Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.780
Filter
1.
Alcohol Alcohol ; 59(4)2024 May 14.
Article in English | MEDLINE | ID: mdl-38742547

ABSTRACT

AIMS: Continued alcohol consumption despite negative consequences is a core symptom of alcohol use disorder. This is modeled in mice by pairing negative stimuli with alcohol, such as adulterating alcohol solution with quinine. Mice consuming alcohol under these conditions are considered to be engaging in aversion-resistant intake. Previously, we have observed sex differences in this behavior, with females more readily expressing aversion-resistant consumption. We also identified three brain regions that exhibited sex differences in neuronal activation during quinine-alcohol drinking: ventromedial prefrontal cortex (vmPFC), posterior insular cortex (PIC), and ventral tegmental area (VTA). Specifically, male mice showed increased activation in vmPFC and PIC, while females exhibited increased activation in VTA. In this study, we aimed to identify what specific type of neurons are activated in these regions during quinine-alcohol drinking. METHOD: We assessed quinine-adulterated alcohol intake using the two-bottle choice procedure. We also utilized RNAscope in situ hybridization in the three brain regions that previously exhibited a sex difference to examine colocalization of Fos, glutamate, GABA, and dopamine. RESULT: Females showed increased aversion-resistant alcohol consumption compared to males. We also found that males had higher colocalization of glutamate and Fos in vmPFC and PIC, while females had greater dopamine and Fos colocalization in the VTA. CONCLUSIONS: Collectively, these experiments suggest that glutamatergic output from the vmPFC and PIC may have a role in suppressing, and dopaminergic activity in the VTA may promote, aversion-resistant alcohol consumption. Future experiments will examine neuronal circuits that contribute to sex differences in aversion resistant consumption.


Subject(s)
Alcohol Drinking , Neurons , Quinine , Sex Characteristics , Animals , Quinine/pharmacology , Female , Male , Mice , Neurons/drug effects , Ventral Tegmental Area/drug effects , Mice, Inbred C57BL , Prefrontal Cortex/drug effects , Mesencephalon/metabolism , Mesencephalon/drug effects , Insular Cortex/drug effects , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Ethanol/pharmacology , Glutamic Acid/metabolism
2.
Sci Rep ; 14(1): 10983, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38744869

ABSTRACT

Parkinson's disease (PD) is a complex neurodegenerative disorder without a cure. The onset of PD symptoms corresponds to 50% loss of midbrain dopaminergic (mDA) neurons, limiting early-stage understanding of PD. To shed light on early PD development, we study time series scRNA-seq datasets of mDA neurons obtained from patient-derived induced pluripotent stem cell differentiation. We develop a new data integration method based on Non-negative Matrix Tri-Factorization that integrates these datasets with molecular interaction networks, producing condition-specific "gene embeddings". By mining these embeddings, we predict 193 PD-related genes that are largely supported (49.7%) in the literature and are specific to the investigated PINK1 mutation. Enrichment analysis in Kyoto Encyclopedia of Genes and Genomes pathways highlights 10 PD-related molecular mechanisms perturbed during early PD development. Finally, investigating the top 20 prioritized genes reveals 12 previously unrecognized genes associated with PD that represent interesting drug targets.


Subject(s)
Dopaminergic Neurons , Parkinson Disease , Parkinson Disease/genetics , Parkinson Disease/pathology , Humans , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , RNA-Seq/methods , Induced Pluripotent Stem Cells/metabolism , Mesencephalon/metabolism , Mesencephalon/pathology , Gene Regulatory Networks , Mutation , Cell Differentiation/genetics , Multiomics , Single-Cell Gene Expression Analysis
3.
Sci Adv ; 10(22): eadn4203, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38809978

ABSTRACT

Learning causal relationships relies on understanding how often one event precedes another. To investigate how dopamine neuron activity and neurotransmitter release change when a retrospective relationship is degraded for a specific pair of events, we used outcome-selective Pavlovian contingency degradation in rats. Conditioned responding was attenuated for the cue-reward contingency that was degraded, as was dopamine neuron activity in the midbrain and dopamine release in the ventral striatum in response to the cue and subsequent reward. Contingency degradation also abolished the trial-by-trial history dependence of the dopamine responses at the time of trial outcome. This profile of changes in cue- and reward-evoked responding is not easily explained by a standard reinforcement learning model. An alternative model based on learning causal relationships was better able to capture dopamine responses during contingency degradation, as well as conditioned behavior following optogenetic manipulations of dopamine during noncontingent rewards. Our results suggest that mesostriatal dopamine encodes the contingencies between meaningful events during learning.


Subject(s)
Cues , Dopamine , Dopaminergic Neurons , Reward , Animals , Dopamine/metabolism , Rats , Male , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/physiology , Conditioning, Classical , Ventral Striatum/metabolism , Ventral Striatum/physiology , Learning/physiology , Mesencephalon/metabolism , Mesencephalon/physiology , Reinforcement, Psychology
4.
Cell Rep ; 43(5): 114187, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38722743

ABSTRACT

The locomotor role of dopaminergic neurons is traditionally attributed to their ascending projections to the basal ganglia, which project to the mesencephalic locomotor region (MLR). In addition, descending dopaminergic projections to the MLR are present from basal vertebrates to mammals. However, the neurons targeted in the MLR and their behavioral role are unknown in mammals. Here, we identify genetically defined MLR cells that express D1 or D2 receptors and control different motor behaviors in mice. In the cuneiform nucleus, D1-expressing neurons promote locomotion, while D2-expressing neurons stop locomotion. In the pedunculopontine nucleus, D1-expressing neurons promote locomotion, while D2-expressing neurons evoke ipsilateral turns. Using RNAscope, we show that MLR dopamine-sensitive neurons comprise a combination of glutamatergic, GABAergic, and cholinergic neurons, suggesting that different neurotransmitter-based cell types work together to control distinct behavioral modules. Altogether, our study uncovers behaviorally relevant cell types in the mammalian MLR based on the expression of dopaminergic receptors.


Subject(s)
Dopamine , Dopaminergic Neurons , Locomotion , Mesencephalon , Receptors, Dopamine D1 , Animals , Mesencephalon/metabolism , Mice , Dopaminergic Neurons/metabolism , Dopamine/metabolism , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/metabolism , Mice, Inbred C57BL , Cholinergic Neurons/metabolism , Cholinergic Neurons/physiology , GABAergic Neurons/metabolism , Male
5.
Sci Total Environ ; 934: 173119, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38750743

ABSTRACT

Paraquat (PQ) is a broad-spectrum herbicide used worldwide and is a hazardous chemical to human health. Cumulative evidence strengthens the association between PQ exposure and the development of Parkinson's disease (PD). However, the underlying mechanism and effective interventions against PQ-induced neurotoxicity remain unclear. In this study, C57BL/6 J mice were treated with PQ (i.p., 10 mg/kg, twice a week) and melatonin (i.g., 20 mg/kg, twice a week) for 8 weeks. Results showed that PQ-induced motor deficits and midbrain dopaminergic neuronal damage in C57BL/6 J mice were protected by melatonin pretreatment. In isolated primary midbrain neurons and SK-N-SH cells, reduction of cell viability, elevation of total ROS levels, axonal mitochondrial transport defects and mitochondrial dysfunction caused by PQ were attenuated by melatonin. After screening of expression of main motors driving axonal mitochondrial transport, data showed that PQ-decreased KIF5A expression in mice midbrain and in SK-N-SH cell was antagonized by melatonin. Using the in vitro KIF5A-overexpression model, it was found that KIF5A overexpression inhibited PQ-caused neurotoxicity and mitochondrial dysfunction in SK-N-SH cells. In addition, application of MTNR1B (MT2) receptor antagonist, 4-P-PDOT, significantly counteracted the protection of melatonin against PQ-induced neurotoxicity. Further, Kif5a-knockdown diminished melatonin-induced alleviation of motor deficits and neuronal damage against PQ in C57BL/6 J mice. The present study establishes a causal link between environmental neurotoxicants exposure and PD etiology and provides effective interventive targets in the pathogenesis of PD.


Subject(s)
Kinesins , Melatonin , Mesencephalon , Mice, Inbred C57BL , Mitochondria , Paraquat , Paraquat/toxicity , Animals , Melatonin/pharmacology , Mice , Mesencephalon/drug effects , Mesencephalon/metabolism , Kinesins/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Herbicides/toxicity , Neurons/drug effects , Dopaminergic Neurons/drug effects , Axonal Transport/drug effects
6.
J Parkinsons Dis ; 14(4): 681-692, 2024.
Article in English | MEDLINE | ID: mdl-38578903

ABSTRACT

Background: Alpha-synuclein (aSyn) is a key player in neurodegenerative diseases such as Parkinson's disease (PD), dementia with Lewy bodies, or multiple system atrophy. aSyn is expressed throughout the brain, and can also be detected in various peripheral tissues. In fact, initial symptoms of PD are non-motoric and include autonomic dysfunction, suggesting that the periphery might play an important role in early development of the disease. aSyn is expressed at relatively low levels in non-central tissues, which brings challenges for its detection and quantification in different tissues. Objective: Our goal was to assess the sensitivity of aSyn detection in central and peripheral mouse tissues through capillary electrophoresis (CE) immunoblot, considering the traditional SDS-PAGE immunoblot as the current standard. Methods: Tissues from central and non-central origin from wild type mice were extracted, and included midbrain, inner ear, and esophagus/stomach. aSyn detection was assessed through immunoblotting using Simple Western size-based CE and SDS-PAGE. Results: CE immunoblots show a consistent detection of aSyn in central and peripheral tissues. Through SDS-PAGE, immunoblots revealed a reliable signal corresponding to aSyn, particularly following membrane fixation. Conclusion: Our results suggest a reliable detection of aSyn in central and peripheral tissues using the CE Simple Western immunoblot system. These observations can serve as preliminary datasets when aiming to formally compare CE with SDS-PAGE, as well as for further characterization of aSyn using this technique.


Subject(s)
Electrophoresis, Capillary , alpha-Synuclein , Animals , alpha-Synuclein/metabolism , alpha-Synuclein/analysis , Mice , Electrophoresis, Capillary/methods , Mice, Inbred C57BL , Immunoblotting/methods , Esophagus/metabolism , Mesencephalon/metabolism
7.
Cell Death Dis ; 15(4): 246, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575601

ABSTRACT

Parkinson's disease (PD) is a debilitating neurodegenerative disease characterized by the loss of midbrain dopaminergic neurons (DaNs) and the abnormal accumulation of α-Synuclein (α-Syn) protein. Currently, no treatment can slow nor halt the progression of PD. Multiplications and mutations of the α-Syn gene (SNCA) cause PD-associated syndromes and animal models that overexpress α-Syn replicate several features of PD. Decreasing total α-Syn levels, therefore, is an attractive approach to slow down neurodegeneration in patients with synucleinopathy. We previously performed a genetic screen for modifiers of α-Syn levels and identified CDK14, a kinase of largely unknown function as a regulator of α-Syn. To test the potential therapeutic effects of CDK14 reduction in PD, we ablated Cdk14 in the α-Syn preformed fibrils (PFF)-induced PD mouse model. We found that loss of Cdk14 mitigates the grip strength deficit of PFF-treated mice and ameliorates PFF-induced cortical α-Syn pathology, indicated by reduced numbers of pS129 α-Syn-containing cells. In primary neurons, we found that Cdk14 depletion protects against the propagation of toxic α-Syn species. We further validated these findings on pS129 α-Syn levels in PD patient neurons. Finally, we leveraged the recent discovery of a covalent inhibitor of CDK14 to determine whether this target is pharmacologically tractable in vitro and in vivo. We found that CDK14 inhibition decreases total and pathologically aggregated α-Syn in human neurons, in PFF-challenged rat neurons and in the brains of α-Syn-humanized mice. In summary, we suggest that CDK14 represents a novel therapeutic target for PD-associated synucleinopathy.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Synucleinopathies , Animals , Humans , Mice , Rats , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , Dopaminergic Neurons/metabolism , Mesencephalon/metabolism , Neurodegenerative Diseases/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Parkinson Disease/metabolism , Synucleinopathies/metabolism , Synucleinopathies/pathology
8.
Life Sci ; 345: 122610, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38580194

ABSTRACT

Brain Organiods (BOs) are a promising technique for researching disease progression in the human brain. These organoids, which are produced from human induced pluripotent stem cells (HiPSCs), can construct themselves into structured frameworks. In the context of Parkinson's disease (PD), recent advancements have been made in the development of Midbrain organoids (MBOs) models that consider key pathophysiological mechanisms such as alpha-synuclein (α-Syn), Lewy bodies, dopamine loss, and microglia activation. However, there are limitations to the current use of BOs in disease modelling and drug discovery, such as the lack of vascularization, long-term differentiation, and absence of glial cells. To address these limitations, researchers have proposed the use of spinning bioreactors to improve oxygen and nutrient perfusion. Modelling PD utilising modern experimental in vitro models is a valuable tool for studying disease mechanisms and elucidating previously unknown features of PD. In this paper, we exclusively review the unique methods available for cultivating MBOs using a pumping system that mimics the circulatory system. This mechanism may aid in delivering the required amount of oxygen and nutrients to all areas of the organoids, preventing cell death, and allowing for long-term culture and using co-culturing techniques for developing glial cell in BOs. Furthermore, we emphasise some of the significant discoveries about the BOs and the potential challenges of using BOs will be discussed.


Subject(s)
Induced Pluripotent Stem Cells , Parkinson Disease , Humans , Parkinson Disease/metabolism , alpha-Synuclein/metabolism , Mesencephalon/metabolism , Mesencephalon/pathology , Organoids/metabolism , Oxygen/metabolism , Dopaminergic Neurons/metabolism
9.
Zhen Ci Yan Jiu ; 49(4): 384-390, 2024 Apr 25.
Article in English, Chinese | MEDLINE | ID: mdl-38649206

ABSTRACT

OBJECTIVES: To observe the effects on tyrosine hydroxylase (TH), α-synaptic nucleoprotein (α-syn), sirtuin 3 (Sirt3), NOD-like receptor 3 (NLRP3) and gasdermin-D (GSDMD) in the substantia nigra of midbrain after electroacupuncture (EA) at "Fengfu"(GV16), "Taichong" (LR3) and "Zusanli" (ST36) in rats of Parkinson's disease (PD), so as to explore the mechanism of EA in treatment of PD. METHODS: SD rats were randomly divided into control, model and EA groups, with 10 rats in each group. The PD model was established by injecting rotenone into the neck and back, lasting 28 days. In the EA group, EA was applied to GV16, LR3 and ST36, 30 min each time, once daily, consecutively for 28 days. The open-field test was adopted to detect the total distance of autonomic movement of rats, and the pole climbing test was used to detect the body coordination ability of rats. In the substania nigra of midbrain, the positive expression of TH was determined using immunohistochemistry, the mRNA expression levels of α - syn, Sirt3, NLRP3 and GSDMD were detected by quantitative real-time fluorescence PCR, and the protein expression levels of NLRP3, apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) and cysteinyl aspartate specific proteinase (Caspase)-1 were detected by Western blot. RESULTS: Compared with the control group, the total distance of autonomous movement was decreased (P<0.01) in the model group, and the score of pole climbing experiment was increased (P<0.01);in the midbrain substantia nigra the positive expression of TH was decreased (P<0.01);the mRNA expression level of Sirt3 was decreased (P<0.01), and those of α-syn, NLRP3 and GSDMD were increased (P<0.01);while the protein expression levels of NLRP3, ASC and Caspase-1 were increased (P<0.01). When compared with the model group, the total distance of autonomous movement in open field experiment was increased (P<0.01) in the EA group and the score of pole climbing experiment was lower (P<0.05);in the midbrain substantia nigra the positive expression of TH was increased (P<0.01);the mRNA expression level of Sirt3 in the midbrain substantia nigra was increased (P<0.01), and those of α-syn, NLRP3 and GSDMD were reduced (P<0.01);while the protein expression levels of NLRP3, ASC and Caspase-1 decreased (P<0.01, P<0.05). CONCLUSIONS: EA at "GV16" "LR3" and "ST36" can repair the neuronal injury, clear the abnormal accumulation of α-syn in the substania nigra of midbrain, and ameliorate mitochondrial damage in PD rats, which may be obtained by regulating Sirt3/NLRP3/GSDMD signaling pathway, so as to delay the occurrence and development of Parkinson's disease.


Subject(s)
Electroacupuncture , NLR Family, Pyrin Domain-Containing 3 Protein , Parkinson Disease , Rats, Sprague-Dawley , Signal Transduction , Sirtuin 3 , Sirtuins , Substantia Nigra , Animals , Rats , Acupuncture Points , Mesencephalon/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Parkinson Disease/metabolism , Parkinson Disease/therapy , Parkinson Disease/genetics , Sirtuin 3/metabolism , Sirtuin 3/genetics , Substantia Nigra/metabolism
10.
eNeuro ; 11(5)2024 May.
Article in English | MEDLINE | ID: mdl-38658137

ABSTRACT

The primary motor cortex (M1) integrates sensory and cognitive inputs to generate voluntary movement. Its functional impairments have been implicated in the pathophysiology of motor symptoms in Parkinson's disease (PD). Specifically, dopaminergic degeneration and basal ganglia dysfunction entrain M1 neurons into the abnormally synchronized bursting pattern of activity throughout the cortico-basal ganglia-thalamocortical network. However, how degeneration of the midbrain dopaminergic neurons affects the anatomy, microcircuit connectivity, and function of the M1 network remains poorly understood. The present study examined whether and how the loss of dopamine (DA) affects the morphology, cellular excitability, and synaptic physiology of Layer 5 parvalbumin-expressing (PV+) cells in the M1 of mice of both sexes. Here, we reported that loss of midbrain dopaminergic neurons does not alter the number, morphology, and physiology of Layer 5 PV+ cells in M1. Moreover, we demonstrated that the number of perisomatic PV+ puncta of M1 pyramidal neurons as well as their functional innervation of cortical pyramidal neurons were not altered following the loss of DA. Together, the present study documents an intact GABAergic inhibitory network formed by PV+ cells following the loss of midbrain dopaminergic neurons.


Subject(s)
Dopaminergic Neurons , Interneurons , Mesencephalon , Motor Cortex , Parvalbumins , Animals , Female , Male , Mice , Dopaminergic Neurons/metabolism , GABAergic Neurons/metabolism , Interneurons/metabolism , Mesencephalon/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Motor Cortex/metabolism , Neural Inhibition/physiology , Parvalbumins/metabolism
11.
Nat Aging ; 4(3): 364-378, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38491288

ABSTRACT

Age is the primary risk factor for Parkinson's disease (PD), but how aging changes the expression and regulatory landscape of the brain remains unclear. Here we present a single-nuclei multiomic study profiling shared gene expression and chromatin accessibility of young, aged and PD postmortem midbrain samples. Combined multiomic analysis along a pseudopathogenesis trajectory reveals that all glial cell types are affected by age, but microglia and oligodendrocytes are further altered in PD. We present evidence for a disease-associated oligodendrocyte subtype and identify genes lost over the aging and disease process, including CARNS1, that may predispose healthy cells to develop a disease-associated phenotype. Surprisingly, we found that chromatin accessibility changed little over aging or PD within the same cell types. Peak-gene association patterns, however, are substantially altered during aging and PD, identifying cell-type-specific chromosomal loci that contain PD-associated single-nucleotide polymorphisms. Our study suggests a previously undescribed role for oligodendrocytes in aging and PD.


Subject(s)
Parkinson Disease , Humans , Aged , Parkinson Disease/genetics , Multiomics , Mesencephalon/metabolism , Microglia/metabolism , Solitary Nucleus/metabolism , Chromatin
12.
Neuroscience ; 546: 1-19, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38522661

ABSTRACT

Midbrain dopaminergic (mDA) neurons are significantly impaired in patients inflicted with Parkinson's disease (PD), subsequently affecting a variety of motor functions. There are four pathways through which dopamine elicits its function, namely, nigrostriatal, mesolimbic, mesocortical and tuberoinfundibular dopamine pathways. SHH and Wnt signalling pathways in association with favourable expression of a variety of genes, promotes the development and differentiation of mDA neurons in the brain. However, there is a knowledge gap regarding the complex signalling pathways involved in development of mDA neurons. hiPSC models have been acclaimed to be effective in generating complex disease phenotypes. These models mimic the microenvironment found in vivo thus ensuring maximum reliability. Further, a variety of therapeutic compounds can be screened using hiPSCs since they can be used to generate neurons that could carry an array of mutations associated with both familial and sporadic PD. Thus, culturing hiPSCs to study gene expression and dysregulation of cellular processes associated with PD can be useful in developing targeted therapies that will be a step towards halting disease progression.


Subject(s)
Dopaminergic Neurons , Induced Pluripotent Stem Cells , Mesencephalon , Parkinson Disease , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Humans , Parkinson Disease/metabolism , Parkinson Disease/pathology , Mesencephalon/metabolism , Mesencephalon/pathology , Induced Pluripotent Stem Cells/metabolism , Animals , Cell Differentiation/physiology
13.
Adv Sci (Weinh) ; 11(21): e2400847, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38549185

ABSTRACT

Understanding the impact of long-term opioid exposure on the embryonic brain is critical due to the surging number of pregnant mothers with opioid dependency. However, this has been limited by human brain inaccessibility and cross-species differences in animal models. Here, a human midbrain model is established that uses hiPSC-derived midbrain organoids to assess cell-type-specific responses to acute and chronic fentanyl treatment and fentanyl withdrawal. Single-cell mRNA sequencing of 25,510 cells from organoids in different treatment groups reveals that chronic fentanyl treatment arrests neuronal subtype specification during early midbrain development and alters synaptic activity and neuron projection. In contrast, acute fentanyl treatment increases dopamine release but does not significantly alter gene expression related to cell lineage development. These results provide the first examination of the effects of opioid exposure on human midbrain development at the single-cell level.


Subject(s)
Analgesics, Opioid , Mesencephalon , Organoids , Humans , Mesencephalon/drug effects , Mesencephalon/metabolism , Organoids/drug effects , Organoids/metabolism , Analgesics, Opioid/pharmacology , Fentanyl/pharmacology , Neurogenesis/drug effects
14.
Brain Behav Immun ; 117: 356-375, 2024 03.
Article in English | MEDLINE | ID: mdl-38320681

ABSTRACT

Both exogenous gaseous and liquid forms of formaldehyde (FA) can induce depressive-like behaviors in both animals and humans. Stress and neuronal excitation can elicit brain FA generation. However, whether endogenous FA participates in depression occurrence remains largely unknown. In this study, we report that midbrain FA derived from lipopolysaccharide (LPS) is a direct trigger of depression. Using an acute depressive model in mice, we found that one-week intraperitoneal injection (i.p.) of LPS activated semicarbazide-sensitive amine oxidase (SSAO) leading to FA production from the midbrain vascular endothelium. In both in vitro and in vivo experiments, FA stimulated the production of cytokines such as IL-1ß, IL-6, and TNF-α. Strikingly, one-week microinfusion of FA as well as LPS into the midbrain dorsal raphe nucleus (DRN, a 5-HT-nergic nucleus) induced depressive-like behaviors and concurrent neuroinflammation. Conversely, NaHSO3 (a FA scavenger), improved depressive symptoms associated with a reduction in the levels of midbrain FA and cytokines. Moreover, the chronic depressive model of mice injected with four-week i.p. LPS exhibited a marked elevation in the levels of midbrain LPS accompanied by a substantial increase in the levels of FA and cytokines. Notably, four-week i.p. injection of FA as well as LPS elicited cytokine storm in the midbrain and disrupted the blood-brain barrier (BBB) by activating microglia and reducing the expression of claudin 5 (CLDN5, a protein with tight junctions in the BBB). However, the administration of 30 nm nano-packed coenzyme-Q10 (Q10, an endogenous FA scavenger), phototherapy (PT) utilizing 630-nm red light to degrade FA, and the combination of PT and Q10, reduced FA accumulation and neuroinflammation in the midbrain. Moreover, the combined therapy exhibited superior therapeutic efficacy in attenuating depressive symptoms compared to individual treatments. Thus, LPS-derived FA directly initiates depression onset, thereby suggesting that scavenging FA represents a promising strategy for depression treatment.


Subject(s)
Depression , Lipopolysaccharides , Humans , Mice , Animals , Lipopolysaccharides/pharmacology , Depression/drug therapy , Neuroinflammatory Diseases , Cytokines/metabolism , Mesencephalon/metabolism , Formaldehyde
15.
Mol Cell Neurosci ; 128: 103919, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38307302

ABSTRACT

Parkinson's disease (PD) is a complex, progressive neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta in the midbrain. Despite extensive research efforts, the molecular and cellular changes that precede neurodegeneration in PD are poorly understood. To address this, here we describe the use of patient specific human midbrain organoids harboring the SNCA triplication to investigate mechanisms underlying dopaminergic degeneration. Our midbrain organoid model recapitulates key pathological hallmarks of PD, including the aggregation of α-synuclein and the progressive loss of dopaminergic neurons. We found that these pathological hallmarks are associated with an increase in senescence associated cellular phenotypes in astrocytes including nuclear lamina defects, the presence of senescence associated heterochromatin foci, and the upregulation of cell cycle arrest genes. These results suggest a role of pathological α-synuclein in inducing astrosenescence which may, in turn, increase the vulnerability of dopaminergic neurons to degeneration.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Humans , Parkinson Disease/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Astrocytes/metabolism , Neurodegenerative Diseases/metabolism , Mesencephalon/metabolism , Mesencephalon/pathology , Dopaminergic Neurons/metabolism , Organoids/metabolism , Organoids/pathology , Substantia Nigra/metabolism
16.
Neurotoxicol Teratol ; 101: 107320, 2024.
Article in English | MEDLINE | ID: mdl-38199312

ABSTRACT

INTRODUCTION: Methylmercury (MeHg) is an environmental contaminant that is of particular concern in Northern Arctic Canadian populations. Specifically, organic mercury compounds such as MeHg are potent toxicants that affect multiple bodily systems including the nervous system. Developmental exposure to MeHg is a major concern, as the developing fetus and neonate are thought to be especially vulnerable to the toxic effects of MeHg. The objective of this study was to examine developmental exposure to low doses of MeHg and effects upon the adult central nervous system (CNS). The doses of MeHg chosen were scaled to be proportional to the concentrations of MeHg that have been reported in human maternal blood samples in Northern Arctic Canadian populations. METHOD: Offspring were exposed to MeHg maternally where pregnant Sprague Dawley rats were fed cookies that contained MeHg or vehicle (vehicle corn oil; MeHg 0.02 mg/kg/body weight or 2.0 mg/kg/body weight) daily, throughout gestation (21 days) and lactation (21 days). Offspring were not exposed to MeHg after the lactation period and were euthanized on postnatal day 450. Brains were extracted, fixed, frozen, and sectioned for immunohistochemical analysis. A battery of markers of brain structure and function were selected including neuronal GABAergic enzymatic marker glutamic acid decarboxylase-67 (GAD67), apoptotic/necrotic marker cleaved caspase-3 (CC3), catecholamine marker tyrosine hydroxylase (TH), immune inflammatory marker microglia (Cd11b), endothelial cell marker rat endothelial cell antigen-1 (RECA-1), doublecortin (DCX), Bergmann glia (glial fibrillary acidic protein (GFAP)), and general nucleic acid and cellular stains Hoechst, and cresyl violet, respectively. Oxidative stress marker lipofuscin (autofluorescence) was also assessed. Both male and female offspring were included in analysis. Two-way analysis of variance (ANOVA) was utilized where sex and treatment were considered as between-subject factors (p* <0.05). ImageJ was used to assess immunohistochemical results. RESULTS: In comparison with controls, adult rat offspring exposed to both doses of MeHg were observed to have (1) increased GAD67 in the cerebellum; (2) decreased lipofuscin in the locus coeruleus; and (3) decreased GAD67 in the anterior CA1 region. Furthermore, in the substantia nigra and periaqueductal gray, adult male offspring consistently had a larger endothelial cell and capillary perimeter in comparison to females. The maternal high dose of MeHg influenced RECA-1 immunoreactivity in both the substantia nigra and periaqueductal gray of adult rat offspring, where the latter neuronal region also showed statistically significant decreases in RECA-1 immunoreactivity at the maternal low dose exposure level. Lastly, males exposed to high doses of MeHg during development exhibited a statistically significant increase in the perimeter of endothelial cells and capillaries (RECA-1) in the cerebellum, in comparison to male controls. CONCLUSION: Findings suggest that in utero and early postnatal exposure to MeHg at environmentally relevant doses leads to long-lasting and selective changes in the CNS. Exposure to MeHg at low doses may affect GABAergic homeostasis and vascular integrity of the CNS. Such changes may contribute to neurological disturbances in learning, cognition, and memory that have been reported in epidemiological studies.


Subject(s)
Methylmercury Compounds , Prenatal Exposure Delayed Effects , Pregnancy , Rats , Animals , Male , Female , Humans , Methylmercury Compounds/toxicity , Rats, Sprague-Dawley , Glutamate Decarboxylase/metabolism , Glutamate Decarboxylase/pharmacology , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/metabolism , Capillaries/metabolism , Endothelial Cells/metabolism , Lipofuscin/metabolism , Lipofuscin/pharmacology , Canada , Cerebellum , Mesencephalon/metabolism , Body Weight
17.
Eur J Neurosci ; 59(7): 1480-1499, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38169095

ABSTRACT

Dopaminergic (DA) neurons play pivotal roles in diverse brain functions, spanning movement, reward processing and sensory perception. DA neurons are most abundant in the midbrain (Substantia Nigra pars compacta [SNC] and Ventral Tegmental Area [VTA]) and the olfactory bulb (OB) in the forebrain. Interestingly, a subtype of OB DA neurons is capable of regenerating throughout life, while a second class is exclusively born during embryonic development. Compelling evidence in SNC and VTA also indicates substantial heterogeneity in terms of morphology, connectivity and function. To further investigate this heterogeneity and directly compare form and function of midbrain and forebrain bulbar DA neurons, we performed immunohistochemistry and whole-cell patch-clamp recordings in ex vivo brain slices from juvenile DAT-tdTomato mice. After confirming the penetrance and specificity of the dopamine transporter (DAT) Cre line, we compared soma shape, passive membrane properties, voltage sags and action potential (AP) firing across midbrain and forebrain bulbar DA subtypes. We found that each DA subgroup within midbrain and OB was highly heterogeneous, and that DA neurons across the two brain areas are also substantially different. These findings complement previous work in rats as well as gene expression and in vivo datasets, further questioning the existence of a single "dopaminergic" neuronal phenotype.


Subject(s)
Dopaminergic Neurons , Red Fluorescent Protein , Substantia Nigra , Mice , Rats , Animals , Dopaminergic Neurons/metabolism , Substantia Nigra/metabolism , Olfactory Bulb , Mesencephalon/metabolism , Ventral Tegmental Area/metabolism
18.
Neurosci Bull ; 40(4): 500-516, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37755674

ABSTRACT

Parkinson's disease (PD) is a complicated neurodegenerative disease, characterized by the accumulation of α-synuclein (α-syn) in Lewy bodies and neurites, and massive loss of midbrain dopamine neurons. Increasing evidence suggests that gut microbiota and microbial metabolites are involved in the development of PD. Among these, short-chain fatty acids (SCFAs), the most abundant microbial metabolites, have been proven to play a key role in brain-gut communication. In this review, we analyze the role of SCFAs in the pathology of PD from multiple dimensions and summarize the alterations of SCFAs in PD patients as well as their correlation with motor and non-motor symptoms. Future research should focus on further elucidating the role of SCFAs in neuroinflammation, as well as developing novel strategies employing SCFAs and their derivatives to treat PD.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Humans , Parkinson Disease/metabolism , Neurodegenerative Diseases/pathology , Brain/pathology , Mesencephalon/metabolism , Fatty Acids, Volatile/metabolism
19.
Stem Cell Res Ther ; 14(1): 354, 2023 12 10.
Article in English | MEDLINE | ID: mdl-38072935

ABSTRACT

BACKGROUND: Ventral midbrain (VM) dopaminergic progenitor cells derived from human pluripotent stem cells have the potential to replace endogenously lost dopamine neurons and are currently in preclinical and clinical development for treatment of Parkinson's Disease (PD). However, one main challenge in the quality control of the cells is that rostral and caudal VM progenitors are extremely similar transcriptionally though only the caudal VM cells give rise to dopaminergic (DA) neurons with functionality relevant for cell replacement in PD. Therefore, it is critical to develop assays which can rapidly and reliably discriminate rostral from caudal VM cells during clinical manufacturing. METHODS: We performed shotgun proteomics on cell culture supernatants from rostral and caudal VM progenitor cells to search for novel secreted biomarkers specific to DA progenitors from the caudal VM. Key hits were validated by qRT-PCR and ELISA. RESULTS: We identified and validated novel secreted markers enriched in caudal VM progenitor cultures (CPE, LGI1 and PDGFC), and found these markers to correlate strongly with the expression of EN1, which is a predictive marker for successful graft outcome in DA cell transplantation products. Other markers (CNTN2 and CORIN) were found to conversely be enriched in the non-dopaminergic rostral VM cultures. Key novel ELISA markers were further validated on supernatant samples from GMP-manufactured caudal VM batches. CONCLUSION: As a non-invasive in-process quality control test for predicting correctly patterned batches of caudal VM DA cells during clinical manufacturing, we propose a dual ELISA panel measuring LGI1/CORIN ratios around day 16 of differentiation.


Subject(s)
Parkinson Disease , Pluripotent Stem Cells , Humans , Dopaminergic Neurons/metabolism , Mesencephalon/metabolism , Pluripotent Stem Cells/metabolism , Parkinson Disease/therapy , Cell Differentiation/physiology , Biomarkers/metabolism
20.
Nature ; 624(7991): 333-342, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38092915

ABSTRACT

The function of the mammalian brain relies upon the specification and spatial positioning of diversely specialized cell types. Yet, the molecular identities of the cell types and their positions within individual anatomical structures remain incompletely known. To construct a comprehensive atlas of cell types in each brain structure, we paired high-throughput single-nucleus RNA sequencing with Slide-seq1,2-a recently developed spatial transcriptomics method with near-cellular resolution-across the entire mouse brain. Integration of these datasets revealed the cell type composition of each neuroanatomical structure. Cell type diversity was found to be remarkably high in the midbrain, hindbrain and hypothalamus, with most clusters requiring a combination of at least three discrete gene expression markers to uniquely define them. Using these data, we developed a framework for genetically accessing each cell type, comprehensively characterized neuropeptide and neurotransmitter signalling, elucidated region-specific specializations in activity-regulated gene expression and ascertained the heritability enrichment of neurological and psychiatric phenotypes. These data, available as an online resource ( www.BrainCellData.org ), should find diverse applications across neuroscience, including the construction of new genetic tools and the prioritization of specific cell types and circuits in the study of brain diseases.


Subject(s)
Brain , Gene Expression Profiling , Animals , Mice , Brain/anatomy & histology , Brain/cytology , Brain/metabolism , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing , Hypothalamus/cytology , Hypothalamus/metabolism , Mesencephalon/cytology , Mesencephalon/metabolism , Neuropeptides/metabolism , Neurotransmitter Agents/metabolism , Phenotype , Rhombencephalon/cytology , Rhombencephalon/metabolism , Single-Cell Gene Expression Analysis , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...