memory B Cells , Multiple Sclerosis , B-Cell Activation Factor Receptor/genetics , B-Cell Activation Factor Receptor/metabolism , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/immunology , Herpesvirus 4, Human , Humans , Immunoglobulin A , Immunoglobulin M , Memory B Cells/metabolism , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism
8.
Cell ; 185(5): 847-859.e11, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35139340

ABSTRACT

We address whether T cell responses induced by different vaccine platforms (mRNA-1273, BNT162b2, Ad26.COV2.S, and NVX-CoV2373) cross-recognize early SARS-CoV-2 variants. T cell responses to early variants were preserved across vaccine platforms. By contrast, significant overall decreases were observed for memory B cells and neutralizing antibodies. In subjects ∼6 months post-vaccination, 90% (CD4+) and 87% (CD8+) of memory T cell responses were preserved against variants on average by AIM assay, and 84% (CD4+) and 85% (CD8+) preserved against Omicron. Omicron RBD memory B cell recognition was substantially reduced to 42% compared with other variants. T cell epitope repertoire analysis revealed a median of 11 and 10 spike epitopes recognized by CD4+ and CD8+ T cells, with average preservation > 80% for Omicron. Functional preservation of the majority of T cell responses may play an important role as a second-level defense against diverse variants.


Subject(s)
COVID-19 Vaccines/immunology , Memory B Cells/immunology , Memory T Cells/immunology , SARS-CoV-2/immunology , Ad26COVS1/administration & dosage , Ad26COVS1/immunology , BNT162 Vaccine/administration & dosage , BNT162 Vaccine/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , COVID-19/pathology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Epitopes/immunology , Epitopes, T-Lymphocyte/immunology , Humans , Memory B Cells/metabolism , Memory T Cells/metabolism , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Vaccination
9.
Immunity ; 55(2): 290-307.e5, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35090581

ABSTRACT

Tbet+CD11c+ B cells arise during type 1 pathogen challenge, aging, and autoimmunity in mice and humans. Here, we examined the developmental requirements of this B cell subset. In acute infection, T follicular helper (Tfh) cells, but not Th1 cells, drove Tbet+CD11c+ B cell generation through proximal delivery of help. Tbet+CD11c+ B cells developed prior to germinal center (GC) formation, exhibiting phenotypic and transcriptional profiles distinct from GC B cells. Fate tracking revealed that most Tbet+CD11c+ B cells developed independently of GC entry and cell-intrinsic Bcl6 expression. Tbet+CD11c+ and GC B cells exhibited minimal repertoire overlap, indicating distinct developmental pathways. As the infection resolved, Tbet+CD11c+ B cells localized to the marginal zone where splenic retention depended on integrins LFA-1 and VLA-4, forming a competitive memory subset that contributed to antibody production and secondary GC seeding upon rechallenge. Therefore, Tbet+CD11c+ B cells comprise a GC-independent memory subset capable of rapid and robust recall responses.


Subject(s)
B-Lymphocytes/immunology , CD11 Antigens/metabolism , Lymphocyte Subsets/immunology , T Follicular Helper Cells/immunology , T-Box Domain Proteins/metabolism , Virus Diseases/immunology , Animals , Antibodies, Viral/metabolism , B-Lymphocytes/metabolism , Cell Differentiation/immunology , Germinal Center/immunology , Alphainfluenzavirus/immunology , Integrins/metabolism , Lymphocyte Subsets/metabolism , Lymphocytic choriomeningitis virus/immunology , Memory B Cells/immunology , Memory B Cells/metabolism , Mice , Spleen/immunology
10.
Cell Rep ; 38(6): 110345, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35090598

ABSTRACT

Understanding the long-term maintenance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunity is critical for predicting protection against reinfection. In an age- and gender-matched cohort of 24 participants, the association of disease severity and early immune responses on the maintenance of humoral immunity 12 months post-infection is examined. All severely affected participants maintain a stable subset of SARS-CoV-2 receptor-binding domain (RBD)-specific memory B cells (MBCs) and good neutralizing antibody breadth against the majority of the variants of concern, including the Delta variant. Modeling these immune responses against vaccine efficacy data indicate a 45%-76% protection against symptomatic infection (variant dependent). Overall, these findings indicate durable humoral responses in most participants after infection, reasonable protection against reinfection, and implicate baseline antigen-specific CD4+ T cell responses as a predictor of maintenance of antibody neutralization breadth and RBD-specific MBC levels at 12 months post-infection.


Subject(s)
Broadly Neutralizing Antibodies/metabolism , Memory B Cells/metabolism , SARS-CoV-2/immunology , Adult , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Australia , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , COVID-19/immunology , Cohort Studies , Female , Humans , Immunity/immunology , Immunity, Humoral/immunology , Male , Memory B Cells/immunology , SARS-CoV-2/pathogenicity , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology
11.
Nat Immunol ; 23(1): 135-145, 2022 01.
Article in English | MEDLINE | ID: mdl-34937918

ABSTRACT

Memory B cells (MBCs) protect the body from recurring infections. MBCs differ from their naive counterparts (NBCs) in many ways, but functional and surface marker differences are poorly characterized. In addition, although mice are the prevalent model for human immunology, information is limited concerning the nature of homology in B cell compartments. To address this, we undertook an unbiased, large-scale screening of both human and mouse MBCs for their differential expression of surface markers. By correlating the expression of such markers with extensive panels of known markers in high-dimensional flow cytometry, we comprehensively identified numerous surface proteins that are differentially expressed between MBCs and NBCs. The combination of these markers allows for the identification of MBCs in humans and mice and provides insight into their functional differences. These results will greatly enhance understanding of humoral immunity and can be used to improve immune monitoring.


Subject(s)
B-Lymphocytes/immunology , Immunologic Memory/immunology , Memory B Cells/immunology , Animals , B-Lymphocytes/metabolism , Biomarkers/metabolism , Female , Flow Cytometry/methods , Humans , Immunity, Humoral/immunology , Male , Memory B Cells/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Phenotype
12.
Front Immunol ; 12: 733539, 2021.
Article in English | MEDLINE | ID: mdl-34899693

ABSTRACT

The response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is largely impacted by the level of virus exposure and status of the host immunity. The nature of protection shown by direct asymptomatic contacts of coronavirus disease 2019 (COVID-19)-positive patients is quite intriguing. In this study, we have characterized the antibody titer, SARS-CoV-2 surrogate virus neutralization, cytokine levels, single-cell T-cell receptor (TCR), and B-cell receptor (BCR) profiling in asymptomatic direct contacts, infected cases, and controls. We observed significant increase in antibodies with neutralizing amplitude in asymptomatic contacts along with cytokines such as Eotaxin, granulocyte-colony stimulating factor (G-CSF), interleukin 7 (IL-7), migration inhibitory factor (MIF), and macrophage inflammatory protein-1α (MIP-1α). Upon single-cell RNA (scRNA) sequencing, we explored the dynamics of the adaptive immune response in few representative asymptomatic close contacts and COVID-19-infected patients. We reported direct asymptomatic contacts to have decreased CD4+ naive T cells with concomitant increase in CD4+ memory and CD8+ Temra cells along with expanded clonotypes compared to infected patients. Noticeable proportions of class switched memory B cells were also observed in them. Overall, these findings gave an insight into the nature of protection in asymptomatic contacts.


Subject(s)
Adaptive Immunity/immunology , COVID-19/immunology , Genomics/methods , SARS-CoV-2/immunology , Single-Cell Analysis/methods , Adaptive Immunity/genetics , Adult , Antibodies, Viral/immunology , COVID-19/genetics , COVID-19/virology , Cytokines/immunology , Cytokines/metabolism , Female , Gene Expression Profiling/methods , Humans , Male , Memory B Cells/immunology , Memory B Cells/metabolism , Memory B Cells/virology , Middle Aged , SARS-CoV-2/physiology , Sequence Analysis, RNA/methods , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/virology , Young Adult
13.
PLoS One ; 16(12): e0261656, 2021.
Article in English | MEDLINE | ID: mdl-34936684

ABSTRACT

SARS-CoV-2 infection elicits a robust B cell response, resulting in the generation of long-lived plasma cells and memory B cells. Here, we aimed to determine the effect of COVID-19 severity on the memory B cell response and characterize changes in the memory B cell compartment between recovery and five months post-symptom onset. Using high-parameter spectral flow cytometry, we analyzed the phenotype of memory B cells with reactivity against the SARS-CoV-2 spike protein or the spike receptor binding domain (RBD) in recovered individuals who had been hospitalized with non-severe (n = 8) or severe (n = 5) COVID-19. One month after symptom onset, a substantial proportion of spike-specific IgG+ B cells showed an activated phenotype. In individuals who experienced non-severe disease, spike-specific IgG+ B cells showed increased expression of markers associated with durable B cell memory, including T-bet and FcRL5, as compared to individuals who experienced severe disease. While the frequency of T-bet+ spike-specific IgG+ B cells differed between the two groups, these cells predominantly showed an activated switched memory B cell phenotype in both groups. Five months post-symptom onset, the majority of spike-specific memory B cells had a resting phenotype and the percentage of spike-specific T-bet+ IgG+ memory B cells decreased to baseline levels. Collectively, our results highlight subtle differences in the B cells response after non-severe and severe COVID-19 and suggest that the memory B cell response elicited during non-severe COVID-19 may be of higher quality than the response after severe disease.


Subject(s)
COVID-19/immunology , Receptors, Fc/metabolism , T-Box Domain Proteins/metabolism , Adult , Aged , Antibodies, Viral/blood , B-Lymphocytes/metabolism , Biomarkers/analysis , COVID-19/metabolism , Female , Flow Cytometry/methods , Hospitalization/trends , Humans , Immunoglobulin G/blood , Immunologic Memory , Male , Memory B Cells/immunology , Memory B Cells/metabolism , Middle Aged , Receptors, Fc/blood , Receptors, Fc/genetics , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology , T-Box Domain Proteins/blood
14.
Front Immunol ; 12: 738955, 2021.
Article in English | MEDLINE | ID: mdl-34603321

ABSTRACT

There is increasing evidence that lung-resident memory T and B cells play a critical role in protecting against respiratory reinfection. With a unique transcriptional and phenotypic profile, resident memory lymphocytes are maintained in a quiescent state, constantly surveying the lung for microbial intruders. Upon reactivation with cognate antigen, these cells provide rapid effector function to enhance immunity and prevent infection. Immunization strategies designed to induce their formation, alongside novel techniques enabling their detection, have the potential to accelerate and transform vaccine development. Despite most data originating from murine studies, this review will discuss recent insights into the generation, maintenance and characterisation of pulmonary resident memory lymphocytes in the context of respiratory infection and vaccination using recent findings from human and non-human primate studies.


Subject(s)
Bacterial Infections/prevention & control , Immunologic Memory , Lung/immunology , Memory B Cells/immunology , Memory T Cells/immunology , Respiratory Tract Infections/immunology , Virus Diseases/prevention & control , Animals , Bacterial Infections/immunology , Bacterial Infections/metabolism , Bacterial Infections/microbiology , Bacterial Vaccines/administration & dosage , Bacterial Vaccines/immunology , Host-Pathogen Interactions , Humans , Lung/metabolism , Lung/microbiology , Lung/virology , Memory B Cells/metabolism , Memory B Cells/microbiology , Memory B Cells/virology , Memory T Cells/metabolism , Memory T Cells/microbiology , Memory T Cells/virology , Phenotype , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/prevention & control , Respiratory Tract Infections/virology , Vaccination , Viral Vaccines/administration & dosage , Viral Vaccines/immunology , Virus Diseases/immunology , Virus Diseases/metabolism , Virus Diseases/microbiology
15.
JCI Insight ; 6(22)2021 11 22.
Article in English | MEDLINE | ID: mdl-34618687

ABSTRACT

BACKGROUNDLittle is known about the autoreactive B cells in antineutrophil cytoplasmic antibody-associated (ANCA-associated) vasculitis (AAV). We aimed to investigate tolerance checkpoints of circulating antigen-specific proteinase 3-reactive (PR3+) B cells.METHODSMulticolor flow cytometry in combination with bioinformatics and functional in vitro studies were performed on baseline samples of PBMCs from 154 well-characterized participants of the RAVE trial (NCT00104299) with severely active PR3-AAV and myeloperoxidase-AAV (MPO-AAV) and 27 healthy controls (HCs). Clinical data and outcomes from the trial were correlated with PR3+ B cells (total and subsets).RESULTSThe frequency of PR3+ B cells among circulating B cells was higher in participants with PR3-AAV (4.77% median [IQR, 3.98%-6.01%]) than in participants with MPO-AAV (3.16% median [IQR, 2.51%-5.22%]) and participants with AAV compared with HCs (1.67% median [IQR, 1.27%-2.16%], P < 0.001 for all comparisons), implying a defective central tolerance checkpoint in patients with AAV. Only PBMCs from participants with PR3-AAV contained PR3+ B cells capable of secreting PR3-ANCA IgG in vitro, proving they were functionally distinct from those of participants with MPO-AAV and HCs. Unsupervised clustering identified subtle subsets of atypical autoreactive PR3+ memory B cells accumulating through the maturation process in patients with PR3-AAV. PR3+ B cells were enriched in the memory B cell compartment of participants with PR3-AAV and were associated with higher serum CXCL13 levels, suggesting an increased germinal center activity. PR3+ B cells correlated with systemic inflammation (C-reactive protein and erythrocyte sedimentation rate, P < 0.05) and complete remission (P < 0.001).CONCLUSIONThis study suggests the presence of defective central antigen-independent and peripheral antigen-dependent checkpoints in patients with PR3-AAV, elucidating the selection process of autoreactive B cells.Trial registrationClinicalTrials.gov NCT00104299.FundingThe Vasculitis Foundation, the National Institute of Allergy and Infectious Diseases of the NIH, and the Mayo Foundation for Education and Research.


Subject(s)
Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/metabolism , Flow Cytometry/methods , Memory B Cells/metabolism , Peptide Hydrolases/metabolism , Double-Blind Method , Female , Humans , Male
16.
Front Immunol ; 12: 738123, 2021.
Article in English | MEDLINE | ID: mdl-34650561

ABSTRACT

The diversity of B cell subsets and their contribution to vaccine-induced immunity in humans are not well elucidated but hold important implications for rational vaccine design. Prior studies demonstrate that B cell subsets distinguished by immunoglobulin (Ig) isotype expression exhibit divergent activation-induced fates. Here, the antigen-specific B cell response to tetanus toxoid (TTd) booster vaccination was examined in healthy adults, using a dual-TTd tetramer staining flow cytometry protocol. Unsupervised analyses of the data revealed that prior to vaccination, IgM-expressing CD27+ B cells accounted for the majority of TTd-binding B cells. 7 days following vaccination, there was an acute expansion of TTd-binding plasmablasts (PB) predominantly expressing IgG, and a minority expressing IgA or IgM. Frequencies of all PB subsets returned to baseline at days 14 and 21. TTd-binding IgG+ and IgA+ memory B cells (MBC) exhibited a steady and delayed maximal expansion compared to PB, peaking in frequencies at day 14. In contrast, the number of TTd-binding IgM+IgD+CD27+ B cells and IgM-only CD27+ B cells remain unchanged following vaccination. To examine TTd-binding capacity of IgG+ MBC and IgM+IgD+CD27+ B cells, surface TTd-tetramer was normalised to expression of the B cell receptor-associated CD79b subunit. CD79b-normalised TTd binding increased in IgG+ MBC, but remained unchanged in IgM+IgD+CD27+ B cells, and correlated with the functional affinity index of plasma TTd-specific IgG antibodies, following vaccination. Finally, frequencies of activated (PD-1+ICOS+) circulating follicular helper T cells (cTFH), particularly of the CXCR3-CCR6- cTFH2 cell phenotype, at their peak expansion, strongly predicted antigen-binding capacity of IgG+ MBC. These data highlight the phenotypic and functional diversity of the B cell memory compartment, in their temporal kinetics, antigen-binding capacities and association with cTFH cells, and are important parameters for consideration in assessing vaccine-induced immune responses.


Subject(s)
Diphtheria-Tetanus Vaccine/administration & dosage , Immunization, Secondary , Immunoglobulins/blood , Immunologic Memory/drug effects , Memory B Cells/drug effects , Tetanus Toxin/administration & dosage , CD79 Antigens/metabolism , Diphtheria-Tetanus Vaccine/adverse effects , Diphtheria-Tetanus Vaccine/immunology , Healthy Volunteers , Humans , Inducible T-Cell Co-Stimulator Protein/metabolism , Memory B Cells/immunology , Memory B Cells/metabolism , Phenotype , Programmed Cell Death 1 Receptor/metabolism , T Follicular Helper Cells/immunology , T Follicular Helper Cells/metabolism , Tetanus Toxin/adverse effects , Tetanus Toxin/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism
17.
Front Immunol ; 12: 716240, 2021.
Article in English | MEDLINE | ID: mdl-34484219

ABSTRACT

Memory B cells and antibody-secreting plasma cells are generated within germinal centers during affinity maturation in which B-cell proliferation, selection, differentiation, and self-renewal play important roles. The mechanisms behind memory B cell and plasma cell differentiation in germinal centers are not well understood. However, it has been suggested that cell fate is (partially) determined by asymmetric cell division, which involves the unequal distribution of cellular components to both daughter cells. To investigate what level and/or probability of asymmetric segregation of several fate determinant molecules, such as the antigen and transcription factors (BCL6, IRF4, and BLIMP1) recapitulates the temporal switch and DZ-to-LZ ratio in the germinal center, we implemented a multiscale model that combines a core gene regulatory network for plasma cell differentiation with a model describing the cellular interactions and dynamics in the germinal center. Our simulations show that BLIMP1 driven plasma cell differentiation together with coupled asymmetric division of antigen and BLIMP1 with a large segregation between the daughter cells results in a germinal center DZ-to-LZ ratio and a temporal switch from memory B cells to plasma cells that have been observed in experiments.


Subject(s)
Antigens/immunology , Asymmetric Cell Division/genetics , Germinal Center/immunology , Germinal Center/metabolism , Memory B Cells/immunology , Plasma Cells/immunology , Positive Regulatory Domain I-Binding Factor 1/genetics , Biomarkers , Cell Differentiation , Gene Expression Regulation , Gene Regulatory Networks , Humans , Lymphocyte Activation , Memory B Cells/metabolism , Models, Biological , Plasma Cells/metabolism
18.
mSphere ; 6(5): e0072621, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34523978

ABSTRACT

Malaria, caused by parasites of the Plasmodium genus, is responsible for significant morbidity and mortality globally. Chronic Plasmodium falciparum exposure affects the B cell compartment, leading to the accumulation of atypical memory B cells (atMBCs). IgM-positive (IgM+) and IgG+ atMBCs have not been compared in-depth in the context of malaria, nor is it known if atMBCs in malaria-experienced individuals are different from phenotypically similar B cells in individuals with no known history of Plasmodium exposure. To address these questions, we characterized the B cell receptor (BCR) repertoire of naive B cells (NBCs), IgM+ and IgG+ classical MBCs (cMBCs), and IgM+ and IgG+ atMBCs from 13 malaria-naive American adults and 7 malaria-experienced Ugandan adults. Our results demonstrate that P. falciparum exposure mainly drives changes in atMBCs. In comparison to malaria-naive adults, the BCR repertoire of Plasmodium-exposed adults showed increased levels of somatic hypermutation in the heavy chain V region in IgM+ and IgG+ atMBCs, shorter heavy chain complementarity-determining region 3 (HCDR3) in IgG+ atMBCs, and increased usage of IGHV3-73 in IgG+ cMBCs and both IgM+ and IgG+ atMBCs. Irrespective of Plasmodium exposure, IgM+ atMBCs closely resembled NBCs, while IgG+ atMBCs resembled IgG+ cMBCs. Physicochemical properties of the HCDR3 seemed to be intrinsic to cell type and independent of malaria experience. The resemblance between atMBCs from Plasmodium-exposed and naive adults suggests similar differentiation pathways regardless of chronic antigen exposure. Moreover, these data demonstrate that IgM+ and IgG+ atMBCs are distinct populations that should be considered separately in future analyses. IMPORTANCE Malaria, caused by Plasmodium parasites, still contributes to a high global burden of disease, mainly in children under 5 years of age. Chronic and recurrent Plasmodium infections affect the development of B cell memory against the parasite and promote the accumulation of atypical memory B cells (atMBCs), which have an unclear function in the immune response. Understanding where these cells originate from and whether they are beneficial in the immune response to Plasmodium will help inform vaccination development efforts. We found differences in B cell receptor (BCR) properties of atMBCs between malaria-naive and malaria-experienced adults that are suggestive of divergent selection processes, resulting in more somatic hypermutation and differential immunoglobulin heavy chain V (IGHV) gene usage. Despite these differences, atMBCs from malaria-naive and malaria-experienced adults also showed many similarities in BCR characteristics, such as physicochemical properties of the HCDR3 region, suggesting that atMBCs undergo similar differentiation pathways in response to different pathogens. Our study provides new insights into the effects of malaria experience on the B cell compartment and the relationships between atMBCs and other B cell populations.


Subject(s)
Immunologic Memory , Malaria, Falciparum/immunology , Memory B Cells/immunology , Plasmodium falciparum/immunology , Receptors, Antigen, B-Cell/immunology , Adult , Humans , Immunoglobulin G/metabolism , Immunoglobulin M/metabolism , Malaria, Falciparum/metabolism , Malaria, Falciparum/parasitology , Memory B Cells/metabolism , Receptors, Antigen, B-Cell/metabolism
19.
Article in English | MEDLINE | ID: mdl-34465614

ABSTRACT

BACKGROUND AND OBJECTIVES: To assess the molecular landscape of B-cell subpopulations across different compartments in patients with neuromyelitis optica spectrum disorder (NMOSD). METHODS: We performed B-cell transcriptomic profiles via single-cell RNA sequencing across CSF, blood, and bone marrow in patients with NMOSD. RESULTS: Across the tissue types tested, 4 major subpopulations of B cells with distinct signatures were identified: naive B cells, memory B cells, age-associated B cells, and antibody-secreting cells (ASCs). NMOSD B cells show proinflammatory activity and increased expression of chemokine receptor genes (CXCR3 and CXCR4). Circulating B cells display an increase of antigen presentation markers (CD40 and CD83), as well as activation signatures (FOS, CD69, and JUN). In contrast, the bone marrow B-cell population contains a large ASC fraction with increased oxidative and metabolic activity reflected by COX genes and ATP synthase genes. Typically, NMOSD B cells become hyperresponsive to type I interferon, which facilitates B-cell maturation and anti-aquaporin-4 autoantibody production. The pool of ASCs in blood and CSF were significantly elevated in NMOSD. Both CD19- and CD19+ ASCs could be ablated by tocilizumab, but not rituximab treatment in NMOSD. DISCUSSION: B cells are compartmentally fine tuned toward autoreactivity in NMOSD and become hyperreactive to type I interferon. Inhibition of type I interferon pathway may provide a new therapeutic avenue for NMOSD.


Subject(s)
B-Lymphocytes/metabolism , Neuromyelitis Optica/metabolism , Transcriptome , Adult , Aquaporin 4/immunology , B-Lymphocytes/drug effects , Bone Marrow/metabolism , Humans , Immunologic Factors/pharmacology , Memory B Cells/drug effects , Memory B Cells/metabolism , Neuromyelitis Optica/blood , Neuromyelitis Optica/cerebrospinal fluid , Neuromyelitis Optica/drug therapy , Sequence Analysis, RNA
20.
Front Immunol ; 12: 703931, 2021.
Article in English | MEDLINE | ID: mdl-34394101

ABSTRACT

Tocilizumab, a humanized anti-IL-6 receptor monoclonal antibody, showed its therapeutic efficacy on neuromyelitis optica spectrum disorder (NMOSD). To assess the immunological effects of this drug on B cells, follicular T helper (Tfh) cells, and peripheral T helper (Tph) cells in patients with NMOSD, peripheral B cell and Tfh cell phenotypes were evaluated in 26 patients with NMOSD before and after tocilizumab treatment by nine-color flow cytometry, as well as the expression of costimulatory and co-inhibitory molecules on B cells. Results showed that the frequency of CD27+IgD- switched memory B cells, CD27-IgD- double-negative B cells, and CD27highCD38high antibody-secreting cells was increased in patients with NMOSD. Tocilizumab treatment led to a significant shift of B cells to naïve B cells from memory B cells after 3 months. Three markers on B cells associated with T-cell activation (i.e., CD86 CD69, and HLA-DR) were downregulated after tocilizumab treatment. The frequencies of total Tfh and Tph cells were decreased, whereas that of follicular regulatory T cells tended to increase. Intrinsic increased PD-L1 and PD-L2 expression was characteristic of B cells in patients with NMOSD. Tocilizumab selectively restored PD-L1 on B-cell subsets. These results provided evidence that tocilizumab enhanced B- and T-cell homoeostasis by regulating B-cell differentiation and inhibiting lymphocyte activation in patients with NMOSD.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , Lymphocyte Activation/drug effects , Memory B Cells , Neuromyelitis Optica , T-Lymphocytes, Helper-Inducer , Adult , Antigens, Differentiation/blood , Antigens, Differentiation/immunology , Female , Humans , Male , Memory B Cells/immunology , Memory B Cells/metabolism , Middle Aged , Neuromyelitis Optica/blood , Neuromyelitis Optica/drug therapy , Neuromyelitis Optica/immunology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...