Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 591: 118-123, 2022 02 05.
Article in English | MEDLINE | ID: mdl-35007835

ABSTRACT

3-chyomotrypsin like protease (3CLpro) has been considered as a promising target for developing anti-SARS-CoV-2 drugs. Herein, about 6000 compounds were analyzed by high-throughput screening using enzyme activity model, and Merbromin, an antibacterial agent, was identified as a potent inhibitor of 3CLpro. Merbromin strongly inhibited the proteolytic activity of 3CLpro but not the other three proteases Proteinase K, Trypsin and Papain. Michaelis-Menten kinetic analysis showed that Merbromin was a mixed-type inhibitor of 3CLpro, due to its ability of increasing the KM and decreasing the Kcat of 3CLpro. The binding assays and molecular docking suggested that 3CLpro possessed two binding sites for Merbromin. Consistently, Merbromin showed a weak binding to the other three proteases. Together, these findings demonstrated that Merbromin is a selective inhibitor of 3CLpro and provided a scaffold to design effective inhibitors of SARS-CoV-2.


Subject(s)
Coronavirus 3C Proteases/antagonists & inhibitors , Merbromin/pharmacology , Molecular Docking Simulation , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Binding Sites , COVID-19/prevention & control , COVID-19/virology , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , High-Throughput Screening Assays/methods , Humans , Kinetics , Merbromin/chemistry , Merbromin/metabolism , Models, Molecular , Molecular Structure , Protease Inhibitors/chemistry , Protease Inhibitors/metabolism , Protein Binding , Protein Domains , SARS-CoV-2/enzymology , SARS-CoV-2/physiology , Surface Plasmon Resonance/methods
3.
Biochem J ; 167(1): 53-63, 1977 Oct 01.
Article in English | MEDLINE | ID: mdl-73375

ABSTRACT

Mercurochrome strongly inhibits aspartate transaminase and 2,3-dicarboxyethylated aspartate transaminase. The native enzyme exhibits a biphasic time-course of inactivation by mercurochrome with second-order rate constants 1.62 x 10(4) M-1 - min-1 and 2.15 x 10(3) M-1 - min-1, whereas the modified enzyme is inactivated more slowly (second-order rate constant 6.1 x 10(2) M-1 - min-1) under the same conditions. The inhibitor inactivates native and modified enzyme in the absence as well as in the presence of substrates. Mercurochrome-transaminase interaction is accompanied by a red shift in the absorption maximum of the fluorochrome of about 10 nm. Difference spectra of the mercurochrome-enzyme system versus mercurochrome, compared with analogous spectra of mercurochrome-ethanol, revealed that the spectral shifts recorded during mercurochrome-transaminase interaction are similar to those that occur when mercurochrome is dissolved in non-polar solvents. Studies of mercurochrome complexes with native or modified transaminase, isolated by chromatography on Sephadex G-25, revealed that native transaminase is able to conjugate with four mercurochrome molecules per molecule, but the modified enzyme is able to conjugate with only two mercurochrome molecules per molecule.


Subject(s)
Aspartate Aminotransferases/antagonists & inhibitors , Fluoresceins/pharmacology , Merbromin/pharmacology , Animals , Aspartate Aminotransferases/metabolism , Binding Sites , Chemical Phenomena , Chemistry , Cysteine , Dicarboxylic Acids , Kinetics , Maleates , Merbromin/metabolism , Myocardium/enzymology , Spectrum Analysis , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...