Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.589
Filter
1.
Bull Environ Contam Toxicol ; 112(6): 82, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822880

ABSTRACT

Mercury contamination has been aggravated by emerging environmental issues, such as climate change. Top predators present concerning Hg concentrations once this metal bioaccumulates and biomagnifies. This study evaluated total mercury (THg) concentrations in tissues of 43 franciscanas (Pontoporia blainvillei) from two populations: the Franciscana Management Area (FMA) IIb and FMA IIIa. Animals from FMA IIIa showed mean concentration 5-times and 2.5-times higher in the liver and kidney (4.73 ± 6.84 and 0.52 ± 0.51 µg.g-1, w.w., respectively) than individuals from FMA IIb (0.89 ± 1.04 and 0.22 ± 0.15 µg.g-1, w.w., respectively). This might be due to: (I) individuals sampled from FMA IIIa being larger and older, and/or (II) the area near FMA IIIa presents environmental features leading to higher THg availability. Coastal contamination can affect franciscanas' health and population maintenance at different levels depending on their life history and, therefore, it should be considered to guide specific conservation actions.


Subject(s)
Dolphins , Endangered Species , Environmental Monitoring , Mercury , Water Pollutants, Chemical , Animals , Mercury/analysis , Mercury/metabolism , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Atlantic Ocean , Dolphins/metabolism , Liver/metabolism , Kidney/metabolism
2.
Environ Microbiol ; 26(5): e16629, 2024 May.
Article in English | MEDLINE | ID: mdl-38695111

ABSTRACT

Horizontal genetic transfer (HGT) is a common phenomenon in eukaryotic genomes. However, the mechanisms by which HGT-derived genes persist and integrate into other pathways remain unclear. This topic is of significant interest because, over time, the stressors that initially favoured the fixation of HGT may diminish or disappear. Despite this, the foreign genes may continue to exist if they become part of a broader stress response or other pathways. The conventional model suggests that the acquisition of HGT equates to adaptation. However, this model may evolve into more complex interactions between gene products, a concept we refer to as the 'Integrated HGT Model' (IHM). To explore this concept further, we studied specialized HGT-derived genes that encode heavy metal detoxification functions. The recruitment of these genes into other pathways could provide clear examples of IHM. In our study, we exposed two anciently diverged species of polyextremophilic red algae from the Galdieria genus to arsenic and mercury stress in laboratory cultures. We then analysed the transcriptome data using differential and coexpression analysis. Our findings revealed that mercury detoxification follows a 'one gene-one function' model, resulting in an indivisible response. In contrast, the arsH gene in the arsenite response pathway demonstrated a complex pattern of duplication, divergence and potential neofunctionalization, consistent with the IHM. Our research sheds light on the fate and integration of ancient HGTs, providing a novel perspective on the ecology of extremophiles.


Subject(s)
Arsenic , Extremophiles , Gene Transfer, Horizontal , Rhodophyta , Rhodophyta/genetics , Extremophiles/genetics , Arsenic/metabolism , Mercury/metabolism , Stress, Physiological/genetics , Inactivation, Metabolic/genetics , Evolution, Molecular
3.
Nat Commun ; 15(1): 4490, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802424

ABSTRACT

Mercury (Hg), a potent neurotoxin posing risks to human health, is cycled through vegetation uptake, which is susceptible to climate change impacts. However, the extent and pattern of these impacts are largely unknown, obstructing predictions of Hg's fate in terrestrial ecosystems. Here, we evaluate the effects of climate change on vegetation elemental Hg [Hg(0)] uptake using a state-of-the-art global terrestrial Hg model (CLM5-Hg) that incorporates plant physiology. In a business-as-usual scenario, the terrestrial Hg(0) sink is predicted to decrease by 1870 Mg yr-1 in 2100, that is ~60% lower than the present-day condition. We find a potential decoupling between the trends of CO2 assimilation and Hg(0) uptake process by vegetation in the 21st century, caused by the decreased stomatal conductance with increasing CO2. This implies a substantial influx of Hg into aquatic ecosystems, posing an elevated threat that warrants consideration during the evaluation of the effectiveness of the Minamata Convention.


Subject(s)
Carbon Dioxide , Climate Change , Ecosystem , Mercury , Plants , Carbon Dioxide/metabolism , Mercury/metabolism , Plants/metabolism
4.
J Hazard Mater ; 472: 134446, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38696958

ABSTRACT

Mercury (Hg) contaminated paddy soils are hot spots for methylmercury (MeHg) which can enter the food chain via rice plants causing high risks for human health. Biochar can immobilize Hg and reduce plant uptake of MeHg. However, the effects of biochar on the microbial community and Hg (de)methylation under dynamic redox conditions in paddy soils are unclear. Therefore, we determined the microbial community in an Hg contaminated paddy soil non-treated and treated with rice hull biochar under controlled redox conditions (< 0 mV to 600 mV) using a biogeochemical microcosm system. Hg methylation exceeded demethylation in the biochar-treated soil. The aromatic hydrocarbon degraders Phenylobacterium and Novosphingobium provided electron donors stimulating Hg methylation. MeHg demethylation exceeded methylation in the non-treated soil and was associated with lower available organic matter. Actinobacteria were involved in MeHg demethylation and interlinked with nitrifying bacteria and nitrogen-fixing genus Hyphomicrobium. Microbial assemblages seem more important than single species in Hg transformation. For future directions, the demethylation potential of Hyphomicrobium assemblages and other nitrogen-fixing bacteria should be elucidated. Additionally, different organic matter inputs on paddy soils under constant and dynamic redox conditions could unravel the relationship between Hg (de)methylation, microbial carbon utilization and nitrogen cycling.


Subject(s)
Charcoal , Mercury , Methylmercury Compounds , Oryza , Oxidation-Reduction , Soil Microbiology , Soil Pollutants , Oryza/metabolism , Oryza/growth & development , Soil Pollutants/metabolism , Charcoal/chemistry , Methylation , Methylmercury Compounds/metabolism , Mercury/metabolism , Bacteria/metabolism , Bacteria/genetics
5.
Environ Pollut ; 351: 124048, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38714230

ABSTRACT

Sulfate-reducing bacteria (SRB) play pivotal roles in the biotransformation of mercury (Hg). However, unrevealed global responses of SRB to Hg have restricted our understanding of details of Hg biotransformation processes. The absence of protein-protein interaction (PPI) network under Hg stimuli has been a bottleneck of proteomic analysis for molecular mechanisms of Hg transformation. This study constructed the first comprehensive PPI network of SRB in response to Hg, encompassing 67 connected nodes, 26 independent nodes, and 121 edges, covering 93% of differentially expressed proteins from both previous studies and this study. The network suggested that proteomic changes of SRB in response to Hg occurred globally, including microbial metabolism in diverse environments, carbon metabolism, nucleic acid metabolism and translation, nucleic acid repair, transport systems, nitrogen metabolism, and methyltransferase activity, partial of which could cover the known knowledge. Antibiotic resistance was the original response revealed by this network, providing insights into of Hg biotransformation mechanisms. This study firstly provided the foundational network for a comprehensive understanding of SRB's responses to Hg, convenient for exploration of potential targets for Hg biotransformation. Furthermore, the network indicated that Hg enhances the metabolic activities and modification pathways of SRB to maintain cellular activities, shedding light on the influences of Hg on the carbon, nitrogen, and sulfur cycles at the cellular level.


Subject(s)
Mercury , Mercury/metabolism , Protein Interaction Maps , Bacterial Proteins/metabolism , Biotransformation , Sulfates/metabolism , Bacteria/metabolism , Proteomics , Sulfur-Reducing Bacteria/metabolism
6.
Environ Sci Pollut Res Int ; 31(24): 35055-35068, 2024 May.
Article in English | MEDLINE | ID: mdl-38714618

ABSTRACT

Mercury (Hg) is a prevalent and harmful contaminant that persists in the environment. For phytoremediation, it is important to discover which plants can bioaccumulate meaningful amounts of Hg while also tolerating its toxicity. Additionally, increasing biodiversity could create a more resilient and self-sustaining system for remediation. This study explores whether mixed populations of Lemna minor and Spirodela polyrhiza can better bioaccumulate and tolerate Hg than monocultures. Mono- and mixed cultures of L. minor and S. polyrhiza were grown in mesocosms of 0.5 µg/L or 100 µg/L Hg (HgCl2) spiked water for 96 h. Change in weight of duckweed was used to assess Hg tolerance. Diffusive gradients in thin-films (DGTs) were used as surrogate monitoring devices for bioavailable levels of Hg. For biomass growth, the mixed culture of the L. minor was greater than the monoculture at the high dose. The L. minor accumulated more Hg in the mixed culture at the low dose while the S. polyrhiza was higher in the mixed at the high dose. Hg speciation in water was modeled using Windermere Humic Aqueous Model 7 (WHAM7) to compare the bioavailable species indicated by the DGTs.  Potentially due to the controlled conditions, the WHAM7 output of bioavailable Hg was almost 1:1 to that estimated by the DGTs, indicating good predictive capability of geochemical modeling and passive sampler DGT on metal bioavailability. Overall, the mixed cultures statistically performed as well as or better than the monocultures when tolerating and bioaccumulating Hg. However, there needs to be further work to see if the significant differences translate into practical differences worth the extra resources to maintain multiple species.


Subject(s)
Araceae , Biodegradation, Environmental , Mercury , Mercury/metabolism , Araceae/metabolism , Bioaccumulation , Water Pollutants, Chemical
7.
Bioresour Technol ; 402: 130831, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734262

ABSTRACT

Mercury (Hg), particularly organic mercury, poses a global concern due to its pronounced toxicity and bioaccumulation. Bioremediation of organic mercury in high-salt wastewater faces challenges due to the growth limitations imposed by elevated Cl- and Na+ concentrations on microorganisms. In this study, an isolated marine bacterium Alteromonas macleodii KD01 was demonstrated to degrade methylmercury (MeHg) efficiently in seawater and then was applied to degrade organic mercury (MeHg, ethylmercury, and thimerosal) in simulated high-salt wastewater. Results showed that A. macleodii KD01 can rapidly degrade organic mercury (within 20 min) even at high concentrations (>10 ng/mL), volatilizing a portion of Hg from the wastewater. Further analysis revealed an increased transcription of organomercury lyase (merB) with rising organic mercury concentrations during the exposure process, suggesting the involvement of mer operon (merA and merB). These findings highlight A. macleodii KD01 as a promising candidate for addressing organic mercury pollution in high-salt wastewater.


Subject(s)
Alteromonas , Biodegradation, Environmental , Mercury , Mercury/metabolism , Alteromonas/metabolism , Wastewater/chemistry , Water Pollutants, Chemical/metabolism , Seawater/microbiology , Aerobiosis , Methylmercury Compounds/metabolism
8.
Mar Pollut Bull ; 203: 116471, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754323

ABSTRACT

Mercury is a global contaminant that bioaccumulates in a tissue-specific manner in long-lived predators such as Steller sea lions (SSL). Bone is a well-preserved material amenable for studying millennial scale trends; however, little is known about the distribution and variability of total mercury concentrations ([THg]) within individual bones and among bone elements in SSL. We assessed SSL bone [THg] variability with respect to physiologic age, bone type, longitudinally within a bone, and among bone elements. Pup bones (mean ± SD; 31.4 ± 13.58 ppb) had greater [THg] than adults (7.9 ± 1.91 ppb). There were greater and more variable [THg] within individual long bones near epiphyses compared to mid-diaphysis. Pup spongy bone in ribs (62.7 ± 44.79 ppb) had greater [THg] than long bones (23.5 ± 8.83 ppb) and phalanges (19.6 ± 10.78 ppb). These differences are likely due to variability in bone composition, growth, and turnover rate. This study informs standardized sampling procedures for [THg] in bone to improve interpretations of mercury variability over time and space.


Subject(s)
Bone and Bones , Environmental Monitoring , Mercury , Sea Lions , Water Pollutants, Chemical , Animals , Mercury/metabolism , Sea Lions/metabolism , Bone and Bones/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism
9.
Mar Pollut Bull ; 203: 116469, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754322

ABSTRACT

This paper reports the first record of total mercury (THg) concentrations in albacore (Thunnus alalunga), one of the main tuna species caught from the Western Equatorial Atlantic Ocean and presents a preliminary comparison with other regions and tuna species. Mean, standard deviation and range of concentrations in T. alalunga (515 ± 145 ng g-1 ww; 294-930 ng g-1 ww) with 92 % being of methyl-Hg, are higher than in albacore from other Atlantic Ocean subregions despite their smaller body size. These concentrations are similar to those from the Pacific and Indian oceans, but lower than in the Mediterranean. Compared to other sympatric tuna species, concentrations are higher than those in T. albacares and similar to T. obesus. These results are discussed considering the potential differences in stable isotope values (13C and 15N) of T. alalunga populations from multiple oceanic areas and compared to other tuna species worldwide.


Subject(s)
Carbon Isotopes , Environmental Monitoring , Mercury , Nitrogen Isotopes , Tuna , Water Pollutants, Chemical , Animals , Tuna/metabolism , Atlantic Ocean , Water Pollutants, Chemical/analysis , Mercury/analysis , Mercury/metabolism , Nitrogen Isotopes/analysis , Carbon Isotopes/analysis
10.
Photochem Photobiol Sci ; 23(5): 997-1010, 2024 May.
Article in English | MEDLINE | ID: mdl-38693447

ABSTRACT

Firefly luciferases emit yellow-green light and are pH-sensitive, changing the bioluminescence color to red in the presence of heavy metals, acidic pH and high temperatures. These pH and metal-sensitivities have been recently harnessed for intracellular pH indication and toxic metal biosensing. However, whereas the structure of the pH sensor and the metal binding site, which consists mainly of two salt bridges that close the active site (E311/R337 and H310/E354), has been identified, the specific role of residue H310 in pH and metal sensing is still under debate. The Amydetes vivianii firefly luciferase has one of the lowest pH sensitivities among the group of pH-sensitive firefly luciferases, displaying high bioluminescent activity and special spectral selectivity for cadmium and mercury, which makes it a promising analytical reagent. Using site-directed mutagenesis, we have investigated in detail the role of residue H310 on pH and metal sensitivity in this luciferase. Negatively charged residues at position 310 increase the pH sensitivity and metal sensitivity; H310G considerably increases the size of the cavity, severely impacting the activity, H310R closes the cavity, and H310F considerably decreases both pH and metal sensitivities. However, no substitution completely abolished pH and metal sensitivities. The results indicate that the presence of negatively charged and basic side chains at position 310 is important for pH sensitivity and metals coordination, but not essential, indicating that the remaining side chains of E311 and E354 may still coordinate some metals in this site. Furthermore, a metal binding site search predicted that H310 mutations decrease the affinity mainly for Zn, Ni and Hg but less for Cd, and revealed the possible existence of additional binding sites for Zn, Ni and Hg.


Subject(s)
Fireflies , Histidine , Luciferases, Firefly , Mutagenesis, Site-Directed , Hydrogen-Ion Concentration , Animals , Luciferases, Firefly/metabolism , Luciferases, Firefly/chemistry , Luciferases, Firefly/genetics , Fireflies/enzymology , Histidine/chemistry , Histidine/metabolism , Color , Metals, Heavy/chemistry , Metals, Heavy/metabolism , Mercury/chemistry , Mercury/metabolism , Cadmium/chemistry , Cadmium/metabolism
11.
Environ Pollut ; 352: 124117, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38714231

ABSTRACT

Mercury (Hg) methylation is a microbially mediated process that produces methylmercury (MeHg), a bioaccumulative neurotoxin. A highly conserved gene pair, hgcAB, is required for Hg methylation, which provides a basis for identifying Hg methylators and evaluating their genomic composition. In this study, we conducted a large-scale omics analysis in which 281 metagenomic freshwater and marine sediment samples from 46 geographic locations across the globe were queried. Specific objectives were to examine the prevalence of Hg methylators, to identify horizontal gene transfer (HGT) events involving hgcAB within Hg methylator communities, and to identify associations between hgcAB and microbial biochemical functions/genes. Hg methylators from the phyla Desulfobacterota and Bacteroidota were dominant in both freshwater and marine sediments while Firmicutes and methanogens belonging to Euryarchaeota were identified only in freshwater sediments. Novel Hg methylators were found in the Phycisphaerae and Planctomycetia classes within the phylum Planctomycetota, including potential hgcA-carrying anammox metagenome-assembled genomes (MAGs) from Candidatus Brocadiia. HGT of hgcA and hgcB were identified in both freshwater and marine methylator communities. Spearman's correlation analysis of methylator genomes suggested that in addition to sulfide, thiosulfate, sulfite, and ammonia may be important parameters for Hg methylation processes in sediments. Overall, our results indicated that the biochemical drivers of Hg methylation vary between marine and freshwater sites, lending insight into the influence of environmental perturbances, such as a changing climate, on Hg methylation processes.


Subject(s)
Fresh Water , Geologic Sediments , Mercury , Water Pollutants, Chemical , Geologic Sediments/chemistry , Geologic Sediments/microbiology , Mercury/metabolism , Methylation , Water Pollutants, Chemical/metabolism , Methylmercury Compounds/metabolism , Seawater/chemistry , Seawater/microbiology , Bacteria/genetics , Bacteria/metabolism , Metagenome
12.
J Hazard Mater ; 473: 134699, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38795488

ABSTRACT

Identifying metabolism and detoxification mechanisms of Hg in biota has important implications for biomonitoring, ecotoxicology, and food safety. Compared to marine mammals and waterbirds, detoxification of MeHg in fish is understudied. Here, we investigated Hg detoxification in Atlantic bluefin tuna Thunnus thynnus using organ-specific Hg and Se speciation data, stable Hg isotope signatures, and Hg and Se particle measurements in multiple tissues. Our results provide evidence for in vivo demethylation and biomineralization of HgSe particles, particularly in spleen and kidney. We observed a maximum range of 1.83‰ for δ202Hg between spleen and lean muscle, whereas Δ199Hg values were similar across all tissues. Mean percent methylmercury ranged from 8% in spleen to 90% in lean muscle. The particulate masses of Hg and Se were higher in spleen and kidney (Hg: 61% and 59%, Se: 12% and 6%, respectively) compared to muscle (Hg: 2%, Se: 0.05%). Our data supports the hypothesis of an organ-specific, two-step detoxification of methylmercury in wild marine fish, consisting of demethylation and biomineralization, like reported for waterbirds. While mass dependent fractionation signatures were highly organ specific, stable mass independent fractionation signatures across all tissues make them potential candidates for source apportionment studies of Hg using ABFT.


Subject(s)
Mercury Isotopes , Methylmercury Compounds , Tuna , Water Pollutants, Chemical , Animals , Methylmercury Compounds/metabolism , Methylmercury Compounds/toxicity , Tuna/metabolism , Mercury Isotopes/metabolism , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Kidney/metabolism , Spleen/metabolism , Inactivation, Metabolic , Mercury/metabolism , Mercury/analysis , Environmental Monitoring/methods , Muscles/metabolism , Muscles/chemistry , Selenium/metabolism , Selenium/analysis
13.
Metallomics ; 16(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38664065

ABSTRACT

Mercury is a well-recognized environmental contaminant and neurotoxin, having been associated with a number of deleterious neurological conditions including neurodegenerative diseases, such as Alzheimer's disease. To investigate how mercury and other metals behave in the brain, we used synchrotron micro-X-ray fluorescence to map the distribution pattern and quantify concentrations of metals in human brain. Brain tissue was provided by the Rush Alzheimer's Disease Center and samples originated from individuals diagnosed with Alzheimer's disease and without cognitive impairment. Data were collected at the 2-ID-E beamline at the Advanced Photon Source at Argonne National Laboratory with an incident beam energy of 13 keV. Course scans were performed at low resolution to determine gross tissue features, after which smaller regions were selected to image at higher resolution. The findings revealed (1) the existence of mercury particles in the brain samples of two subjects; (2) co-localization and linear correlation of mercury and selenium in all particles; (3) co-localization of these particles with zinc structures; and (4) association with sulfur in some of these particles. These results suggest that selenium and sulfur may play protective roles against mercury in the brain, potentially binding with the metal to reduce the induced toxicity, although at different affinities. Our findings call for further studies to investigate the relationship between mercury, selenium, and sulfur, as well as the potential implications in Alzheimer's disease and related dementias.


Subject(s)
Alzheimer Disease , Brain , Mercury , Selenium , Spectrometry, X-Ray Emission , Synchrotrons , Humans , Mercury/analysis , Mercury/metabolism , Selenium/analysis , Selenium/metabolism , Brain/metabolism , Spectrometry, X-Ray Emission/methods , Alzheimer Disease/metabolism , Aged , Male , Female , Zinc/analysis , Zinc/metabolism
14.
Chemosphere ; 358: 141908, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615948

ABSTRACT

Rare earth elements (REEs) are increasingly being studied mainly due to their economic importance and wide range of applications, but also for their rising environmental concentrations and potential environmental and ecotoxicological impacts. Among REEs, neodymium (Nd) is widely used in lasers, glass additives, and magnets. Currently, NdFeB-based permanent magnets are the most significant components of electronic devices and Nd is used because of its magnetic properties. In addition to REEs, part of the environmental pollution related to electrical and electronic equipment, fluorescent lamps and batteries also comes from mercury (Hg). Since both elements persist in ecosystems and are continuously accumulated by marine organisms, a promising approach for water decontamination has emerged. Through a process known as sorption, live marine macroalgae can be used, especially Ulva lactuca, to accumulate potential toxic elements from the water. Therefore, the present study aimed to evaluate the cellular toxicity of Nd and Hg in Mytilus galloprovincialis, comparing the biochemical effects induced by these elements in the presence or absence of the macroalgae U. lactuca. The results confirmed that Hg was more toxic to mussels than Nd, but also showed the good capability of U. lactuca in preventing the onset of cellular disturbance and homeostasis disruption in M. galloprovincialis by reducing bioavailable Hg levels. Overall, the biochemical parameters evaluated related to metabolism, antioxidant and biotransformation defences, redox balance, and cellular damage, showed that algae could prevent biological effects in mussels exposed to Hg compared to those exposed to Nd. This study contributes to the advancement of knowledge in this field, namely the understanding of the impacts of different elements on bivalves and the crucial role of algae in the protection of other aquatic organisms.


Subject(s)
Mercury , Mytilus , Neodymium , Seaweed , Ulva , Water Pollutants, Chemical , Mytilus/drug effects , Mytilus/physiology , Animals , Mercury/toxicity , Mercury/metabolism , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism , Ulva/drug effects , Seaweed/drug effects , Edible Seaweeds
15.
Chemosphere ; 358: 142064, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677617

ABSTRACT

Light Emitting Diodes (LEDs) have emerged as a tool with great potential in the field of phytoremediation, offering a novel approach to enhance the efficiency of plant-based remediation techniques. In this work investigated the influence of LEDs on the phytoremediation of arsenic (As) and mercury (Hg) by Ceratophyllum demersum L., propagated using tissue culture methods. In addition, the biochemical properties of the plants exposed to metal toxicity were examined. Phytoremediation experiments employed concentrations of As (0.01-1.0 mg/L) and Hg (0.002-0.2 mg/L), with application periods set at 1, 7, 14, and 21 days. In addition to white, red and blue LEDs, white fluorescent light was used for control purposes in the investigations. A positive correlation was observed between higher metal concentrations, extended exposure times, and increased metal accumulation in the plants. Red LED light yielded the highest level of heavy metal accumulation, while white fluorescent light resulted in the lowest accumulation level. Examination of the biochemical parameters of the plants, including photosynthetic pigment levels, protein quantities, and lipid peroxidation, revealed a pronouncedly enhanced performance in specimens subjected to red and blue LED illumination, surpassing outcomes observed in other light treatments. The findings of this study introduce innovative avenues for the effective utilization of red and blue LED lights in the realm of phytoremediation research. Thus, the interaction between LEDs, tissue culture, and the phytoremediation process could lead to synergistic effects that contribute to more effective and sustainable remediation strategies.


Subject(s)
Arsenic , Biodegradation, Environmental , Light , Mercury , Arsenic/metabolism , Mercury/metabolism , Soil Pollutants/metabolism , Lipid Peroxidation/drug effects , Photosynthesis
16.
Mar Pollut Bull ; 202: 116363, 2024 May.
Article in English | MEDLINE | ID: mdl-38621354

ABSTRACT

Planktonic organisms, which have direct contact with water, serve as the entry point for mercury (Hg), into the marine food web, impacting its levels in higher organisms, including fish, mammals, and humans who consume seafood. This study provides insights into the distribution and behavior of Hg within the Baltic Sea, specifically the Gulf of Gdansk, focusing on pelagic primary producers and consumers. Phytoplankton Hg levels were primarily influenced by its concentrations in water, while Hg concentrations in zooplankton resulted from dietary exposure through suspended particulate matter and phytoplankton consumption. Hg uptake by planktonic organisms, particularly phytoplankton, was highly efficient, with Hg concentrations four orders of magnitude higher than those in the surrounding water. However, unlike biomagnification of Hg between SPM and zooplankton, biomagnification between zooplankton and phytoplankton was not apparent, likely due to the low trophic position and small size of primary consumers, high Hg elimination rates, and limited absorption.


Subject(s)
Environmental Monitoring , Food Chain , Mercury , Phytoplankton , Water Pollutants, Chemical , Zooplankton , Mercury/analysis , Mercury/metabolism , Water Pollutants, Chemical/analysis , Animals , Oceans and Seas
17.
Environ Sci Technol ; 58(18): 7860-7869, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38647522

ABSTRACT

Algae are an entry point for mercury (Hg) into the food web. Bioconcentration of Hg by algae is crucial for its biogeochemical cycling and environmental risk. Herein, considering the cell heterogeneity, we investigated the bioconcentration of coexisting isotope-labeled inorganic (199IHg) and methyl Hg (201MeHg) by six typical freshwater and marine algae using dual-mass single-cell inductively coupled plasma mass spectrometry (scICP-MS). First, a universal pretreatment procedure for the scICP-MS analysis of algae was developed. Using the proposed method, the intra- and interspecies heterogeneities and the kinetics of Hg bioconcentration by algae were revealed at the single-cell level. The heterogeneity in the cellular Hg contents is largely related to cell size. The bioconcentration process reached a dynamic equilibrium involving influx/adsorption and efflux/desorption within hours. Algal density is a key factor affecting the distribution of Hg between algae and ambient water. Cellular Hg contents were negatively correlated with algal density, whereas the volume concentration factors almost remained constant. Accordingly, we developed a model based on single-cell analysis that well describes the density-driven effects of Hg bioconcentration by algae. From a novel single-cell perspective, the findings improve our understanding of algal bioconcentration governed by various biological and environmental factors.


Subject(s)
Mercury , Mercury/metabolism , Mass Spectrometry , Methylmercury Compounds/metabolism , Water Pollutants, Chemical/metabolism , Food Chain , Single-Cell Analysis
18.
Environ Res ; 252(Pt 2): 118906, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38609069

ABSTRACT

Litterfall is the main source of dry deposition of mercury (Hg) into the soil in forest ecosystems. The accumulation of Hg in soil and litter suggests the possibility of transfer to terrestrial invertebrates through environmental exposure or ingestion of plant tissues. We quantified total mercury (THg) concentrations in two soil layers (organic: 0-0.2 m; mineral: 0.8-1 m), litter, fresh leaves, and terrestrial invertebrates of the Araguaia River floodplain, aiming to evaluate the THg distribution among terrestrial compartments, bioaccumulation in invertebrates, and the factors influencing THg concentrations in soil and invertebrates. The mean THg concentrations were significantly different between the compartments evaluated, being higher in organic soil compared to mineral soil, and higher in litter compared to mineral soil and fresh leaves. Soil organic matter content was positively related to THg concentration in this compartment. The order Araneae showed significantly higher Hg concentrations among the most abundant invertebrate taxa. The higher Hg concentrations in Araneae were positively influenced by the concentrations determined in litter and individuals of the order Hymenoptera, confirming the process of biomagnification in the terrestrial trophic chain. In contrast, the THg concentrations in Coleoptera, Orthoptera and Hymenoptera were not significantly related to the concentrations determined in the soil, litter and fresh leaves. Our results showed the importance of organic matter for the immobilization of THg in the soil and indicated the process of biomagnification in the terrestrial food web, providing insights for future studies on the environmental distribution of Hg in floodplains.


Subject(s)
Bioaccumulation , Environmental Monitoring , Invertebrates , Mercury , Rivers , Mercury/analysis , Mercury/metabolism , Brazil , Animals , Rivers/chemistry , Invertebrates/metabolism , Soil Pollutants/analysis , Soil Pollutants/metabolism , Grassland , Food Chain , Ecosystem , Soil/chemistry
19.
Environ Sci Pollut Res Int ; 31(22): 31843-31861, 2024 May.
Article in English | MEDLINE | ID: mdl-38639901

ABSTRACT

The aim of this study was to evaluate the efficiency of Costus speciosus (Koen ex. Retz.) Sm. in the degradation of crude oil and reduction of mercury (Hg) from the contaminated soil in pot experiments in the net house for 180 days. C. speciosus was transplanted in soil containing 19150 mg kg-1 crude oil and 3.2 mg kg-1 Hg. The study includes the evaluation of plant biomass, height, root length, total petroleum hydrocarbon (TPH) degradation, and Hg reduction in soil, TPH, and Hg accumulation in plants grown in fertilized and unfertilized pots, chlorophyll production, and rhizospheric most probable number (MPN) at 60-day interval. The average biomass production and heights of C. speciosus in contaminated treatments were significantly (p < 0.05) lower compared to the unvegetated control. Plants grown in contaminated soil showed relatively reduced root surface area compared to the uncontaminated treatments. TPH degradation in planted fertilized, unplanted, and planted unfertilized pot was 63%, 0.8%, and 38%, respectively. However, compared to unvegetated treatments, TPH degradation was significantly higher (p < 0.05) in vegetated treatments. A comparison of fertilized and unfertilized soils showed that TPH accumulation in plant roots and shoots was relatively higher in fertilized soils. Hg degradation in soil was significantly (p < 0.05) more in planted treatment compared to unplanted treatments. The fertilized soil showed relatively more Hg degradation in soil and its accumulation in roots and shoots of plants in comparison to unfertilized soil. MPN in treatments with plants was significantly greater (p < 0.05) than without plants. The plant's ability to produce biomass, chlorophyll, break down crude oil, reduce Hg levels in soil, and accumulate TPH and Hg in roots and shoots of the plant all point to the possibility of using this plant to remove TPH and Hg from soil.


Subject(s)
Biodegradation, Environmental , Mercury , Petroleum , Soil Pollutants , Soil , Soil Pollutants/metabolism , Mercury/metabolism , Petroleum/metabolism , Soil/chemistry , Biomass , Plant Roots/metabolism
20.
Sci Total Environ ; 930: 172832, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38688367

ABSTRACT

Inorganic mercury (HgII) can be transformed into neurotoxic methylmercury (MeHg) by microorganisms in paddy soils, and the subsequent accumulation in rice grains poses an exposure risk for human health. Warming as an important manifestation of climate change, changes the composition and structure of microbial communities, and regulates the biogeochemical cycles of Hg in natural environments. However, the response of specific HgII methylation/demethylation to the changes in microbial communities caused by warming remain unclear. Here, nationwide sampling of rice paddy soils and a temperature-adjusted incubation experiment coupled with isotope labeling technique (202HgII and Me198Hg) were conducted to investigate the effects of temperature on HgII methylation, MeHg demethylation, and microbial mechanisms in paddy soils along Hg gradients. We showed that increasing temperature significantly inhibited HgII methylation but promoted MeHg demethylation. The reduction in the relative abundance of Hg-methylating microorganisms and increase in the relative abundance of MeHg-demethylating microorganisms are the likely reasons. Consequently, the net Hg methylation production potential in rice paddy soils was largely inhibited under the increasing temperature. Collectively, our findings offer insights into the decrease in net MeHg production potential associated with increasing temperature and highlight the need for further evaluation of climate change for its potential effect on Hg transformation in Hg-sensitive ecosystems.


Subject(s)
Mercury , Methylmercury Compounds , Oryza , Soil Pollutants , Soil , Soil Pollutants/metabolism , Soil Pollutants/analysis , Mercury/metabolism , Mercury/analysis , Methylation , Soil/chemistry , Soil Microbiology , Climate Change , Demethylation , Environmental Monitoring
SELECTION OF CITATIONS
SEARCH DETAIL
...