Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 11(1): 19118, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34580326

ABSTRACT

The use of quantitative qRT-PCR assays for detection and quantification of late gametocyte stages has revealed the high transmission capacity of the human malaria parasite, Plasmodium falciparum. To understand how the parasite adjusts its transmission in response to in-host environmental conditions including antimalarials requires simultaneous quantification of early and late gametocytes. Here, we describe qRT-PCR assays that specifically detect and quantify early-stage P. falciparum gametocytes. The assays are based on expression of known early and late gametocyte genes and were developed using purified stage II and stage V gametocytes and tested in natural and controlled human infections. Genes pfpeg4 and pfg27 are specifically expressed at significant levels in early gametocytes with a limit of quantification of 190 and 390 gametocytes/mL, respectively. In infected volunteers, transcripts of pfpeg4 and pfg27 were detected shortly after the onset of blood stage infection. In natural infections, both early (pfpeg4/pfg27) and late gametocyte transcripts (pfs25) were detected in 71.2% of individuals, only early gametocyte transcripts in 12.6%, and only late gametocyte transcripts in 15.2%. The pfpeg4/pfg27 qRT-PCR assays are sensitive and specific for quantification of circulating sexually committed ring stages/early gametocytes and can be used to increase our understanding of epidemiological processes that modulate P. falciparum transmission.


Subject(s)
Malaria, Falciparum/diagnosis , Merozoites/isolation & purification , Plasmodium falciparum/isolation & purification , Real-Time Polymerase Chain Reaction , Adolescent , Adult , Antimalarials/therapeutic use , Female , Genes, Protozoan , Healthy Volunteers , Host-Parasite Interactions/drug effects , Humans , Limit of Detection , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Malaria, Falciparum/transmission , Male , Merozoites/genetics , Middle Aged , Parasite Load , Plasmodium falciparum/genetics , Reproducibility of Results , Young Adult
2.
Rev. bras. parasitol. vet ; 30(1): e017020, 2021. tab, graf
Article in English | LILACS | ID: biblio-1156227

ABSTRACT

Abstract Autophagy plays an important role in maintaining cell homeostasis through degradation of denatured proteins and other biological macromolecules. In recent years, many researchers focus on mechanism of autophagy in apicomplexan parasites, but little was known about this process in avian coccidia. In our present study. The cloning, sequencing and characterization of autophagy-related gene (Etatg8) were investigated by quantitative real-time PCR (RT-qPCR), western blotting (WB), indirect immunofluorescence assays (IFAs) and transmission electron microscopy (TEM), respectively. The results have shown 375-bp ORF of Etatg8, encoding a protein of 124 amino acids in E. tenella, the protein structure and properties are similar to other apicomplexan parasites. RT-qPCR revealed Etatg8 gene expression during four developmental stages in E. tenella, but their transcriptional levels were significantly higher at the unsporulated oocysts stage. WB and IFA showed that EtATG8 was lipidated to bind the autophagosome membrane under starvation or rapamycin conditions, and aggregated in the cytoplasm of sporozoites and merozoites, however, the process of autophagosome membrane production can be inhibited by 3-methyladenine. In conclusion, we found that E. tenella has a conserved autophagy mechanism like other apicomplexan parasites, and EtATG8 can be used as a marker for future research on autophagy targeting avian coccidia.


Resumo A autofagia desempenha um papel importante na manutenção da homeostase celular através da degradação de proteínas desnaturadas e outras macromoléculas biológicas. Nos últimos anos, muitos pesquisadores se concentraram no mecanismo da autofagia em parasitas apicomplexos, mas pouco se sabe sobre esse processo na coccidia aviária. No presente estudo, a clonagem, sequenciamento e caracterização de gene relacionado à autofagia Etatg8 foram investigados pela PCR quantitativa em tempo real (RT-qPCR), mancha ocidental (WB), ensaios indiretos de imunofluorescência (IFAs) e microscopia eletrônica de transmissão (TEM), respectivamente. Os resultados mostraram que o gene Etatg8 de E. tenella possui uma ORF de 375 bp, codificando uma proteína de 124 aminoácidos com estrutura e propriedades semelhantes à de outros apicomplexos. RT-qPCR revelou que Etatg8 é expresso durante os quatro estágios de desenvolvimento de E. tenella. Entretanto, seus níveis transcricionais foram significativamente mais elevados na fase de oocisto não esporulados. Os ensaios de manchas ocidental (WB) e de imunofluorescência (IFA) mostraram que a proteína EtATG8 foi lipidada para ligar-se à membrana do autofagossomo sob condições de deficiência nutritiva (em presença de rapamicina) e se agregar no citoplasma de esporozoítas e merozoítas. No entanto, o processo de produção de membrana do autofagossomo pode ser inibido por um inibidor de autofagia (3-meetiladeninatiladenina, 3-MA). Em conclusão, foi demonstrado que E. tenella tem um mecanismo de autofagia conservado, semelhante ao de outros parasitas apicomplexos, e que EtATG8 pode ser usado como um marcador para futuras pesquisas sobre autofagia direcionada à coccidiose aviária.


Subject(s)
Animals , Autophagy/physiology , Bird Diseases/parasitology , Chickens/parasitology , Eimeria tenella/physiology , Coccidiosis/veterinary , Autophagy-Related Protein 8 Family/chemistry , Autophagy/genetics , Bird Diseases/prevention & control , Genetic Markers/physiology , China , Polymerase Chain Reaction , Eimeria tenella/genetics , Cloning, Molecular/methods , Coccidiosis/prevention & control , Oocysts/isolation & purification , Oocysts/physiology , Sporozoites/isolation & purification , Sporozoites/physiology , Microscopy, Electron, Transmission , Merozoites/isolation & purification , Merozoites/physiology , Autophagy-Related Protein 8 Family/genetics
4.
PLoS One ; 15(8): e0237786, 2020.
Article in English | MEDLINE | ID: mdl-32822376

ABSTRACT

Plasmodium falciparum malaria killed 451,000 people in 2017. Merozoites, the stage of the parasite that invades RBCs, are a logical target for vaccine development. Treatment with the protease inhibitor E64 followed by filtration through a 1.2 µm filter is being used to purify merozoites for immunologic assays. However, there have been no studies to determine the effect of these treatments on the susceptibility of merozoites to complement or antibodies. To address this gap, we purified merozoites with or without E64 followed by filtration through either a 1.2 or 2.7 µm filter, or no filtration. Merozoites were then incubated in either 10% fresh or heat-inactivated serum followed by surface staining and flow cytometry with monoclonal antibodies against the complement effector molecules C3b or C5b9. To determine the effect of anti-merozoite antibodies, we incubated merozoites with MAb5.2, a mouse monoclonal antibody that targets the merozoite surface protein 1. We used an amine-reactive fluorescent dye to measure membrane integrity. Treatment with E64 resulted in an insignificant increase in the proportion of merozoites that were C3b positive but in a significant increase in the proportion that were C5b9 positive. Filtration increased the proportion of merozoites that were either C3b or C5b9-positive. The combination of filtration and E64 treatment resulted in marked deposition of C3b and C5b9. MAb5.2 induced greater complement deposition than serum alone or an IgG2b isotype control. The combination of E64 treatment, filtration, and MAb5.2 resulted in very rapid and significant deposition of C5b9. Filtration through the 1.2 µm filter selected a population of merozoites with greater membrane integrity, but their integrity deteriorated rapidly upon exposure to serum. We conclude that E64 treatment and filtration increase the susceptibility of merozoites to complement and antibody. Filtered or E64-treated merozoites are not suitable for immunologic studies that address the efficacy of antibodies in vitro.


Subject(s)
Merozoites/drug effects , Merozoites/isolation & purification , Plasmodium falciparum/drug effects , Plasmodium falciparum/isolation & purification , Protease Inhibitors/pharmacology , Animals , Antibodies, Protozoan/immunology , Complement Activation/drug effects , Filtration , Flow Cytometry , Humans , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Merozoites/immunology , Mice , Plasmodium falciparum/immunology
5.
PLoS One ; 14(11): e0224743, 2019.
Article in English | MEDLINE | ID: mdl-31751362

ABSTRACT

Human infections due to the monkey malaria parasite Plasmodium knowlesi are increasingly being reported from Malaysia. The parasite causes high parasitaemia, severe and fatal malaria in humans thus there is a need for urgent measures for its control. The MSP4 is a potential vaccine candidate, which is well studied in Plasmodium falciparum and Plasmodium vivax; however, no study has been conducted in the orthologous gene of P. knowlesi. In this study, we investigated the level of polymorphisms, haplotypes, natural selection and population structure of full-length pkmsp4 in 32 clinical samples from Malaysian Borneo along with 4 lab-adapted strains. We found low levels of polymorphism across the gene with exon I showing higher diversity than the exon II. The C- terminal epidermal growth factor (EGF) domains and GPI-anchored region within exon II were mostly conserved with only 2 non-synonymous substitutions. Although 21 amino acid haplotypes were found, the frequency of mutation at the majority of the polymorphic positions was low. We found evidence of negative selection at the exon II of the gene indicating existence of functional constraints. Phylogenetic haplotype network analysis identified shared haplotypes and indicated geographical clustering of samples originating from Peninsular Malaysia and Malaysian Borneo. High population differentiation values were observed within parasite populations originating from Malaysian Borneo (Kapit, Sarikei and Betong) and laboratory-adapted strains obtained from Peninsular Malaysia and Philippines indicating distinct population structure. This is the first study to genetically characterize the full-length msp4 gene from clinical isolates of P. knowlesi from Malaysia and thus would be very useful for future rational vaccine studies. Further studies with higher number of samples and functional characterization of the protein will be necessary.


Subject(s)
Antigens, Protozoan/genetics , Genetic Variation , Malaria/parasitology , Plasmodium knowlesi/genetics , Protozoan Proteins/genetics , Animals , Antigens, Protozoan/isolation & purification , Borneo , DNA, Protozoan/genetics , DNA, Protozoan/isolation & purification , Genes, Protozoan/genetics , Geography , Humans , Malaysia , Merozoites/genetics , Merozoites/isolation & purification , Philippines , Phylogeny , Plasmodium knowlesi/isolation & purification , Protozoan Proteins/isolation & purification , Selection, Genetic , Sequence Analysis, DNA
6.
J Proteome Res ; 18(9): 3404-3418, 2019 09 06.
Article in English | MEDLINE | ID: mdl-31335145

ABSTRACT

The pre-erythrocytic liver stage of the malaria parasite, comprising sporozoites and the liver stages into which they develop, remains one of the least understood parts of the lifecycle, in part owing to the low numbers of parasites. Nonetheless, it is recognized as an important target for antimalarial drugs and vaccines. Here we provide the first proteomic analysis of merosomes, which define the final phase of the liver stage and are responsible for initiating the blood stage of infection. We identify a total of 1879 parasite proteins, and a core set of 1188 proteins quantitatively detected in every biological replicate, providing an extensive picture of the protein repertoire of this stage. This unique data set will allow us to explore key questions about the biology of merosomes and hepatic merozoites.


Subject(s)
Liver/parasitology , Malaria/diagnosis , Plasmodium berghei/isolation & purification , Proteomics , Animals , Anopheles/parasitology , Erythrocytes/parasitology , Hepatocytes/parasitology , Humans , Life Cycle Stages/genetics , Malaria/blood , Malaria/genetics , Malaria/parasitology , Merozoites/isolation & purification , Merozoites/pathogenicity , Mice , Plasmodium berghei/genetics , Plasmodium berghei/pathogenicity
7.
Sci Rep ; 8(1): 10165, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29976932

ABSTRACT

Plasmodium knowlesi, a zoonotic parasite causing severe-to-lethal malaria disease in humans, has only recently been adapted to continuous culture with human red blood cells (RBCs). In comparison with the most virulent human malaria, Plasmodium falciparum, there are, however, few cellular tools available to study its biology, in particular direct investigation of RBC invasion by blood-stage P. knowlesi merozoites. This leaves our current understanding of biological differences across pathogenic Plasmodium spp. incomplete. Here, we report a robust method for isolating viable and invasive P. knowlesi merozoites to high purity and yield. Using this approach, we present detailed comparative dissection of merozoite invasion (using a variety of microscopy platforms) and direct assessment of kinetic differences between knowlesi and falciparum merozoites. We go on to assess the inhibitory potential of molecules targeting discrete steps of invasion in either species via a quantitative invasion inhibition assay, identifying a class of polysulfonate polymer able to efficiently inhibit invasion in both, providing a foundation for pan-Plasmodium merozoite inhibitor development. Given the close evolutionary relationship between P. knowlesi and P. vivax, the second leading cause of malaria-related morbidity, this study paves the way for inter-specific dissection of invasion by all three major pathogenic malaria species.


Subject(s)
Erythrocytes/pathology , Erythrocytes/parasitology , Malaria/parasitology , Merozoites/pathogenicity , Parasites/pathogenicity , Plasmodium knowlesi/pathogenicity , Animals , Cell Survival , Erythrocytes/drug effects , Erythrocytes/ultrastructure , Filtration , Humans , Kinetics , Merozoites/isolation & purification , Merozoites/ultrastructure , Parasites/drug effects , Parasites/growth & development , Parasites/ultrastructure , Plasmodium falciparum/drug effects , Plasmodium falciparum/growth & development , Plasmodium knowlesi/drug effects , Plasmodium knowlesi/growth & development , Plasmodium knowlesi/ultrastructure , Polymers/pharmacology , Sulfones/pharmacology
9.
Malar J ; 17(1): 59, 2018 Feb 02.
Article in English | MEDLINE | ID: mdl-29391022

ABSTRACT

BACKGROUND: The automated haematology analyzer XN-30 (Sysmex, Kobe, Japan) easily and rapidly detects malarial parasites in clinical blood samples using flow cytometry. The XN-30 analyzer is able to distinguish each developmental stage by measuring DNA content and cell size. Thus, it was expected to be capable of quantifying the developmental stages of cultured falciparum parasite. To achieve this requirement, a modified algorithm was tested for its validity and reliability using in vitro cultured falciparum parasite. RESULTS: The XN-30 analyzer automatically measured each developmental stage as well as total parasitaemia. Comparison of the parasitaemia obtained using the XN-30 analyzer equipped with the modified algorithm with that obtained using microscopy examination of Giemsa-stained smears revealed the greater sensitivity and reproducibility of the former. The XN-30 analyzer also detected free merozoites and purified gametocytes. CONCLUSIONS: The XN-30 analyzer allows the precise recognition and enumeration of total and each developmental stages of cultured falciparum parasites, and permits the sensitive and reproducible calculation of parasitaemia. The results indicate the potential of the XN-30 analyzer for basic research on malarial biology, anti-malarial drug discovery, and evaluation of drug efficacy.


Subject(s)
Flow Cytometry/methods , Malaria, Falciparum/diagnosis , Parasitemia/diagnosis , Plasmodium falciparum/physiology , Automation, Laboratory/methods , Culture Techniques , Erythrocytes/parasitology , Humans , Malaria, Falciparum/parasitology , Merozoites/isolation & purification , Merozoites/physiology , Parasitemia/parasitology , Parasitology/methods , Plasmodium falciparum/isolation & purification
10.
Malar J ; 16(1): 242, 2017 06 08.
Article in English | MEDLINE | ID: mdl-28595603

ABSTRACT

BACKGROUND: Since 2005, Ethiopia has aggressively scaled up malaria prevention and case management. As a result, the number of malaria cases and deaths has significantly declined. In order to track progress towards the elimination of malaria in Amhara Region, coverage of malaria control tools and current malaria transmission need to be documented. METHODS: A cross-sectional household survey oversampling children under 5 years of age was conducted during the dry season in 2013. A bivalent rapid diagnostic test (RDT) detecting both Plasmodium falciparum and Plasmodium vivax and serology assays using merozoite antigens from both these species were used to assess the prevalence of malaria infections and exposure to malaria parasites in 16 woredas (districts) in Amhara Region. RESULTS: 7878 participants were included, with a mean age of 16.8 years (range 0.5-102.8 years) and 42.0% being children under 5 years of age. The age-adjusted RDT-positivity for P. falciparum and P. vivax infection was 1.5 and 0.4%, respectively, of which 0.05% presented as co-infections. Overall age-adjusted seroprevalence was 30.0% for P. falciparum, 21.8% for P. vivax, and seroprevalence for any malaria species was 39.4%. The prevalence of RDT-positive infections varied by woreda, ranging from 0.0 to 8.3% and by altitude with rates of 3.2, 0.7, and 0.4% at under 2000, 2000-2500, and >2500 m, respectively. Serological analysis showed heterogeneity in transmission intensity by area and altitude and evidence for a change in the force of infection in the mid-2000s. CONCLUSIONS: Current and historic malaria transmission across Amhara Region show substantial variation by age and altitude with some settings showing very low or near-zero transmission. Plasmodium vivax infections appear to be lower but relatively more stable across geography and altitude, while P. falciparum is the dominant infection in the higher transmission, low-altitude areas. Age-dependent seroprevalence analyses indicates a drop in transmission occurred in the mid-2000s, coinciding with malaria control scale-up efforts. As malaria parasitaemia rates get very low with elimination efforts, serological evaluation may help track progress to elimination.


Subject(s)
Malaria/epidemiology , Plasmodium/isolation & purification , Adolescent , Adult , Aged , Aged, 80 and over , Antigens, Protozoan/blood , Child , Child, Preschool , Coinfection/epidemiology , Coinfection/parasitology , Cross-Sectional Studies , Ethiopia/epidemiology , Female , Humans , Infant , Malaria/parasitology , Male , Merozoites/isolation & purification , Middle Aged , Parasitemia/epidemiology , Parasitemia/parasitology , Prevalence , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...