Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.253
Filter
1.
J Biochem Mol Toxicol ; 38(5): e23717, 2024 May.
Article in English | MEDLINE | ID: mdl-38742857

ABSTRACT

Aluminum chloride (AlCl3) is a potent neurotoxic substance known to cause memory impairment and oxidative stress-dependent neurodegeneration. Naringenin (NAR) is a dietary flavonoid with potent antioxidant and anti-inflammatory properties which was implemented against AlCl3-induced neurotoxicity to ascertain its neuroprotective efficacy. Experimental neurotoxicity in mice was induced by exposure of AlCl3 (10 mg/kg, p.o.) followed by treatment with NAR (10 mg/kg, p.o.) for a total of 63 days. Assessed the morphometric, learning memory dysfunction (novel object recognition, T- and Y-maze tests), neuronal oxidative stress, and histopathological alteration in different regions of the brain, mainly cortex, hippocampus, thalamus, and cerebellum. AlCl3 significantly suppressed the spatial learning and memory power which were notably improved by administration of NAR. The levels of oxidative stress parameters nitric oxide, advanced oxidation of protein products, protein carbonylation, lipid peroxidation, superoxide dismutase, catalase, glutathione reductase, reduced glutathione, and the activity of acetylcholine esterase were altered 1.5-3 folds by AlCl3 significantly. Treatment of NAR remarkably restored the level of oxidative stress parameters and maintained the antioxidant defense system. AlCl3 suppressed the expression of neuronal proliferation marker NeuN that was restored by NAR treatment which may be a plausible mechanism. NAR showed therapeutic efficacy as a natural supplement against aluminum-intoxicated memory impairments and histopathological alteration through a mechanism involving an antioxidant defense system and neuronal proliferation.


Subject(s)
Aluminum Chloride , Flavanones , Memory Disorders , Oxidative Stress , Animals , Flavanones/pharmacology , Flavanones/therapeutic use , Oxidative Stress/drug effects , Mice , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Memory Disorders/metabolism , Aluminum Chloride/toxicity , Male , Neurodegenerative Diseases/chemically induced , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Maze Learning/drug effects , Brain/drug effects , Brain/metabolism , Brain/pathology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
2.
Free Radic Biol Med ; 220: 56-66, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38697489

ABSTRACT

Apart from dopaminergic neurotoxicity, exposure to rotenone, a commonly used insecticide in agriculture, also adversely affects hippocampal and cortical neurons, resulting in cognitive impairments in mice. We recently established a role of microglia-mediated neuroinflammation in rotenone-elicited deficits of cognition, yet the mechanisms remain elusive. Here, we investigated the involvement of NADPH oxidase 2 (NOX2) catalytic subunit gp91phox in rotenone-induced cognitive deficits and the associated mechanisms. Our study demonstrated that rotenone exposure elevated expression of gp91phox and phosphorylation of the NOX2 cytosolic subunit p47phox, along with NADPH depletion in the hippocampus and cortex of mice, indicating NOX2 activation. Specific knockdown of gp91phox in microglia via adeno-associated virus delivery resulted in reduced microglial activation, proinflammatory gene expression and improved learning and memory capacity in rotenone-intoxicated mice. Genetic deletion of gp91phox also reversed rotenone-elicited cognitive dysfunction in mice. Furthermore, microglial gp91phox knockdown attenuated neuronal damage and synaptic loss in mice. This intervention also suppressed iron accumulation, disruption of iron-metabolism proteins and iron-dependent lipid peroxidation and restored the balance of ferroptosis-related parameters, including GPX4, SLC711, PTGS2, and ACSL4 in rotenone-lesioned mice. Intriguingly, pharmacological inhibition of ferroptosis with liproxstatin-1 conferred protection against rotenone-induced neurodegeneration and cognitive dysfunction in mice. In summary, our findings underscored the contribution of microglial gp91phox-dependent neuroinflammation and ferroptosis to learning and memory dysfunction in rotenone-lesioned mice. These results provided valuable insights into the pathogenesis of cognitive deficits associated with pesticide-induced Parkinsonism, suggesting potential therapeutic avenues for intervention.


Subject(s)
Ferroptosis , Memory Disorders , Microglia , NADPH Oxidase 2 , Neuroinflammatory Diseases , Rotenone , Animals , Mice , NADPH Oxidase 2/metabolism , NADPH Oxidase 2/genetics , Microglia/metabolism , Microglia/pathology , Microglia/drug effects , Rotenone/toxicity , Ferroptosis/drug effects , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/chemically induced , Neuroinflammatory Diseases/genetics , Memory Disorders/chemically induced , Memory Disorders/metabolism , Memory Disorders/genetics , Memory Disorders/pathology , Male , Mice, Inbred C57BL , Hippocampus/metabolism , Hippocampus/pathology , Hippocampus/drug effects , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/genetics , Cognitive Dysfunction/pathology , Neurons/metabolism , Neurons/pathology , Neurons/drug effects , Mice, Knockout
3.
Pharmacol Rep ; 76(3): 519-534, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38722542

ABSTRACT

BACKGROUND: Synthetic cathinones (SC) constitute the second most frequently abused class of new psychoactive substances. They serve as an alternative to classic psychostimulatory drugs of abuse, such as methamphetamine, cocaine, or 3,4-methylenedioxymethamphetamine (MDMA). Despite the worldwide prevalence of SC, little is known about their long-term impact on the central nervous system. Here, we examined the effects of repeated exposure of mice during infancy, to 3,4-methylenedioxypyrovalerone (MDPV), a SC potently enhancing dopaminergic neurotransmission, on learning and memory in young adult mice. METHODS: All experiments were performed on C57BL/6J male and female mice. Animals were injected with MDPV (10 or 20 mg/kg) and BrdU (bromodeoxyuridine, 25 mg/kg) during postnatal days 11-20, which is a crucial period for the development of their hippocampus. At the age of 12 weeks, mice underwent an assessment of various types of memory using a battery of behavioral tests. Afterward, their brains were removed for detection of BrdU-positive cells in the dentate gyrus of the hippocampal formation with immunohistochemistry, and for measurement of the expression of synaptic proteins, such as synaptophysin and PSD95, in the hippocampus using Western blot. RESULTS: Exposure to MDPV resulted in impairment of spatial working memory assessed with Y-maze spontaneous alternation test, and of object recognition memory. However, no deficits in hippocampus-dependent spatial learning and memory were found using the Morris water maze paradigm. Consistently, hippocampal neurogenesis and synaptogenesis were not interrupted. All observed MDPV effects were sex-independent. CONCLUSIONS: MDPV administered repeatedly to mice during infancy causes learning and memory deficits that persist into adulthood but are not related to aberrant hippocampal development.


Subject(s)
Benzodioxoles , Hippocampus , Memory Disorders , Mice, Inbred C57BL , Pyrrolidines , Synthetic Cathinone , Animals , Benzodioxoles/administration & dosage , Benzodioxoles/pharmacology , Mice , Female , Male , Pyrrolidines/administration & dosage , Pyrrolidines/pharmacology , Memory Disorders/chemically induced , Hippocampus/drug effects , Hippocampus/metabolism , Maze Learning/drug effects , Central Nervous System/drug effects , Central Nervous System/metabolism , Memory/drug effects
4.
CNS Neurosci Ther ; 30(5): e14716, 2024 05.
Article in English | MEDLINE | ID: mdl-38698533

ABSTRACT

BACKGROUND: Sevoflurane is a superior agent for maintaining anesthesia during surgical procedures. However, the neurotoxic mechanisms of clinical concentration remain poorly understood. Sevoflurane can interfere with the normal function of neurons and synapses and impair cognitive function by acting on α5-GABAAR. METHODS: Using MWM test, we evaluated cognitive abilities in mice following 1 h of anesthesia with 2.7%-3% sevoflurane. Based on hippocampal transcriptome analysis, we analyzed the differential genes and IL-6 24 h post-anesthesia. Western blot and RT-PCR were performed to measure the levels of α5-GABAAR, Radixin, P-ERM, P-Radixin, Gephyrin, IL-6, and ROCK. The spatial distribution and expression of α5-GABAAR on neuronal somata were analyzed using histological and three-dimensional imaging techniques. RESULTS: MWM test indicated that partial long-term learning and memory impairment. Combining molecular biology and histological analysis, our studies have demonstrated that sevoflurane induces immunosuppression, characterized by reduced IL-6 expression levels, and that enhanced Radixin dephosphorylation undermines the microstructural stability of α5-GABAAR, leading to its dissociation from synaptic exterior and resulting in a disordered distribution in α5-GABAAR expression within neuronal cell bodies. On the synaptic cleft, the expression level of α5-GABAAR remained unchanged, the spatial distribution became more compact, with an increased fluorescence intensity per voxel. On the extra-synaptic space, the expression level of α5-GABAAR decreased within unchanged spatial distribution, accompanied by an increased fluorescence intensity per voxel. CONCLUSION: Dysregulated α5-GABAAR expression and distribution contributes to sevoflurane-induced partial long-term learning and memory impairment, which lays the foundation for elucidating the underlying mechanisms in future studies.


Subject(s)
Anesthetics, Inhalation , Hippocampus , Memory Disorders , Receptors, GABA-A , Sevoflurane , Sevoflurane/toxicity , Animals , Mice , Male , Memory Disorders/chemically induced , Memory Disorders/metabolism , Anesthetics, Inhalation/toxicity , Receptors, GABA-A/metabolism , Receptors, GABA-A/biosynthesis , Receptors, GABA-A/genetics , Hippocampus/metabolism , Hippocampus/drug effects , Mice, Inbred C57BL , Maze Learning/drug effects , Maze Learning/physiology
5.
Physiol Rep ; 12(11): e16053, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38806440

ABSTRACT

Inflammation and oxidative stress upset memory. We explored influence of sodium nitroprusside (SNP) on memory deficits resulted from lipopolysaccharide (LPS).Groups include control, LPS, LPS + SNP 1 mg/kg, LPS + SNP 2 mg/kg, and LPS + SNP 3 mg/kg. Morris water maze and passive avoidance tests and biochemical measurements were carried out.In Morris water maze, LPS prolonged time and distance for finding the platform. In probe trial, it diminished time spent and traveled distance in the target zone. Injection of 2 and 3 mg/kg of SNP overturned the effect of LPS. In passive avoidance task, LPS postponed entrance into darkroom and reduced time spent in light room and incremented time spent in darkroom in 3, 24, and 72 h after electrical shock. All three doses of SNP restored the effects of LPS. Biochemical experiments confirmed that LPS elevated interleukin-6 and malondialdehyde concentration and declined total thiol content and superoxide dismutase and catalase activity in the hippocampus and cortex tissues. SNP particularly at a 3 mg/kg dose ameliorated LPS effects on these parameters.SNP attenuated memory disabilities resulting from LPS through modifying inflammation and boosting antioxidant defense.


Subject(s)
Lipopolysaccharides , Memory Disorders , Nitroprusside , Oxidative Stress , Rats, Wistar , Animals , Lipopolysaccharides/toxicity , Nitroprusside/pharmacology , Male , Oxidative Stress/drug effects , Rats , Memory Disorders/metabolism , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Inflammation/metabolism , Inflammation/chemically induced , Inflammation/drug therapy , Avoidance Learning/drug effects , Maze Learning/drug effects , Hippocampus/metabolism , Hippocampus/drug effects
6.
J Alzheimers Dis ; 99(1): 121-143, 2024.
Article in English | MEDLINE | ID: mdl-38640149

ABSTRACT

Background: Previous work from our group has shown that chronic exposure to Vanadium pentoxide (V2O5) causes cytoskeletal alterations suggesting that V2O5 can interact with cytoskeletal proteins through polymerization and tyrosine phosphatases inhibition, causing Alzheimer's disease (AD)-like hippocampal cell death. Objective: This work aims to characterize an innovative AD experimental model through chronic V2O5 inhalation, analyzing the spatial memory alterations and the presence of neurofibrillary tangles (NFTs), amyloid-ß (Aß) senile plaques, cerebral amyloid angiopathy, and dendritic spine loss in AD-related brain structures. Methods: 20 male Wistar rats were divided into control (deionized water) and experimental (0.02 M V2O5 1 h, 3/week for 6 months) groups (n = 10). The T-maze test was used to assess spatial memory once a month. After 6 months, histological alterations of the frontal and entorhinal cortices, CA1, subiculum, and amygdala were analyzed by performing Congo red, Bielschowsky, and Golgi impregnation. Results: Cognitive results in the T-maze showed memory impairment from the third month of V2O5 inhalation. We also noted NFTs, Aß plaque accumulation in the vascular endothelium and pyramidal neurons, dendritic spine, and neuronal loss in all the analyzed structures, CA1 being the most affected. Conclusions: This model characterizes neurodegenerative changes specific to AD. Our model is compatible with Braak AD stage IV, which represents a moment where it is feasible to propose therapies that have a positive impact on stopping neuronal damage.


Subject(s)
Alzheimer Disease , Disease Models, Animal , Memory Disorders , Rats, Wistar , Vanadium Compounds , Animals , Alzheimer Disease/pathology , Alzheimer Disease/chemically induced , Male , Vanadium Compounds/pharmacology , Rats , Memory Disorders/pathology , Memory Disorders/chemically induced , Maze Learning/drug effects , Brain/pathology , Brain/drug effects , Brain/metabolism , Spatial Memory/drug effects , Neurofibrillary Tangles/pathology , Neurofibrillary Tangles/drug effects , Plaque, Amyloid/pathology , Dendritic Spines/drug effects , Dendritic Spines/pathology , Administration, Inhalation
7.
Int J Mol Sci ; 25(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38612521

ABSTRACT

The beneficial effects of increasing histamine levels on memory have acquired special interest due to their applicability to psychiatric conditions that cause memory impairments. In addition, by employing drug repurposing approaches, it was demonstrated that dihydroergotamine (DHE), an FDA drug approved to treat migraines, inhibits Histamine N Methyl Transferase (HNMT), the enzyme responsible for the inactivation of histamine in the brain. For this reason, in the present work, the effect of DHE on histamine levels in the hippocampus and its effects on memory was evaluated, employing the scopolamine-induced amnesia model, the Novel Object Recognition (NOR) paradigm, and the Morris Water Maze (MWM). Furthermore, the role of histamine 1 receptor (H1R) and histamine 2 receptor (H2R) antagonists in the improvement in memory produced by DHE in the scopolamine-induced amnesia model was evaluated. Results showed that the rats that received DHE (10 mg/kg, i.p.) showed increased histamine levels in the hippocampus after 1 h of administration but not after 5 h. In behavioral assays, it was shown that DHE (1 mg/kg, i.p.) administered 20 min before the training reversed the memory impairment produced by the administration of scopolamine (2 mg/kg, i.p.) immediately after the training in the NOR paradigm and MWM. Additionally, the effects in memory produced by DHE were blocked by pre-treatment with pyrilamine (20 mg/kg, i.p.) administered 30 min before the training in the NOR paradigm and MWM. These findings allow us to demonstrate that DHE improves memory in a scopolamine-induced amnesia model through increasing histamine levels at the hippocampus due to its activity as an HNMT inhibitor.


Subject(s)
Dihydroergotamine , Scopolamine , Animals , Rats , Histamine , Amnesia/chemically induced , Amnesia/drug therapy , Brain , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Histamine H2 Antagonists
8.
Nutrients ; 16(7)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38613052

ABSTRACT

Memory impairment is a serious problem with organismal aging and increased social pressure. The tetrapeptide Ala-Phe-Phe-Pro (AFFP) is a synthetic analogue of Antarctic krill derived from the memory-improving Antarctic krill peptide Ser-Ser-Asp-Ala-Phe-Phe-Pro-Phe-Arg (SSDAFFPFR) after digestion and absorption. The objective of this research was to assess the neuroprotective effects of AFFP by reducing oxidative stress and controlling lipid metabolism in the brains of mice with memory impairment caused by scopolamine. The 1H Nuclear magnetic resonance spectroscopy results showed that AFFP had three active hydrogen sites that could contribute to its antioxidant properties. The findings from in vivo tests demonstrated that AFFP greatly enhanced the mice's behavioral performance in the passive avoidance, novel object recognition, and eight-arm maze experiments. AFFP reduced oxidative stress by enhancing superoxide dismutase activity and malondialdehyde levels in mice serum, thereby decreasing reactive oxygen species level in the mice hippocampus. In addition, AFFP increased the unsaturated lipid content to balance the unsaturated lipid level against the neurotoxicity of the mice hippocampus. Our findings suggest that AFFP emerges as a potential dietary intervention for the prevention of memory impairment disorders.


Subject(s)
Dipeptides , Euphausiacea , Animals , Mice , Lipid Metabolism , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Memory Disorders/prevention & control , Scopolamine Derivatives , Hippocampus , Lipids
9.
Behav Brain Res ; 466: 114981, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38580198

ABSTRACT

This study verified the effects of the natural compounds berberine and hesperidin on seizure development and cognitive impairment triggered by pentylenetetrazole (PTZ) in zebrafish. Adult animals were submitted to a training session in the inhibitory avoidance test and, after 10 minutes, they received an intraperitoneal injection of 25, 50, or 100 mg/kg berberine or 100 or 200 mg/kg hesperidin. After 30 minutes, the animals were exposed to 7.5 mM PTZ for 10 minutes. Animals were submitted to the test session 24 h after the training session to verify their cognitive performance. Zebrafish larvae were exposed to 100 µM or 500 µM berberine or 10 µM or 50 µM hesperidin for 30 minutes. After, larvae were exposed to PTZ and had the seizure development evaluated by latency to reach the seizure stages I, II, and III. Adult zebrafish pretreated with 50 mg/kg berberine showed a longer latency to reach stage III. Zebrafish larvae pretreated with 500 µM berberine showed a longer latency to reach stages II and III. Hesperidin did not show any effect on seizure development both in larvae and adult zebrafish. Berberine and hesperidin pretreatments prevented the memory consolidation impairment provoked by PTZ-induced seizures. There were no changes in the distance traveled in adult zebrafish pretreated with berberine or hesperidin. In larval stage, berberine caused no changes in the distance traveled; however, hesperidin increased the locomotion. Our results reinforce the need for investigating new therapeutic alternatives for epilepsy and its comorbidities.


Subject(s)
Avoidance Learning , Berberine , Hesperidin , Pentylenetetrazole , Seizures , Zebrafish , Animals , Pentylenetetrazole/pharmacology , Berberine/pharmacology , Berberine/administration & dosage , Hesperidin/pharmacology , Seizures/chemically induced , Seizures/prevention & control , Avoidance Learning/drug effects , Memory Consolidation/drug effects , Memory Disorders/chemically induced , Memory Disorders/prevention & control , Male , Disease Models, Animal , Convulsants/pharmacology , Larva/drug effects , Dose-Response Relationship, Drug , Anticonvulsants/pharmacology
10.
Behav Brain Res ; 466: 114978, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38582410

ABSTRACT

PURPOSE: As the elderly population grows, the prevalence of dementia is also rapidly increasing worldwide. Metformin, an antidiabetic drug, has been shown to have ameliorative effects on impaired cognitive functions in experimental models. However, studies have generally used young animals. Additionally, although it has a major role in Alzheimer's disease (AD) and memory, literature information about the effects of metformin on the cholinergic system is limited. In this study, we investigated the effects of metformin on memory in a model of scopolamine-induced memory impairment in aged rats. We also examined the effects of metformin on the cholinergic system, which is very important in cognitive functions. METHODS: Metformin was administered orally to male Wistar rats (20-22 months old) at 100 mg/kg/day for three weeks. Morris water maze (MWM) tests were performed to assess spatial memory. Before the probe test of the MWM test, scopolamine was injected intraperitoneally at a dose of 1 mg/kg. After testing, animals were sacrificed, whole brains were removed, and hippocampus samples were separated for biochemical analysis. RESULTS: Impaired memory associated with scopolamine administration was reversed by metformin. In addition, metformin administration ameliorated scopolamine-induced changes in acetylcholine (ACh) levels, acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and choline acetyltransferase (ChAT) activity. CONCLUSION: Our results show that metformin may have protective effects in a scopolamine-induced memory impairment model in aged animals by improving cholinergic function. Metformin shows promise in preventing dementia with its dual cholinesterase inhibition and ChAT activation effect.


Subject(s)
Acetylcholine , Aging , Choline O-Acetyltransferase , Disease Models, Animal , Hippocampus , Memory Disorders , Metformin , Rats, Wistar , Scopolamine , Animals , Metformin/pharmacology , Metformin/administration & dosage , Scopolamine/pharmacology , Male , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Rats , Choline O-Acetyltransferase/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Aging/drug effects , Acetylcholine/metabolism , Acetylcholinesterase/metabolism , Maze Learning/drug effects , Hypoglycemic Agents/pharmacology , Spatial Memory/drug effects
11.
Cell Signal ; 119: 111177, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38621470

ABSTRACT

In this study, blueberry anthocyanins extract (BAE) was used to investigate its protective effect on arsenic-induced rat hippocampal neurons damage. Arsenic exposure resulted in elevated levels of oxidative stress, decreased antioxidant capacity and increased apoptosis in rat hippocampal brain tissue and mitochondria. Immunohistochemical results showed that arsenic exposure also significantly decreased the expression of mitochondrial biosynthesis-related factors PGC-1α and TFAM. Treatment with BAE alleviated the decrease in antioxidant capacity, mitochondrial biogenesis related protein PGC-1α/NRF2/TFAM expression, and ATP production of arsenic induced hippocampal neurons in rats, and improved cognitive function in arsenic damaged rats. This study provides new insights into the detoxification effect of anthocyanins on the nervous system toxicity caused by metal exposure in the environment, indicating that anthocyanins may be a natural antioxidant against the nervous system toxicity caused by environmental metal exposure.


Subject(s)
Anthocyanins , Arsenic , Blueberry Plants , Hippocampus , Memory Disorders , Mitochondria , NF-E2-Related Factor 2 , Neurons , Oxidative Stress , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Animals , Blueberry Plants/chemistry , Oxidative Stress/drug effects , Hippocampus/metabolism , Hippocampus/drug effects , Arsenic/toxicity , Neurons/drug effects , Neurons/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Anthocyanins/pharmacology , Rats , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Memory Disorders/chemically induced , Memory Disorders/metabolism , Memory Disorders/drug therapy , NF-E2-Related Factor 2/metabolism , Antioxidants/pharmacology , Male , DNA-Binding Proteins/metabolism , Apoptosis/drug effects , Transcription Factors/metabolism , Rats, Sprague-Dawley , Plant Extracts/pharmacology
12.
J Hazard Mater ; 471: 134360, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38663295

ABSTRACT

Lead is a neurotoxic contaminant that exists widely in the environment. Although lead neurotoxicity has been found to be tightly linked to gut microbiota disturbance, the effect of host metabolic disorders caused by gut microbiota disturbance on lead neurotoxicity has not been investigated. In this work, the results of new object recognition tests and Morris water maze tests showed that chronic low-dose lead exposure caused learning and memory dysfunction in mice. The results of 16 S rRNA sequencing of cecal contents and fecal microbiota transplantation showed that the neurotoxicity of lead could be transmitted through gut microbiota. The results of untargeted metabolomics and bile acid targeted metabolism analysis showed that the serum bile acid metabolism profile of lead-exposed mice was significantly changed. In addition, supplementation with TUDCA or INT-777 significantly alleviated chronic lead exposure-induced learning and memory impairment, primarily through inhibition of the NLRP3 inflammasome in the hippocampus to relieve neuroinflammation. In conclusion, our findings suggested that dysregulation of host bile acid metabolism may be one of the mechanisms of lead-induced neurotoxicity, and supplementation of specific bile acids may be a possible therapeutic strategy for lead-induced neurotoxicity.


Subject(s)
Bile Acids and Salts , Gastrointestinal Microbiome , Lead , Memory Disorders , Animals , Bile Acids and Salts/metabolism , Lead/toxicity , Male , Memory Disorders/chemically induced , Memory Disorders/metabolism , Gastrointestinal Microbiome/drug effects , Mice , Hippocampus/metabolism , Hippocampus/drug effects , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Maze Learning/drug effects , Learning/drug effects
13.
Ecotoxicol Environ Saf ; 277: 116365, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38657452

ABSTRACT

Microglia, the resident immune cells of the central nervous system (CNS), play a dual role in neurotoxicity by releasing the NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome and brain-derived neurotrophic factor (BDNF) in response to environmental stress. Suppression of BDNF is implicated in learning and memory impairment induced by exposure to manganese (Mn) or lead (Pb) individually. Methyl CpG Binding Protein 2 (MeCp2) and its phosphorylation status are related to BDNF suppression. Protein phosphatase2A (PP2A), a member of the serine/threonine phosphatases family, dephosphorylates substrates based on the methylation state of its catalytic C subunit (PP2Ac). However, the specific impairment patterns and molecular mechanisms resulting from co-exposure to Mn and Pb remain unclear. Therefore, the purpose of this study was to explore the effects of Mn and Pb exposure, alone and in combination, on inducing neurotoxicity in the hippocampus of mice and BV2 cells, and to determine whether simultaneous exposure to both metals exacerbate their toxicity. Our findings reveal that co-exposure to Mn and Pb leads to severe learning and memory impairment in mice, which correlates with the accumulation of metals in the hippocampus and synergistic suppression of BDNF. This suppression is accompanied by up-regulation of the epigenetic repressor MeCp2 and its phosphorylation status, as well as demethylation of PP2Ac. Furthermore, inhibition of PP2Ac demethylation using ABL127, an inhibitor for its protein phosphatase methylesterase1 (PME1), or knockdown of MeCp2 via siRNA transfection in vitro effectively increases BDNF expression and mitigates BV2 cell damage induced by Mn and Pb co-exposure. We also observe abnormal activation of microglia characterized by enhanced release of the NLRP3 inflammasome, Casepase-1 and pro-inflammatory cytokines IL-1ß, in the hippocampus of mice and BV2 cells. In summary, our experiments demonstrate that simultaneous exposure to Mn and Pb results in more severe hippocampus-dependent learning and memory impairment, which is attributed to epigenetic suppression of BDNF mediated by PP2A regulation.


Subject(s)
Brain-Derived Neurotrophic Factor , Epigenesis, Genetic , Hippocampus , Lead , Manganese , Memory Disorders , Animals , Brain-Derived Neurotrophic Factor/metabolism , Mice , Epigenesis, Genetic/drug effects , Manganese/toxicity , Lead/toxicity , Hippocampus/drug effects , Hippocampus/metabolism , Memory Disorders/chemically induced , Male , Mice, Inbred C57BL , Microglia/drug effects , Methyl-CpG-Binding Protein 2/metabolism , Methyl-CpG-Binding Protein 2/genetics , Protein Phosphatase 2/metabolism , Learning/drug effects
14.
Phytomedicine ; 129: 155639, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38669966

ABSTRACT

BACKGROUND: Cerebral microcirculation disturbance manifested by decrease of cerebral blood flow (CBF) is one of early features of Alzheimer's disease (AD). Shenqi Yizhi prescription (SQYZ) is widely used in the treatment of AD. However, the effect of SQYZ on the early feature of AD is not clarified. PURPOSE: To explore the effect and mechanism of SQYZ on AD-like behavior from the perspective of early pathological features of AD. METHODS: The fingerprint of SQYZ was established by ultra-high-performance liquid chromatograph. The improvement effect of SQYZ on Aß1-42 Oligomer (AßO)-induced AD-like behavior of mice was evaluated by behavioral test. The changes of CBF were detected by laser doppler meter and laser speckle imaging. The pathological changes of the hippocampus were observed by HE staining and transmission electron microscope. The expressions of intercellular communication molecules were detected by western blotting or immunofluorescence staining. The content of platelet-derived growth factor-BB (PDGF-BB) was detected by ELISA. Finally, the core components of SQYZ were docked with platelet-derived growth factor receptor beta (PDGFRß) using AutoDock Vina software. RESULTS: The similarity of the components in SQYZ extracted from different batches of medicinal materials was higher than 0.9. SQYZ administration could improve AßO-induced memory impairment and CBF reduction. Compared with the sham group, the number of neurons in the hippocampi of AßO group was significantly reduced, and the microvessels were shrunken and deformed. By contrary, SQYZ administration mitigated those pathological changes. Compared with the sham mice, the expressions of CD31, N-cadherin, PDGFRß, glial fibrillary acidic protein, phosphorylation of focal adhesion kinase, integrin ß1, and integrin α5 in the hippocampi of AßO mice were significantly increased. However, SQYZ administration significantly reduced AßO-induced expression of those proteins. Interestingly, the effect of PDGFRß inhibitor, sunitinib demonstrated a consistent modulating effect as SQYZ. Finally, the brain-entering components of SQYZ, including ginsenoside Rg5, coptisine, cryptotanshinone, dihydrotanshinone IIA, stigmasterol, and tanshinone IIA had high binding force with PDGFRß, implicating PDGFRß as a potential target for SQYZ. CONCLUSIONS: Our data indicate that SQYZ improves CBF in AßO-triggered AD-like mice through inhibiting brain pericyte contractility, indicating the treatment potential of SQYZ for AD at the early stage.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Drugs, Chinese Herbal , Hippocampus , Memory Disorders , Pericytes , Animals , Drugs, Chinese Herbal/pharmacology , Amyloid beta-Peptides/metabolism , Male , Mice , Memory Disorders/drug therapy , Memory Disorders/chemically induced , Alzheimer Disease/drug therapy , Pericytes/drug effects , Hippocampus/drug effects , Peptide Fragments , Becaplermin/pharmacology , Cerebrovascular Circulation/drug effects , Brain/drug effects , Disease Models, Animal , Ginsenosides/pharmacology
15.
PLoS One ; 19(3): e0295096, 2024.
Article in English | MEDLINE | ID: mdl-38551911

ABSTRACT

Some pregnant women have to experience non-obstetric surgery during pregnancy under general anesthesia. Our previous studies showed that maternal exposure to sevoflurane, isoflurane, propofol, and ketamine causes cognitive deficits in offspring. Histone acetylation has been implicated in synaptic plasticity. Propofol is commonly used in non-obstetric procedures on pregnant women. Previous studies in our laboratory showed that maternal propofol exposure in pregnancy impairs learning and memory in offspring by disturbing histone acetylation. The present study aims to investigate whether HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) could attenuate learning and memory deficits in offspring caused by maternal surgery under propofol anesthesia during mid-pregnancy. Maternal rats were exposed to propofol or underwent abdominal surgery under propofol anesthesia during middle pregnancy. The learning and memory abilities of the offspring rats were assessed using the Morris water maze (MWM) test. The protein levels of histone deacetylase 2 (HDAC2), phosphorylated cAMP response-element binding (p-CREB), brain-derived neurotrophic factor (BDNF), and phosphorylated tyrosine kinase B (p-TrkB) in the hippocampus of the offspring rats were evaluated by immunofluorescence staining and western blot. Hippocampal neuroapoptosis was detected by TUNEL staining. Our results showed that maternal propofol exposure during middle pregnancy impaired the water-maze learning and memory of the offspring rats, increased the protein level of HDAC2 and reduced the protein levels of p-CREB, BDNF and p-TrkB in the hippocampus of the offspring, and such effects were exacerbated by surgery. SAHA alleviated the cognitive dysfunction and rescued the changes in the protein levels of p-CREB, BDNF and p-TrkB induced by maternal propofol exposure alone or maternal propofol exposure plus surgery. Therefore, SAHA could be a potential and promising agent for treating the learning and memory deficits in offspring caused by maternal nonobstetric surgery under propofol anesthesia.


Subject(s)
Cognitive Dysfunction , Propofol , Humans , Pregnancy , Rats , Animals , Female , Propofol/adverse effects , Vorinostat/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Histones/metabolism , Maze Learning , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/metabolism , Hippocampus/metabolism , Memory Disorders/chemically induced , Memory Disorders/metabolism , Anesthesia, General
16.
J Alzheimers Dis ; 99(s1): S157-S169, 2024.
Article in English | MEDLINE | ID: mdl-38489175

ABSTRACT

Background: The cholinergic neuronal loss in the basal forebrain and increasing brain oxidative stress are one of the main features of the brain suffering from Alzheimer's disease. Marrubium vulgare (M. vulgare), commonly known as 'white horehound,' possesses a variety of valuable properties, such as antioxidative, anti-inflammatory, and antidiabetic activities. Moreover, it possesses neuromodulatory properties that could potentially impact short-term memory functions. Objective: The present study was undertaken to investigate the preventive effects of water M. vulgare extract on working memory, cholinergic neurotransmission, and oxidative stress in rats with scopolamine (Sco)-induced dementia. Methods: Male Wistar rats (200-250 g) were divided into four experimental groups. The plant extract was administered orally for 21 days, and Sco (2 mg/kg) was administered intraperitoneally for 11 consecutive days. The behavioral performance of the animals was evaluated by the T-maze test. The effect of the extract on acetylcholinesterase (AChE) activity and antioxidant status in cortex and hippocampus were also monitored. Results: Our experimental data revealed that treatment with M. vulgare significantly increased the percentage of correct choices of rats with Sco-induced dementia in the T maze test (by 38%, p < 0.05). Additionally, it reduced AChE activity in the hippocampus (by 20%, p < 0.05) and alleviated oxidative stress induced by Sco, particularly in the cortex. Conclusions: M. vulgare water extract demonstrated working memory preserving effect in rats with Sco-induced dementia, AChE inhibitory activity and in vivo antioxidant potential, and deserve further attention.


Subject(s)
Marrubium , Maze Learning , Memory, Short-Term , Oxidative Stress , Plant Extracts , Rats, Wistar , Scopolamine , Animals , Oxidative Stress/drug effects , Male , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Maze Learning/drug effects , Memory, Short-Term/drug effects , Rats , Marrubium/chemistry , Acetylcholinesterase/metabolism , Disease Models, Animal , Hippocampus/drug effects , Hippocampus/metabolism , Spatial Memory/drug effects , Memory Disorders/drug therapy , Memory Disorders/chemically induced , Antioxidants/pharmacology
17.
PeerJ ; 12: e16795, 2024.
Article in English | MEDLINE | ID: mdl-38313003

ABSTRACT

This study explores the neuroprotective potential of hibiscetin concerning memory deficits induced by lipopolysaccharide (LPS) injection in rats. The aim of this study is to evaluate the effect of hibiscetin against LPS-injected memory deficits in rats. The behavioral paradigms were conducted to access LPS-induced memory deficits. Various biochemical parameters such as acetyl-cholinesterase activity, choline-acetyltransferase, antioxidant (superoxide dismutase, glutathione transferase, catalase), oxidative stress (malonaldehyde), and nitric oxide levels were examined. Furthermore, neuroinflammatory parameters such as tumor necrosis factor-α, interleukin-1ß (IL-1ß), IL-6, and nuclear factor-kappa B expression and brain-derived neurotrophic factor as well as apoptosis marker i.e., caspase-3 were evaluated. The results demonstrated that the hibiscetin-treated group exhibited significant recovery in LPS-induced memory deficits in rats by using behavioral paradigms, biochemical parameters, antioxidant levels, oxidative stress, neuroinflammatory markers, and apoptosis markers. Recent research suggested that hibiscetin may serve as a promising neuroprotective agent in experimental animals and could offer an alternative in LPS-injected memory deficits in rodent models.


Subject(s)
Biological Products , Memory Disorders , NF-kappa B , Animals , Rats , Antioxidants/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Caspase 3/metabolism , Lipopolysaccharides/toxicity , Memory Disorders/chemically induced , Memory Disorders/drug therapy , NF-kappa B/metabolism , Biological Products/pharmacology
18.
Horm Behav ; 161: 105501, 2024 May.
Article in English | MEDLINE | ID: mdl-38368844

ABSTRACT

Long-term use of anabolic androgenic steroids (AAS) in supratherapeutic doses is associated with severe adverse effects, including physical, mental, and behavioral alterations. When used for recreational purposes several AAS are often combined, and in scientific studies of the physiological impact of AAS either a single compound or a cocktail of several steroids is often used. Because of this, steroid-specific effects have been difficult to define and are not fully elucidated. The present study used male Wistar rats to evaluate potential somatic and behavioral effects of three different AAS; the decanoate esters of nandrolone, testosterone, and trenbolone. The rats were exposed to 15 mg/kg of nandrolone decanoate, testosterone decanoate, or trenbolone decanoate every third day for 24 days. Body weight gain and organ weights (thymus, liver, kidney, testis, and heart) were measured together with the corticosterone plasma levels. Behavioral effects were studied in the novel object recognition-test (NOR-test) and the multivariate concentric square field-test (MCSF-test). The results conclude that nandrolone decanoate, but neither testosterone decanoate nor trenbolone decanoate, caused impaired recognition memory in the NOR-test, indicating an altered cognitive function. The behavioral profile and stress hormone level of the rats were not affected by the AAS treatments. Furthermore, the study revealed diverse AAS-induced somatic effects i.e., reduced body weight development and changes in organ weights. Of the three AAS included in the study, nandrolone decanoate was identified to cause the most prominent impact on the male rat, as it affected body weight development, the weights of multiple organs, and caused an impaired memory function.


Subject(s)
Anabolic Agents , Memory Disorders , Nandrolone , Rats, Wistar , Testosterone , Animals , Male , Testosterone/blood , Testosterone/analogs & derivatives , Rats , Nandrolone/analogs & derivatives , Nandrolone/pharmacology , Anabolic Agents/adverse effects , Anabolic Agents/pharmacology , Memory Disorders/chemically induced , Organ Size/drug effects , Trenbolone Acetate/pharmacology , Nandrolone Decanoate/pharmacology , Body Weight/drug effects , Corticosterone/blood , Recognition, Psychology/drug effects
19.
Eur Rev Med Pharmacol Sci ; 28(3): 981-994, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38375702

ABSTRACT

OBJECTIVE: Recent research suggests that butin may also exert neuroprotective effects. However, its influence on cognitive performance and, specifically, its potential to mitigate scopolamine-induced memory impairment remains unexplored. The aim of the study is to investigate the effects of butin on the cognitive and behavioral performance of rats with scopolamine-induced memory impairment. MATERIALS AND METHODS: Scopolamine-injected memory-impediment model in rats was used to determine the efficacy of butin in higher and lower doses (10 and 20 mg/kg) for 14 days. Y-maze, along with Morris water, was used to assess the ability to recall spatial and working information. Biochemistry-related functions such as acetylcholinesterase, choline acetyltransferase, superoxide dismutase, glutathione transferase, malonaldehyde, catalase, nitric oxide, and neurotransmitters levels were estimated as indicators of free radical damage. Furthermore, we evaluated neuro-inflammatory responses by assessing tumor necrosis factor-alpha (TNF-α), interleukin 1 beta (IL-1ß), interleukin-6 (IL-6), brain-derived neurotrophic factor (BDNF) and caspase-3 immuno-reactive proteins. RESULTS: When assessed through behavioral paradigms, the butin-treated group enhanced the spatial and working memory of rodents. Scopolamine caused a substantial alteration in biochemical-related parameters, neuronal enzymatic, inflammation responses and apoptosis markers prominently restored by butin. CONCLUSIONS: This study concludes that butin protects scopolamine-injected rats from behavioral impairments and neuronal damage by reducing apoptosis and neuroinflammation.


Subject(s)
Benzopyrans , Brain-Derived Neurotrophic Factor , Scopolamine , Animals , Rats , Acetylcholinesterase/metabolism , Benzopyrans/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Caspase 3/metabolism , Hippocampus/metabolism , Maze Learning , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Memory Disorders/metabolism , Oxidative Stress , Scopolamine/adverse effects
20.
Phytother Res ; 38(4): 1799-1814, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38330236

ABSTRACT

Futoquinol (Fut) is a compound extracted from Piper kadsura that has a nerve cell protection effect. However, it is unclear whether Fut has protective effects in Alzheimer's disease (AD). In this study, we aimed to explore the therapeutic effect of Fut in AD and its underlying mechanism. UPLC-MS/MS method was performed to quantify Fut in the hippocampus of mice brain. The cognition ability, neuronal and mitochondria damage, and levels of Aß1-42, Aß1-40, p-Tau, oxidative stress, apoptosis, immune cells, and inflammatory factors were measured in Aß25-35-induced mice. The content of bacterial meta-geometry was predicted in the microbial composition based on 16S rDNA. The protein levels of HK II, p-p38MAPK, and p38MAPK were detected. PC-12 cells were cultured in vitro, and glucose was added to activate glycolysis to further explore the mechanism of action of Fut intervention in AD. Fut improved the memory and learning ability of Aß25-35 mice, and reduced neuronal damage and the deposition of Aß and Tau proteins. Moreover, Fut reduced mitochondrial damage, the levels of oxidative stress, apoptosis, and inflammatory factors. Fut significantly inhibited the expression of HK II and p-p38MAPK proteins. The in vitro experiment showed that p38MAPK was activated and Fut action inhibited after adding 10 mM glucose. Fut might inhibit the activation of p38MAPK through the glycolysis pathway, thereby reducing oxidative stress, apoptosis, and inflammatory factors and improving Aß25-35-induced memory impairment in mice. These data provide pharmacological rationale for Fut in the treatment of AD.


Subject(s)
Alzheimer Disease , Gastrointestinal Microbiome , Lignans , Animals , Mice , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Apoptosis , Chromatography, Liquid , Gastrointestinal Microbiome/drug effects , Glucose/pharmacology , Lignans/pharmacology , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Peptide Fragments/adverse effects , Peptide Fragments/metabolism , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...