Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.918
Filter
1.
Sci Rep ; 14(1): 10173, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702351

ABSTRACT

This study aimed to explore the changes of pharmacokinetic parameters after meropenem in patients with abdominal septic shock after gastrointestinal perforation, and to simulate the probability of different dosing regimens achieving different pharmacodynamic goals. The study included 12 patients, and utilized high performance liquid chromatography-tandem mass spectrometry to monitor the plasma concentration of meropenem. The probability of target attainment (PTA) for different minimum inhibitory concentration (MIC) values and %fT > 4MIC was compared among simulated dosing regimens. The results showed that in 96 blood samples from 12 patients, the clearance (CL) of meropenem in the normal and abnormal creatinine clearance subgroups were 7.7 ± 1.8 and 4.4 ± 1.1 L/h, respectively, and the apparent volume of distribution (Vd) was 22.6 ± 5.1 and 17.2 ± 5.8 L, respectively. 2. Regardless of the subgroup, 0.5 g/q6h infusion over 6 h regimen achieved a PTA > 90% when MIC ≤ 0.5 mg/L. 1.0 g/q6h infusion regimen compared with other regimen, in most cases, the probability of making PTA > 90% is higher. For patients at low MIC, 0.5 g/q6h infusion over 6 h may be preferable. For patients at high MIC, a dose regimen of 1.0 g/q6 h infusion over 6 h may be preferable. Further research is needed to confirm this exploratory result.


Subject(s)
Anti-Bacterial Agents , Meropenem , Microbial Sensitivity Tests , Shock, Septic , Humans , Meropenem/pharmacokinetics , Meropenem/administration & dosage , Meropenem/therapeutic use , Shock, Septic/drug therapy , Male , Female , Middle Aged , Aged , Prospective Studies , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/therapeutic use , Adult , Intestinal Perforation , Aged, 80 and over
2.
Vestn Otorinolaringol ; 89(2): 88-94, 2024.
Article in Russian | MEDLINE | ID: mdl-38805469

ABSTRACT

According to the literature, acute otitis media is complicated by mastoiditis in 0.15-1% of cases. In turn, mastoiditis can be complicated by meningitis, encephalitis, abscess of temporal lobe of brain and cerebellum, epidural and subdural abscesses, facial nerve paresis, labyrinthitis, phlegmon of soft tissues of neck, as well as subperiosteal abscess, which makes 7% in the structure of mastoiditis complications. Nowadays, when doctors have a wide range of antibacterial preparations at their disposal, a complicated course of acute otitis media and further mastoiditis is caused both by an aggressive atypical infectious agent and immunocompromised status of a patient. The article deals with a clinical case of a prolonged course of acute otitis media complicated by mastoiditis and subperiosteal abscess against the background of outpatient courses of antibacterial therapy. The examination revealed an atypical pathogen of otitis media Pseudomonas aeruginosa and HIV-positive status of the patient, previously unknown. Timely surgical intervention and the right combination of antibacterial drugs, meropenem and ciprofloxacin, prevented the development of intracranial and septic complications, despite the presence of multiple foci of bone destruction of the mastoid process and temporal bone pyramid, bordering the middle fossa and sigmoid sinus, according to multispiral head computed tomography. As a part of additional examination in the Center for AIDS and Infectious Diseases Prevention and Control, the patient was diagnosed with HIV infection, clinical stage 4C, progressing phase on the background of absence of antiretroviral therapy, and the necessary amount of treatment was prescribed.


Subject(s)
Anti-Bacterial Agents , Mastoiditis , Otitis Media, Suppurative , Humans , Mastoiditis/etiology , Mastoiditis/diagnosis , Anti-Bacterial Agents/therapeutic use , Otitis Media, Suppurative/diagnosis , Male , HIV Infections/complications , Treatment Outcome , Pseudomonas Infections/diagnosis , Pseudomonas aeruginosa/isolation & purification , Adult , Tomography, X-Ray Computed/methods , Acute Disease , Meropenem/administration & dosage , Meropenem/therapeutic use
3.
J Mass Spectrom ; 59(6): e5041, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38751321

ABSTRACT

Numerous studies have suggested that intra-articular administration of antibiotics following primary revision surgery may be one of the methods for treating prosthetic joint infection (PJI). Vancomycin and meropenem are the two most commonly used antibiotics for local application. Determining the concentrations of vancomycin and meropenem in the serum and synovial fluid of patients with PJI plays a significant role in further optimizing local medication schemes and effectively eradicating biofilm infections. This study aimed to establish a rapid, sensitive, and accurate ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for determining the concentrations of vancomycin and meropenem in human serum and synovial fluid. Serum samples were processed using acetonitrile precipitation of proteins and dichloromethane extraction, while synovial fluid samples were diluted before analysis. Chromatographic separation was achieved in 6 min on a Waters Acquity UPLC BEH C18 column, with the mobile phase consisting of 0.1% formic acid in water (solvent A) and acetonitrile (solvent B). Quantification was carried out using a Waters XEVO TQD triple quadrupole mass spectrometer with an electrospray ionization (ESI) source in positive ion mode. The multiple reaction monitoring (MRM) mode was employed to detect the following quantifier ion transitions: 717.95-99.97 (norvancomycin), 725.90-100.04 (vancomycin), 384.16-67.99 (meropenem). The method validation conformed to the guidelines of the FDA and the Chinese Pharmacopoeia. The method demonstrated good linearity within the range of 0.5-50 µg/ml for serum and 0.5-100 µg/ml for synovial fluid. Selectivity, intra-day and inter-day precision and accuracy, extraction recovery, matrix effect, and stability validation results all met the required standards. This method has been successfully applied in the pharmacokinetic/pharmacodynamic (PK/PD) studies of patients with PJI.


Subject(s)
Anti-Bacterial Agents , Meropenem , Prosthesis-Related Infections , Synovial Fluid , Tandem Mass Spectrometry , Vancomycin , Humans , Tandem Mass Spectrometry/methods , Vancomycin/blood , Vancomycin/analysis , Vancomycin/pharmacokinetics , Synovial Fluid/chemistry , Meropenem/analysis , Meropenem/blood , Meropenem/pharmacokinetics , Chromatography, High Pressure Liquid/methods , Prosthesis-Related Infections/drug therapy , Prosthesis-Related Infections/blood , Anti-Bacterial Agents/blood , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/therapeutic use , Reproducibility of Results , Male , Limit of Detection , Middle Aged , Liquid Chromatography-Mass Spectrometry
4.
Environ Int ; 187: 108729, 2024 May.
Article in English | MEDLINE | ID: mdl-38735077

ABSTRACT

Due to the specific action on bacterial cell wall, ß-lactam antibiotics have gained widespread usage as they exhibit a high degree of specificity in targeting bacteria, but causing minimal toxicity to host cells. Under antibiotic pressure, bacteria may opt to shed their cell walls and transform into L-form state as a means to evade the antibiotic effects. In this study, we explored and identified diverse optimal conditions for both Gram-negative bacteria (E. coli DH5α (CTX)) and Gram-positive bacteria (B. subtilis ATCC6633), which were induced to L-form bacteria using lysozyme (0.5 ppm) and meropenem (64 ppm). Notably, when bacteria transformed into L-form state, both bacterial strains showed varying degrees of increased resistance to antibiotics polymyxin E, meropenem, rifampicin, and tetracycline. E. coli DH5α (CTX) exhibited the most significant enhancement in resistance to tetracycline, with a 128-fold increase, while B. subtilis ATCC6633 showed a 32-fold increase in resistance to tetracycline and polymyxin E. Furthermore, L-form bacteria maintained their normal metabolic activity, combined with enhanced oxidative stress, served as an adaptive strategy promoting the sustained survival of L-form bacteria. This study provided a theoretical basis for comprehending antibiotic resistance mechanisms, developing innovative treatment strategies, and confronting global antibiotic resistance challenges.


Subject(s)
Anti-Bacterial Agents , Bacillus subtilis , Escherichia coli , Oxidative Stress , Anti-Bacterial Agents/pharmacology , Oxidative Stress/drug effects , Escherichia coli/drug effects , Bacillus subtilis/drug effects , Drug Resistance, Bacterial , Microbial Sensitivity Tests , Tetracycline/pharmacology , Meropenem/pharmacology
5.
Med ; 5(5): 380-382, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38733970

ABSTRACT

Wagenlehner and colleagues1 demonstrated non-inferiority and superiority with respect to a primary endpoint of composite success (microbiological plus clinical) of cefepime/taniborbactam vs. meropenem in treating complicated urinary tract infections and acute pyelonephritis caused by carbapenem-susceptible gram-negative bacteria in adults. A major area of interest in real-world application of cefepime/taniborbactam is its potential role in treating carbapenem-resistant infections, which deserves further investigation.


Subject(s)
Anti-Bacterial Agents , Carbapenems , Cefepime , Urinary Tract Infections , Cefepime/therapeutic use , Cefepime/pharmacology , Humans , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Carbapenems/therapeutic use , Carbapenems/pharmacology , Urinary Tract Infections/drug therapy , Urinary Tract Infections/microbiology , Cephalosporins/therapeutic use , Cephalosporins/pharmacology , Pyelonephritis/drug therapy , Pyelonephritis/microbiology , Drug Combinations , Gram-Negative Bacterial Infections/drug therapy , Meropenem/therapeutic use , Meropenem/pharmacology , Borinic Acids , Carboxylic Acids
6.
Microbiology (Reading) ; 170(5)2024 May.
Article in English | MEDLINE | ID: mdl-38739119

ABSTRACT

Introduction. Bacterial keratitis, particularly caused by Pseudomonas aeruginosa, is challenging to treat because of multi-drug tolerance, often associated with the formation of biofilms. Antibiotics in development are typically evaluated against planktonic bacteria in a culture medium, which may not accurately represent the complexity of infections in vivo.Hypothesis/Gap Statement. Developing a reliable, economic ex vivo keratitis model that replicates some complexity of tissue infections could facilitate a deeper understanding of antibiotic efficacy, thus aiding in the optimization of treatment strategies for bacterial keratitis.Methodology. Here we investigated the efficacy of three commonly used antibiotics (gentamicin, ciprofloxacin and meropenem) against Pseudomonas aeruginosa cytotoxic strain PA14 and invasive strain PA01 using an ex vivo porcine keratitis model.Results. Both strains of P. aeruginosa were susceptible to the MIC of the three tested antibiotics. However, significantly higher concentrations were necessary to inhibit bacterial growth in the minimum biofilm eradication concentration (MBEC) assay, with both strains tolerating concentrations greater than 512 mg l-1 of meropenem. When MIC and higher concentrations than MBEC (1024 mg l-1) of antibiotics were applied, ciprofloxacin exhibited the highest potency against both P. aeruginosa strains, followed by meropenem, while gentamicin showed the least potency. Despite this, none of the antibiotic concentrations used effectively cleared the infection, even after 18 h of continuous exposure.Conclusions. Further exploration of antibiotic concentrations and aligning dosing with clinical studies to validate the model is needed. Nonetheless, our ex vivo porcine keratitis model could be a valuable tool for assessing antibiotic efficacy.


Subject(s)
Anti-Bacterial Agents , Biofilms , Ciprofloxacin , Disease Models, Animal , Keratitis , Microbial Sensitivity Tests , Pseudomonas Infections , Pseudomonas aeruginosa , Animals , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development , Anti-Bacterial Agents/pharmacology , Swine , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Biofilms/drug effects , Keratitis/microbiology , Keratitis/drug therapy , Ciprofloxacin/pharmacology , Gentamicins/pharmacology , Meropenem/pharmacology
7.
Emerg Microbes Infect ; 13(1): 2352432, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38712634

ABSTRACT

This study investigated resistance evolution mechanisms of conjugated plasmids and bacterial hosts under different concentrations of antibiotic pressure. Ancestral strain ECNX52 was constructed by introducing the blaNDM-5-carrying IncX3 plasmid into E. coli C600, and was subjected to laboratory evolution under different concentrations of meropenem pressure. Minimal inhibitory concentrations and conjugation frequency were determined. Fitness of these strains was assessed. Whole genome sequencing and transcriptional changes were performed. Ancestral host or plasmids were recombined with evolved hosts or plasmids to verify plasmid or host factors in resistance evolution. Role of the repA mutation on plasmid copy number was determined. Two out of the four clones (EM2N1 and EM2N3) exhibited four-fold increase in MIC when exposed to a continuous pressure of 2 µg/mL MEM (1/32 MIC), by down regulating expression of outer membrane protein ompF. Besides, all four clones displayed four-fold increase in MIC and higher conjugation frequency when subjected to a continuous pressure of 4 µg/mL MEM (1/16 MIC), attributing to increasing plasmid copy number generated by repA D140Y (GAT→TAT) mutation. Bacterial hosts and conjugative plasmids can undergo resistance evolution under certain concentrations of antimicrobial pressure by reducing the expression of outer membrane proteins or increasing plasmid copy numbers.


Subject(s)
Anti-Bacterial Agents , Escherichia coli Proteins , Escherichia coli , Microbial Sensitivity Tests , Plasmids , Porins , Escherichia coli/genetics , Escherichia coli/drug effects , Plasmids/genetics , Anti-Bacterial Agents/pharmacology , Porins/genetics , Porins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Carbapenems/pharmacology , Meropenem/pharmacology , Mutation , Evolution, Molecular , Conjugation, Genetic , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Whole Genome Sequencing , Gene Dosage , beta-Lactamases/genetics
8.
J Assoc Physicians India ; 72(1): 43-46, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38736073

ABSTRACT

INTRODUCTION: A survey-based approach to managing antibiotic-resistant infections in the intensive care unit (ICU) setting, with a focus on carbapenem-resistant Enterobacteriaceae (CRE) cases, was conducted. Among CRE, New Delhi metallo-ß-lactamase 1 (NDM-1) is a carbapenemase that is resistant to ß-lactam antibiotics and has a broader spectrum of antimicrobial resistance than other carbapenemase types. The article explains that healthcare-associated infections (HAIs) are a significant problem, particularly in low- and middle-income countries, and that carbapenem in combination with other antibiotics are the most potent class of antimicrobial agents effective in treating life-threatening bacterial infections, including those caused by resistant strains. AIM: The survey aimed to gather critical care healthcare professionals (HCPs') opinions on their current practices in managing infections acquired in the hospital and ICU settings, with a focus on CRE cases, specifically NDM-1 and other antibiotic-resistant infections. METHODS: Responses from critical care healthcare professionals, including online surveys and in-person interviews, to gain insights into the management of infections caused by multidrug-resistant bacteria. The findings related to the insights on the prevalence of bacterial flora, clinical experiences on efficacy and safety of meropenem sulbactam ethylenediaminetetraacetic acid (EDTA) (MSE) in CRE cases, and various combination therapies of antibiotics used to treat antibiotic-resistant infections in ICU setting were evaluated. RESULTS: Klebsiella pneumoniae bacteria were the most common bacteria in cultures, followed by Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii. NDM-1 was the type of carbapenemase found in around 50% of CRE patients. MSE is among the most preferred antibiotics besides colistin, polymyxin B, and ceftazidime avibactum for CRE cases and specifically for NDM-1 cases due to its high rate of efficacy and safety. CONCLUSION: The article concludes with a discussion on the antibiotics used in response to CRE cases, reporting that critical care HCP considers MSE with high efficacy and safe antibiotic combination and was used as both monotherapy and in combination with other antibiotics. The survey highlights the need for exploring and better understanding the role of MSE in the management of CRE infections, especially in NDM-1.


Subject(s)
Anti-Bacterial Agents , Carbapenem-Resistant Enterobacteriaceae , Critical Care , Enterobacteriaceae Infections , Intensive Care Units , Humans , Anti-Bacterial Agents/therapeutic use , Enterobacteriaceae Infections/drug therapy , Critical Care/methods , Cross Infection/drug therapy , Cross Infection/microbiology , Surveys and Questionnaires , beta-Lactamases , Drug Resistance, Multiple, Bacterial , Meropenem/therapeutic use , India , Attitude of Health Personnel , Polymyxin B/therapeutic use , Carbapenems/therapeutic use , Carbapenems/pharmacology , Klebsiella pneumoniae/drug effects , Health Personnel
9.
BMC Microbiol ; 24(1): 126, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622558

ABSTRACT

This study aimed to explore the role of the two-component system Bae SR in the mechanism of drug resistance in carbapenem-resistant A. baumannii (CRAB) using molecular docking and real-time polymerase chain reaction (PCR). The two-component system Bae SR of Acinetobacter baumannii was subjected to molecular docking with imipenem, meropenem, and levofloxacin. Antibacterial assays and fluorescence quantitative PCR were used to explore protein-ligand interactions and molecular biological resistance mechanisms related to CRAB. The analysis of the two-component system in A. baumannii revealed that imipenem exhibited the highest docking energy in Bae S at - 5.81 kcal/mol, while the docking energy for meropenem was - 4.92 kcal/mol. For Bae R, imipenem had a maximum docking energy of - 4.28 kcal/mol, compared with - 4.60 kcal/mol for meropenem. The highest binding energies for Bae S-levofloxacin and Bae R-levofloxacin were - 3.60 and - 3.65 kcal/mol, respectively. All imipenem-resistant strains had minimum inhibitory concentration (MIC) values of 16 µg/mL, whereas levofloxacin-resistant strains had MIC values of 8 µg/mL. The time-sterilization curve showed a significant decrease in bacterial colony numbers at 2 h under the action of 8 µg/mL imipenem, indicating antibacterial effects. In contrast, levofloxacin did not exhibit any antibacterial activity. Fluorescence quantitative PCR results revealed significantly increased relative expression levels of bae S and bae R genes in the CRAB group, which were 2 and 1.5 times higher than those in the CSAB group, respectively, with statistically significant differences. Molecular docking in this study found that the combination of Bae SR and carbapenem antibiotics (imipenem, meropenem) exhibited stronger affinity and stability compared with levofloxacin. Moreover, the overexpression of the two-component system genes in carbapenem-resistant A. baumannii enhanced its resistance to carbapenem, providing theoretical and practical insights into carbapenem resistance in respiratory tract infections caused by A. baumannii.


Subject(s)
Acinetobacter baumannii , Carbapenems , Carbapenems/pharmacology , Meropenem/pharmacology , Molecular Docking Simulation , Real-Time Polymerase Chain Reaction , Levofloxacin/pharmacology , Anti-Bacterial Agents/pharmacology , Imipenem/pharmacology , Drug Resistance , Microbial Sensitivity Tests , beta-Lactamases/genetics
10.
Clin Med (Lond) ; 24(2): 100036, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38588916

ABSTRACT

A 76-year-old Malay female presented with 2 days history of fever and vomiting. She was found to have Escherichia coli and Klebsiella pneumoniae bacteraemia with no clear intra-abdominal cause on the initial computed tomography of the abdomen and pelvis (CTAP). She clinically improved with 2 weeks duration of intravenous meropenem. She subsequently developed septic shock and a repeated CTAP demonstrated increased hepatic parenchymal density with extensive parenchymal calcifications. Curvilinear calcifications were seen in the paraspinal and pelvic musculature.


Subject(s)
Calcinosis , Humans , Female , Aged , Calcinosis/diagnostic imaging , Sepsis/microbiology , Tomography, X-Ray Computed , Liver Diseases/diagnostic imaging , Klebsiella pneumoniae/isolation & purification , Klebsiella Infections/diagnosis , Klebsiella Infections/complications , Klebsiella Infections/drug therapy , Escherichia coli Infections/complications , Escherichia coli Infections/diagnosis , Escherichia coli Infections/drug therapy , Muscular Diseases/diagnostic imaging , Anti-Bacterial Agents/therapeutic use , Meropenem/therapeutic use , Meropenem/administration & dosage
11.
BMC Microbiol ; 24(1): 149, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678219

ABSTRACT

BACKGROUND: Recognition of seasonal trends in bacterial infection and drug resistance rates may enhance diagnosis, direct therapeutic strategies, and inform preventive measures. Limited data exist on the seasonal variability of Acinetobacter baumannii. We investigated the seasonality of A. baumannii, the correlation between temperature and meropenem resistance, and the impact of temperature on this bacterium. RESULTS: Meropenem resistance rates increased with lower temperatures, peaking in winter/colder months. Nonresistant strain detection exhibited temperature-dependent seasonality, rising in summer/warmer months and declining in winter/colder months. In contrast, resistant strains showed no seasonality. Variations in meropenem-resistant and nonresistant bacterial resilience to temperature changes were observed. Nonresistant strains displayed growth advantages at temperatures ≥ 25 °C, whereas meropenem-resistant A. baumannii with ß-lactamase OXA-23 exhibited greater resistance to low-temperature (4 °C) stress. Furthermore, at 4 °C, A. baumannii upregulated carbapenem resistance-related genes (adeJ, oxa-51, and oxa-23) and increased meropenem stress tolerance. CONCLUSIONS: Meropenem resistance rates in A. baumannii display seasonality and are negatively correlated with local temperature, with rates peaking in winter, possibly linked to the differential adaptation of resistant and nonresistant isolates to temperature fluctuations. Furthermore, due to significant resistance rate variations between quarters, compiling monthly or quarterly reports might enhance comprehension of antibiotic resistance trends. Consequently, this could assist in formulating strategies to control and prevent resistance within healthcare facilities.


Subject(s)
Acinetobacter baumannii , Anti-Bacterial Agents , Meropenem , Microbial Sensitivity Tests , Seasons , Temperature , beta-Lactamases , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/genetics , Meropenem/pharmacology , Anti-Bacterial Agents/pharmacology , beta-Lactamases/genetics , Adaptation, Physiological/genetics , Drug Resistance, Bacterial/genetics , Humans , Acinetobacter Infections/microbiology , Bacterial Proteins/genetics
12.
Vet Med Sci ; 10(3): e1440, 2024 05.
Article in English | MEDLINE | ID: mdl-38613443

ABSTRACT

BACKGROUND: Honey exhibits a broad spectrum of antibacterial activity against Gram-positive and Gram-negative bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) ones. Chitosan (Cs) is a mucoadhesive polymer that also has antibacterial properties. Special attention has been paid to the design of polymeric nanoparticles (NPs) as new nano drug delivery systems to overcome bacterial resistance and its problems. OBJECTIVES: The aim of the present study is to synthesize Cs-meropenem NPs with/without honey as an antibiofilm and antibacterial agent to inhibit Staphylococcus aureus. METHODS: This study synthesized meropenem and honey-loaded Cs nanogels and subsequently characterized them by Field Emission Scanning Electron Microscopy (FESEM), Fourier Transform Infrared Spectroscopy (FTIR), and DLS-zeta potential. Using the broth microdilution and crystal violet assays, the antibacterial and antibiofilm activity of meropenem and honey-loaded Cs nanogel, free meropenem, free honey, and free Cs NPs were investigated in vitro against MRSA strains. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) was also used to test the cytotoxicity of several Cs-NPs compound against the HEK-293 regular cell line. RESULTS: The average size of meropenem and honey-Cs-NPs was reported to be 119.885 nm, and encapsulation efficiency was 88.33 ± 0.97 with stability up to 60 days at 4°C. The NPs showed enhanced antibiofilm efficacy against S. aureus at sub-minimum inhibitory concentrations. Additionally, the cytotoxicity of meropenem and honey-encapsulated Cs against the HEK-293 normal cell line was insignificant. CONCLUSIONS: Our findings suggested that meropenem and honey-Cs-NPs might be potential antibacterial and antibiofilm materials.


Subject(s)
Anti-Infective Agents , Chitosan , Honey , Methicillin-Resistant Staphylococcus aureus , Nanoparticles , Staphylococcal Infections , Animals , Humans , Meropenem/pharmacology , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Chitosan/pharmacology , HEK293 Cells , Gram-Negative Bacteria , Gram-Positive Bacteria , Staphylococcal Infections/veterinary , Biofilms
13.
Mikrobiyol Bul ; 58(2): 135-147, 2024 Apr.
Article in Turkish | MEDLINE | ID: mdl-38676582

ABSTRACT

Pseudomonas aeruginosa is a non-fermentative gram-negative bacillus. Many virulence factors play a role in the pathogenesis of P.aeruginosa. The aim of this study was to early detection of ST111, ST175, ST235, ST253, ST395 which are named high-risk clones with increased epidemic potential due to multidrug resistance in P.aeruginosa isolates by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) method and to evaluate the relationship between high-risk clones and the presence of P.aeruginosa virulence factors and carbapenemase production genes.P.aeruginosa isolates (n= 100) found to be resistant to at least imipenem or meropenem antibiotics isolated from the various clinical samples in the medical microbiology laboratory between 01.01.2021 and 07.06.2022 were included in the study. For the detection of virulence genes uniplex polymerase chain reaction (PCR) for toxA and multiplex PCR for algD, plcN, lasB, plcH were performed in P.aeruginosa isolates. In the detection of carbapenemase genes, two separate multiplex PCRs used for blaKPC , blaNDM , blaVIM , blaOXA-48 and for blaIMP , blaSPM , blaSIM , blaGIM , blaGES . Investigation of the peaks specific to high-risk clones was performed by using VITEK®-MS (bioMérieux, France) system. P.aeruginosa isolates were mostly isolated from intensive care units (45%) and respiratory tract samples (46%). The antibiotic to which the isolates were found to be most susceptible was amikacin, while highest resistance was detected for piperacillin. In PCR results, toxA, lasB, plcH, plcN and algD were detected as 89%, 99%, 98%, 100%, 100%, respectively. When the presence of characteristic peaks belonging to high-risk clones was evaluated with MALDI-TOF MS, ST253 (7%) and ST175 (2%) were detected. The peaks specific to ST235 and ST395 clones were not detected in our study. blaVIM was detected in two isolates and blaGES-5 carbapenemase was detected in two isolates. Virulence factors were detected at high rates in both high-risk clones and other strains and no significant relationship was found between high-risk clones and virulence factors. Early detection of high-risk clones, identification of antimicrobial resistance mechanisms will help to develop strategic treatment options and prevent their worldwide spread.


Subject(s)
Polymerase Chain Reaction , Pseudomonas aeruginosa , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Virulence Factors , beta-Lactamases , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/isolation & purification , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/pathogenicity , Humans , beta-Lactamases/genetics , Virulence Factors/genetics , Bacterial Proteins/genetics , Pseudomonas Infections/microbiology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Imipenem/pharmacology , Meropenem/pharmacology , Virulence/genetics
14.
J Clin Lab Anal ; 38(8): e25025, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38563451

ABSTRACT

OBJECTIVE: This study aimed to indicate whether a declined plasma concentration of valproic acid (VPA) induced by co-administration of meropenem (MEPM) could affect the antiepileptic efficacy of VPA. METHODS: We retrospectively reviewed data of hospitalized patients who were diagnosed with status epilepticus or epilepsy between 2010 and 2019. Patients co-administered VPA and MEPM during hospitalization were screened and assigned to the exposure group, while those co-administerd VPA and other broad-spectrum antibiotics were allocated to the control group. RESULTS: The exposure group and control group included 50 and 11 patients, respectively. With a similar dosage of VPA, the plasma concentration of VPA significantly decreased during co-administration (24.6 ± 4.3 µg/mL) compared with that before co-administration (88.8 ± 13.6 µg/mL, p < 0.0001), and it was partly recovered with the termination of co-administration (39.8 ± 13.2 µg/mL, p = 0.163) in the exposure group. The inverse probability of treatment weighting estimated the treatment efficacy via changes in seizure frequency, seizure duration, and concomitant use of antiepileptic drugs, which were not significantly different between the exposure and control groups. In the exposure group, there was no significant differences in seizure frequency between the periods of before-during and before-after (p = 0.074 and 0.153, respectively). Seizure duration during VPA-MEPM co-administration was not significantly different from that before co-administration (p = 0.291). CONCLUSIONS: In this study, the reduced plasma concentration of VPA induced by the co-administration of MEPM did not affect the antiepileptic efficacy of VPA. This conclusion should be interpreted with caution, and more research is warranted. TRIAL REGISTRATION: Chinese Clinical Trial Registry: ChiCTR2000034567. Registered on 10 July 2020.


Subject(s)
Anticonvulsants , Epilepsy , Meropenem , Valproic Acid , Humans , Valproic Acid/blood , Valproic Acid/therapeutic use , Valproic Acid/administration & dosage , Anticonvulsants/blood , Anticonvulsants/therapeutic use , Meropenem/blood , Meropenem/administration & dosage , Male , Female , Middle Aged , Retrospective Studies , Adult , Aged , Epilepsy/drug therapy , Epilepsy/blood , Drug Interactions , Anti-Bacterial Agents/blood , Anti-Bacterial Agents/administration & dosage , Treatment Outcome
15.
Antimicrob Agents Chemother ; 68(5): e0108523, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38606975

ABSTRACT

Piperacillin-tazobactam (TZP), cefepime (FEP), or meropenem (MEM) and vancomycin (VAN) are commonly used in combination for sepsis. Studies have shown an increased risk of acute kidney injury (AKI) with TZP and VAN compared to FEP or MEM. VAN guidelines recommend area under the curve (AUC) monitoring over trough (Tr) to minimize the risk of AKI. We investigated the association of AKI and MAKE-30 with the two VAN monitoring strategies when used in combination with TZP or FEP/MEM. Adult patients between 2015 and 2019 with VAN > 72 hours were included. Patients with AKI prior to or within 48 hours of VAN or baseline CrCl of ≤30 mL/min were excluded. Four cohorts were defined: FEP/MEM/Tr, FEP/MEM/AUC, TZP/Tr, and TZP/AUC. A Cox Proportional Hazard Model was used to model AKI as a function of the incidence rate of at-risk days, testing monitoring strategy as a treatment effect modification. Multivariable logistic regression was used to model MAKE-30. Overall incidence of AKI was 18.6%; FEP/MEM/Tr = 115 (14.6%), FEP/MEM/AUC = 52 (14.9%), TZP/Tr = 189 (26%), and TZP/AUC = 96 (17.1%) (P < 0.001). Both drug group [(TZP; P = 0.0085)] and monitoring strategy [(Tr; P = 0.0007)] were highly associated with the development of AKI; however, the effect was not modified with interaction term [(TZP*Tr); 0.085)]. The odds of developing MAKE-30 were not different between any group and FEP/MEM/AUC. The effect of VAN/TZP on the development of AKI was not modified by the VAN monitoring strategy (AUC vs trough). MAKE-30 outcomes were not different among the four cohorts.


Subject(s)
Acute Kidney Injury , Anti-Bacterial Agents , Cefepime , Meropenem , Piperacillin, Tazobactam Drug Combination , Vancomycin , Humans , Vancomycin/adverse effects , Vancomycin/administration & dosage , Vancomycin/therapeutic use , Meropenem/administration & dosage , Meropenem/therapeutic use , Meropenem/adverse effects , Acute Kidney Injury/chemically induced , Cefepime/administration & dosage , Cefepime/therapeutic use , Cefepime/adverse effects , Piperacillin, Tazobactam Drug Combination/adverse effects , Piperacillin, Tazobactam Drug Combination/administration & dosage , Piperacillin, Tazobactam Drug Combination/therapeutic use , Male , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/adverse effects , Female , Middle Aged , Aged , Area Under Curve , Drug Therapy, Combination , Retrospective Studies , Sepsis/drug therapy
16.
BMC Microbiol ; 24(1): 144, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664608

ABSTRACT

BACKGROUND: Klebsiella pneumoniae infections have become a major cause of hospital acquired infection worldwide with the increased rate of acquisition of resistance to antibiotics. Carbapenem resistance mainly among Gram negative is an ongoing problem which causes serious outbreaks dramatically limiting treatment options. This prospective cross-sectional study was designed to detect blaKPC gene from carbapenem resistant K. pneumoniae. MATERIALS AND METHODS: A totally of 1118 different clinical specimens were screened and confirmed for KPC producing K. pneumoniae phenotypically using Meropenem (10 µg) disc. The blaKPC gene was amplified from the isolates of K. pneumoniae to detect the presence of this gene. RESULT: Of the total samples processed, 18.6% (n = 36) were K. pneumoniae and among 36 K. pneumoniae, 61.1% (n = 22/36) were meropenem resistant. This study demonstrated the higher level of MDR 91.7% (n = 33) and KPC production 47.2% (n = 17) among K. pneumoniae isolates. The blaKPC gene was detected in 8.3% (n = 3) of meropenem resistant isolates. CONCLUSION: Since the study demonstrates the higher level of MDR and KPC producing K. pneumoniae isolates that has challenged the use of antimicrobial agents, continuous microbiology, and molecular surveillance to assist early detection and minimize the further dissemination of blaKPC should be initiated. We anticipate that the findings of this study will be useful in understanding the prevalence of KPC-producing K. pneumoniae in Nepal.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Klebsiella Infections , Klebsiella pneumoniae , Meropenem , Microbial Sensitivity Tests , Tertiary Care Centers , beta-Lactamases , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/enzymology , beta-Lactamases/genetics , Humans , Nepal/epidemiology , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology , Tertiary Care Centers/statistics & numerical data , Bacterial Proteins/genetics , Cross-Sectional Studies , Prospective Studies , Anti-Bacterial Agents/pharmacology , Meropenem/pharmacology , Male , Drug Resistance, Multiple, Bacterial/genetics , Female , Adult , Middle Aged , Young Adult , Aged , Adolescent
17.
Antimicrob Agents Chemother ; 68(5): e0017424, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38557171

ABSTRACT

Mycobacterium abscessus (MAB) infections pose a growing public health threat. Here, we assessed the in vitro activity of the boronic acid-based ß-lactamase inhibitor, vaborbactam, with different ß-lactams against 100 clinical MAB isolates. Enhanced activity was observed with meropenem and ceftaroline with vaborbactam (1- and >4-fold MIC50/90 reduction). CRISPRi-mediated blaMAB gene knockdown showed a fourfold MIC reduction to ceftaroline but not the other ß-lactams. Our findings demonstrate vaborbactam's potential in combination therapy against MAB infections.


Subject(s)
Anti-Bacterial Agents , Boronic Acids , Cefoxitin , Ceftaroline , Cephalosporins , Imipenem , Meropenem , Microbial Sensitivity Tests , Mycobacterium abscessus , Mycobacterium abscessus/drug effects , Meropenem/pharmacology , Boronic Acids/pharmacology , Anti-Bacterial Agents/pharmacology , Cephalosporins/pharmacology , Imipenem/pharmacology , Cefoxitin/pharmacology , Humans , Mycobacterium Infections, Nontuberculous/drug therapy , Mycobacterium Infections, Nontuberculous/microbiology , beta-Lactamase Inhibitors/pharmacology
18.
Antimicrob Agents Chemother ; 68(5): e0166923, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38564665

ABSTRACT

Japan is a country with an approximate 10% prevalence rate of carbapenem-resistant Pseudomonas aeruginosa (CRPA). Currently, a comprehensive overview of the genotype and phenotype patterns of CRPA in Japan is lacking. Herein, we conducted genome sequencing and quantitative antimicrobial susceptibility testing for 382 meropenem-resistant CRPA isolates that were collected from 78 hospitals across Japan from 2019 to 2020. CRPA exhibited susceptibility rates of 52.9%, 26.4%, and 88.0% against piperacillin-tazobactam, ciprofloxacin, and amikacin, respectively, whereas 27.7% of CRPA isolates was classified as difficult-to-treat resistance P. aeruginosa. Of the 148 sequence types detected, ST274 (9.7%) was predominant, followed by ST235 (7.6%). The proportion of urine isolates in ST235 was higher than that in other STs (P = 0.0056, χ2 test). Only 4.1% of CRPA isolates carried the carbapenemase genes: blaGES (2) and blaIMP (13). One ST235 isolate carried the novel blaIMP variant blaIMP-98 in the chromosome. Regarding chromosomal mutations, 87.1% of CRPA isolates possessed inactivating or other resistance mutations in oprD, and 28.8% showed mutations in the regulatory genes (mexR, nalC, and nalD) for the MexAB-OprM efflux pump. Additionally, 4.7% of CRPA isolates carried a resistance mutation in the PBP3-encoding gene ftsI. The findings from this study and other surveillance studies collectively demonstrate that CRPA exhibits marked genetic diversity and that its multidrug resistance in Japan is less prevailed than in other regions. This study contributes a valuable data set that addresses a gap in genotype/phenotype information regarding CRPA in the Asia-Pacific region, where the epidemiological background markedly differs between regions.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Carbapenems , Microbial Sensitivity Tests , Pseudomonas Infections , Pseudomonas aeruginosa , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/isolation & purification , Japan/epidemiology , Carbapenems/pharmacology , Anti-Bacterial Agents/pharmacology , Humans , Bacterial Proteins/genetics , Pseudomonas Infections/microbiology , Pseudomonas Infections/epidemiology , Pseudomonas Infections/drug therapy , beta-Lactamases/genetics , Genome, Bacterial/genetics , Piperacillin, Tazobactam Drug Combination/therapeutic use , Piperacillin, Tazobactam Drug Combination/pharmacology , Whole Genome Sequencing , Meropenem/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Amikacin/pharmacology
19.
J Antimicrob Chemother ; 79(5): 1176-1181, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38562061

ABSTRACT

BACKGROUND: Patients infected with difficult-to-treat Pseudomonas aeruginosa are likely to receive meropenem (MEM) empirically before escalation to ceftolozane/tazobactam (C/T). We assessed whether pre-exposure to MEM affected C/T resistance development on C/T exposure. MATERIALS AND METHODS: Nine clinical P. aeruginosa isolates were exposed to MEM 16 mg/L for 72 h. Then, isolates were serially passaged in the presence of C/T (concentration of 10 mg/L) for 72 h as two groups: an MEM-exposed group inoculated with MEM pre-exposed isolates and a non-MEM control group. At 24 h intervals, samples were plated on drug-free and drug-containing agar (C/T concentration 16/8 mg/L) and incubated to quantify bacterial densities (log10 cfu/mL). Growth on C/T agar indicated resistance development, and resistant population was calculated by dividing the cfu/mL on C/T plates by the cfu/mL on drug-free agar. RESULTS: At 72 h, resistant populations were detected in 6/9 isolates. In five isolates, MEM exposure significantly increased the prevalence of ceftolozane/tazobactam-resistance development; the percentages of resistance population were 100%, 100%, 53.5%, 31% and 3% for the MEM-exposed versus 0%, 0%, 2%, 0.35% and ≤0.0003% in the unexposed groups. One isolate had a similar resistant population at 72 h between the two groups. The remaining isolates showed no development of resistance, regardless of previous MEM exposure. CONCLUSIONS: MEM exposure may pre-dispose to C/T resistance development and thus limit the therapeutic utility of this ß-lactam/ß-lactamase inhibitor. Resistance may be a result of stress exposure or molecular-level mutations conferring cross-resistance. Further in vivo studies are needed to assess clinical implications of these findings.


Subject(s)
Anti-Bacterial Agents , Cephalosporins , Meropenem , Pseudomonas Infections , Pseudomonas aeruginosa , Tazobactam , Pseudomonas aeruginosa/drug effects , Cephalosporins/pharmacology , Meropenem/pharmacology , Tazobactam/pharmacology , Anti-Bacterial Agents/pharmacology , Humans , Pseudomonas Infections/microbiology , Pseudomonas Infections/drug therapy , Microbial Sensitivity Tests , Serial Passage
20.
PLoS One ; 19(4): e0298577, 2024.
Article in English | MEDLINE | ID: mdl-38635685

ABSTRACT

BACKGROUND: Infections caused by Stenotrophomonas maltophilia and related species are increasing worldwide. Unfortunately, treatment options are limited, whereas the antimicrobial resistance is increasing. METHODS: We included clinical isolates identified as S. maltophilia by VITEK 2 Compact. Ceftazidime/avibactam, meropenem/vaborbactam, imipenem/relebactam, cefiderocol, quinolones, and tetracycline family members were evaluated by broth microdilution method and compared with first-line treatment drugs. Minimum inhibitory concentrations (MICs) were reported for all antibiotics. We sequenced the Whole Genome of cefiderocol resistant strains (CRSs) and annotated their genes associated with cefiderocol resistance (GACR). Presumptive phylogenetic identification employing the 16S marker was performed. RESULTS: One hundred and one clinical strains were evaluated, sulfamethoxazole and trimethoprim, levofloxacin and minocycline showed susceptibilities of 99.01%, 95.04% and 100% respectively. Ceftazidime was the antibiotic with the highest percentage of resistance in all samples (77.22%). Five strains were resistant to cefiderocol exhibiting MIC values ≥ 2 µg/mL (4.95%). The ß-lactamase inhibitors meropenem/vaborbactam and imipenem/relebactam, failed to inhibit S. maltophilia, preserving both MIC50 and MIC90 ≥64 µg/mL. Ceftazidime/avibactam restored the activity of ceftazidime decreasing the MIC range. Tigecycline had the lowest MIC range, MIC50 and MIC90. Phylogeny based on 16S rRNA allowed to identify to cefiderocol resistant strains as putative species clustered into Stenotrophomonas maltophilia complex (Smc). In these strains, we detected GARCs such as Mutiple Drug Resistance (MDR) efflux pumps, L1-type ß-lactamases, iron transporters and type-1 fimbriae. CONCLUSION: Antimicrobial resistance to first-line treatment is low. The in vitro activity of new ß-lactamase inhibitors against S. maltophilia is poor, but avibactam may be a potential option. Cefiderocol could be considered as a potential new option for multidrug resistant infections. Tetracyclines had the best in vitro activity of all antibiotics evaluated.


Subject(s)
Boronic Acids , Ceftazidime , Stenotrophomonas maltophilia , Ceftazidime/pharmacology , Cefiderocol , Meropenem , beta-Lactamase Inhibitors/pharmacology , beta-Lactamase Inhibitors/therapeutic use , Stenotrophomonas , Phylogeny , RNA, Ribosomal, 16S , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Azabicyclo Compounds/pharmacology , Drug Combinations , Imipenem/pharmacology , Microbial Sensitivity Tests , beta-Lactamases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...