Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.018
Filter
1.
Cell ; 187(12): 2898-2900, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38848672

ABSTRACT

Epithelial folding is a fundamental biological process that requires epithelial interactions with the underlying mesenchyme. In this issue of Cell, Huycke et al. investigate intestinal villus formation. They discover that water-droplet-like behavior of mesenchymal cells drives their coalescence into uniformly patterned aggregates, which generate forces on the epithelium to initiate folding.


Subject(s)
Epithelium , Mesoderm , Animals , Humans , Epithelial Cells/metabolism , Epithelial Cells/cytology , Intestinal Mucosa/metabolism , Intestinal Mucosa/cytology , Mesoderm/metabolism , Mesoderm/cytology , Epithelium/metabolism
2.
Dev Cell ; 59(12): 1487-1488, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38889690

ABSTRACT

In this issue of Developmental Cell, Bolondi et al. systematically assesses neuro-mesodermal progenitor (NMP) dynamics by combining a mouse stem-cell-based embryo model with molecular recording of single cells, shedding light on the dynamics of neural tube and paraxial mesoderm formation during mammalian development.


Subject(s)
Mesoderm , Animals , Mice , Mesoderm/cytology , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Neural Tube/cytology , Neural Tube/embryology , Cell Differentiation/physiology , Stem Cells/cytology , Stem Cells/metabolism , Body Patterning
3.
Nat Commun ; 15(1): 5210, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890321

ABSTRACT

Cell-fate decisions during mammalian gastrulation are poorly understood outside of rodent embryos. The embryonic disc of pig embryos mirrors humans, making them a useful proxy for studying gastrulation. Here we present a single-cell transcriptomic atlas of pig gastrulation, revealing cell-fate emergence dynamics, as well as conserved and divergent gene programs governing early porcine, primate, and murine development. We highlight heterochronicity in extraembryonic cell-types, despite the broad conservation of cell-type-specific transcriptional programs. We apply these findings in combination with functional investigations, to outline conserved spatial, molecular, and temporal events during definitive endoderm specification. We find early FOXA2 + /TBXT- embryonic disc cells directly form definitive endoderm, contrasting later-emerging FOXA2/TBXT+ node/notochord progenitors. Unlike mesoderm, none of these progenitors undergo epithelial-to-mesenchymal transition. Endoderm/Node fate hinges on balanced WNT and hypoblast-derived NODAL, which is extinguished upon endodermal differentiation. These findings emphasise the interplay between temporal and topological signalling in fate determination during gastrulation.


Subject(s)
Embryo, Mammalian , Endoderm , Gastrulation , Gene Expression Regulation, Developmental , Single-Cell Analysis , Animals , Endoderm/cytology , Endoderm/metabolism , Endoderm/embryology , Swine , Mice , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Cell Differentiation , Mesoderm/cytology , Mesoderm/embryology , Mesoderm/metabolism , Transcriptome , Hepatocyte Nuclear Factor 3-beta/metabolism , Hepatocyte Nuclear Factor 3-beta/genetics , Cell Lineage , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/genetics , Epithelial-Mesenchymal Transition/genetics
4.
Cell ; 187(12): 3072-3089.e20, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38781967

ABSTRACT

Tissue folds are structural motifs critical to organ function. In the intestine, bending of a flat epithelium into a periodic pattern of folds gives rise to villi, finger-like protrusions that enable nutrient absorption. However, the molecular and mechanical processes driving villus morphogenesis remain unclear. Here, we identify an active mechanical mechanism that simultaneously patterns and folds the intestinal epithelium to initiate villus formation. At the cellular level, we find that PDGFRA+ subepithelial mesenchymal cells generate myosin II-dependent forces sufficient to produce patterned curvature in neighboring tissue interfaces. This symmetry-breaking process requires altered cell and extracellular matrix interactions that are enabled by matrix metalloproteinase-mediated tissue fluidization. Computational models, together with in vitro and in vivo experiments, revealed that these cellular features manifest at the tissue level as differences in interfacial tensions that promote mesenchymal aggregation and interface bending through a process analogous to the active dewetting of a thin liquid film.


Subject(s)
Extracellular Matrix , Intestinal Mucosa , Animals , Mice , Intestinal Mucosa/metabolism , Intestinal Mucosa/cytology , Extracellular Matrix/metabolism , Myosin Type II/metabolism , Mesoderm/metabolism , Mesoderm/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Morphogenesis , Matrix Metalloproteinases/metabolism
5.
Curr Top Dev Biol ; 159: 232-271, 2024.
Article in English | MEDLINE | ID: mdl-38729677

ABSTRACT

The anterior-to-posterior (head-to-tail) body axis is extraordinarily diverse among vertebrates but conserved within species. Body axis development requires a population of axial progenitors that resides at the posterior of the embryo to sustain elongation and is then eliminated once axis extension is complete. These progenitors occupy distinct domains in the posterior (tail-end) of the embryo and contribute to various lineages along the body axis. The subset of axial progenitors with neuromesodermal competency will generate both the neural tube (the precursor of the spinal cord), and the trunk and tail somites (producing the musculoskeleton) during embryo development. These axial progenitors are called Neuromesodermal Competent cells (NMCs) and Neuromesodermal Progenitors (NMPs). NMCs/NMPs have recently attracted interest beyond the field of developmental biology due to their clinical potential. In the mouse, the maintenance of neuromesodermal competency relies on a fine balance between a trio of known signals: Wnt/ß-catenin, FGF signalling activity and suppression of retinoic acid signalling. These signals regulate the relative expression levels of the mesodermal transcription factor Brachyury and the neural transcription factor Sox2, permitting the maintenance of progenitor identity when co-expressed, and either mesoderm or neural lineage commitment when the balance is tilted towards either Brachyury or Sox2, respectively. Despite important advances in understanding key genes and cellular behaviours involved in these fate decisions, how the balance between mesodermal and neural fates is achieved remains largely unknown. In this chapter, we provide an overview of signalling and gene regulatory networks in NMCs/NMPs. We discuss mutant phenotypes associated with axial defects, hinting at the potential significant role of lesser studied proteins in the maintenance and differentiation of the progenitors that fuel axial elongation.


Subject(s)
Body Patterning , Mesoderm , Animals , Body Patterning/genetics , Mesoderm/metabolism , Mesoderm/cytology , Mesoderm/embryology , Gene Expression Regulation, Developmental , Humans , Signal Transduction , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/genetics , Cell Differentiation , Head/embryology
6.
EMBO J ; 43(12): 2308-2336, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38760574

ABSTRACT

How cells coordinate morphogenetic cues and fate specification during development remains a fundamental question in organogenesis. The mammary gland arises from multipotent stem cells (MaSCs), which are progressively replaced by unipotent progenitors by birth. However, the lack of specific markers for early fate specification has prevented the delineation of the features and spatial localization of MaSC-derived lineage-committed progenitors. Here, using single-cell RNA sequencing from E13.5 to birth, we produced an atlas of matched mouse mammary epithelium and mesenchyme and reconstructed the differentiation trajectories of MaSCs toward basal and luminal fate. We show that murine MaSCs exhibit lineage commitment just prior to the first sprouting events of mammary branching morphogenesis at E15.5. We identify early molecular markers for committed and multipotent MaSCs and define their spatial distribution within the developing tissue. Furthermore, we show that the mammary embryonic mesenchyme is composed of two spatially restricted cell populations, and that dermal mesenchyme-produced FGF10 is essential for embryonic mammary branching morphogenesis. Altogether, our data elucidate the spatiotemporal signals underlying lineage specification of multipotent MaSCs, and uncover the signals from mesenchymal cells that guide mammary branching morphogenesis.


Subject(s)
Cell Lineage , Epithelial Cells , Mammary Glands, Animal , Mesenchymal Stem Cells , Animals , Mice , Mammary Glands, Animal/cytology , Mammary Glands, Animal/embryology , Mammary Glands, Animal/metabolism , Female , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Cell Differentiation , Multipotent Stem Cells/cytology , Multipotent Stem Cells/metabolism , Fibroblast Growth Factor 10/metabolism , Fibroblast Growth Factor 10/genetics , Morphogenesis , Single-Cell Analysis , Mesoderm/cytology , Mesoderm/metabolism , Mesoderm/embryology
7.
Development ; 151(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38814743

ABSTRACT

Apical expansion of calvarial osteoblast progenitors from the cranial mesenchyme (CM) above the eye is integral to calvarial growth and enclosure of the brain. The cellular behaviors and signals underlying the morphogenetic process of calvarial expansion are unknown. Time-lapse light-sheet imaging of mouse embryos revealed calvarial progenitors intercalate in 3D in the CM above the eye, and exhibit protrusive and crawling activity more apically. CM cells express non-canonical Wnt/planar cell polarity (PCP) core components and calvarial osteoblasts are bidirectionally polarized. We found non-canonical ligand Wnt5a-/- mutants have less dynamic cell rearrangements and protrusive activity. Loss of CM-restricted Wntless (CM-Wls), a gene required for secretion of all Wnt ligands, led to diminished apical expansion of Osx+ calvarial osteoblasts in the frontal bone primordia in a non-cell autonomous manner without perturbing proliferation or survival. Calvarial osteoblast polarization, progressive cell elongation and enrichment for actin along the baso-apical axis were dependent on CM-Wnts. Thus, CM-Wnts regulate cellular behaviors during calvarial morphogenesis for efficient apical expansion of calvarial osteoblasts. These findings also offer potential insights into the etiologies of calvarial dysplasias.


Subject(s)
Mesoderm , Morphogenesis , Osteoblasts , Skull , Wnt Proteins , Animals , Osteoblasts/metabolism , Osteoblasts/cytology , Skull/embryology , Mice , Mesoderm/cytology , Mesoderm/metabolism , Wnt Proteins/metabolism , Wnt Proteins/genetics , Cell Polarity , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics , Cell Movement , Cell Proliferation
8.
J Dent Res ; 103(7): 755-764, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38715201

ABSTRACT

Although mesenchyme is essential for inducing the epithelium of ectodermal organs, its precise role in organ-specific epithelial fate determination remains poorly understood. To elucidate the roles of tissue interactions in cellular differentiation, we performed single-cell RNA sequencing and imaging analyses on recombined tissues, where mesenchyme and epithelium were switched ex vivo between two types of embryonic mouse salivary glands: the parotid gland (a serous gland) and the submandibular gland (a predominantly mucous gland). We found partial induction of molecules that define gland-specific acinar and myoepithelial cells in recombined salivary epithelium. The parotid epithelium recombined with submandibular mesenchyme began to express mucous acinar genes not intrinsic to the parotid gland. While myoepithelial cells do not normally line parotid acini, newly induced myoepithelial cells densely populated recombined parotid acini. However, mucous acinar and myoepithelial markers continued to be expressed in submandibular epithelial cells recombined with parotid mesenchyme. Consequently, some epithelial cells appeared to be plastic, such that their fate could still be modified in response to mesenchymal signaling, whereas other epithelial cells appeared to be already committed to a specific fate. We also discovered evidence for bidirectional induction: transcriptional changes were observed not only in the epithelium but also in the mesenchyme after heterotypic tissue recombination. For example, parotid epithelium induced the expression of muscle-related genes in submandibular fibroblasts that began to mimic parotid fibroblast gene expression. These studies provide the first comprehensive unbiased molecular characterization of tissue recombination approaches exploring the regulation of cell fate.


Subject(s)
Cell Differentiation , Mesoderm , Submandibular Gland , Animals , Mice , Submandibular Gland/embryology , Submandibular Gland/cytology , Mesoderm/cytology , Mesoderm/embryology , Parotid Gland/cytology , Parotid Gland/embryology , Parotid Gland/metabolism , Epithelial Cells , Salivary Glands/embryology , Salivary Glands/cytology , Cell Lineage , Acinar Cells , Epithelium/embryology
9.
Nat Commun ; 15(1): 4550, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811547

ABSTRACT

The emergence of new structures can often be linked to the evolution of novel cell types that follows the rewiring of developmental gene regulatory subnetworks. Vertebrates are characterized by a complex body plan compared to the other chordate clades and the question remains of whether and how the emergence of vertebrate morphological innovations can be related to the appearance of new embryonic cell populations. We previously proposed, by studying mesoderm development in the cephalochordate amphioxus, a scenario for the evolution of the vertebrate head mesoderm. To further test this scenario at the cell population level, we used scRNA-seq to construct a cell atlas of the amphioxus neurula, stage at which the main mesodermal compartments are specified. Our data allowed us to validate the presence of a prechordal-plate like territory in amphioxus. Additionally, the transcriptomic profile of somite cell populations supports the homology between specific territories of amphioxus somites and vertebrate cranial/pharyngeal and lateral plate mesoderm. Finally, our work provides evidence that the appearance of the specific mesodermal structures of the vertebrate head was associated to both segregation of pre-existing cell populations, and co-option of new genes for the control of myogenesis.


Subject(s)
Gene Expression Regulation, Developmental , Head , Lancelets , Mesoderm , Vertebrates , Animals , Mesoderm/cytology , Mesoderm/embryology , Lancelets/embryology , Lancelets/genetics , Head/embryology , Vertebrates/embryology , Vertebrates/genetics , Somites/embryology , Somites/cytology , Somites/metabolism , Biological Evolution , Transcriptome
10.
Curr Top Dev Biol ; 159: 372-405, 2024.
Article in English | MEDLINE | ID: mdl-38729682

ABSTRACT

The Segmentation Clock is a tissue-level patterning system that enables the segmentation of the vertebral column precursors into transient multicellular blocks called somites. This patterning system comprises a set of elements that are essential for correct segmentation. Under the so-called "Clock and Wavefront" model, the system consists of two elements, a genetic oscillator that manifests itself as traveling waves of gene expression, and a regressing wavefront that transforms the temporally periodic signal encoded in the oscillations into a permanent spatially periodic pattern of somite boundaries. Over the last twenty years, every new discovery about the Segmentation Clock has been tightly linked to the nomenclature of the "Clock and Wavefront" model. This constrained allocation of discoveries into these two elements has generated long-standing debates in the field as what defines molecularly the wavefront and how and where the interaction between the two elements establishes the future somite boundaries. In this review, we propose an expansion of the "Clock and Wavefront" model into three elements, "Clock", "Wavefront" and signaling gradients. We first provide a detailed description of the components and regulatory mechanisms of each element, and we then examine how the spatiotemporal integration of the three elements leads to the establishment of the presumptive somite boundaries. To be as exhaustive as possible, we focus on the Segmentation Clock in zebrafish. Furthermore, we show how this three-element expansion of the model provides a better understanding of the somite formation process and we emphasize where our current understanding of this patterning system remains obscure.


Subject(s)
Body Patterning , Gene Expression Regulation, Developmental , Mesoderm , Somites , Animals , Body Patterning/genetics , Somites/embryology , Somites/metabolism , Mesoderm/embryology , Mesoderm/metabolism , Mesoderm/cytology , Zebrafish/embryology , Zebrafish/genetics , Signal Transduction , Biological Clocks/genetics
12.
PLoS Biol ; 22(4): e3002590, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38683849

ABSTRACT

Brain pericytes are one of the critical cell types that regulate endothelial barrier function and activity, thus ensuring adequate blood flow to the brain. The genetic pathways guiding undifferentiated cells into mature pericytes are not well understood. We show here that pericyte precursor populations from both neural crest and head mesoderm of zebrafish express the transcription factor nkx3.1 develop into brain pericytes. We identify the gene signature of these precursors and show that an nkx3.1-, foxf2a-, and cxcl12b-expressing pericyte precursor population is present around the basilar artery prior to artery formation and pericyte recruitment. The precursors later spread throughout the brain and differentiate to express canonical pericyte markers. Cxcl12b-Cxcr4 signaling is required for pericyte attachment and differentiation. Further, both nkx3.1 and cxcl12b are necessary and sufficient in regulating pericyte number as loss inhibits and gain increases pericyte number. Through genetic experiments, we have defined a precursor population for brain pericytes and identified genes critical for their differentiation.


Subject(s)
Brain , Pericytes , Transcription Factors , Zebrafish Proteins , Animals , Brain/metabolism , Brain/embryology , Cell Differentiation , Chemokine CXCL12/metabolism , Chemokine CXCL12/genetics , Gene Expression Regulation, Developmental , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Mesoderm/metabolism , Mesoderm/cytology , Neural Crest/metabolism , Neural Crest/cytology , Pericytes/metabolism , Pericytes/cytology , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Signal Transduction , Transcription Factors/metabolism , Transcription Factors/genetics , Zebrafish/metabolism , Zebrafish/embryology , Zebrafish/genetics , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics
13.
Development ; 151(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38646822

ABSTRACT

The precise assembly of tissues and organs relies on spatiotemporal regulation of gene expression to coordinate the collective behavior of cells. In Drosophila embryos, the midgut musculature is formed through collective migration of caudal visceral mesoderm (CVM) cells, but how gene expression changes as cells migrate is not well understood. Here, we have focused on ten genes expressed in the CVM and the cis-regulatory sequences controlling their expression. Although some genes are continuously expressed, others are expressed only early or late during migration. Late expression relates to cell cycle progression, as driving string/Cdc25 causes earlier division of CVM cells and accelerates the transition to late gene expression. In particular, we found that the cell cycle effector transcription factor E2F1 is a required input for the late gene CG5080. Furthermore, whereas late genes are broadly expressed in all CVM cells, early gene transcripts are polarized to the anterior or posterior ends of the migrating collective. We show this polarization requires transcription factors Snail, Zfh1 and Dorsocross. Collectively, these results identify two sequential gene expression programs bridged by cell division that support long-distance directional migration of CVM cells.


Subject(s)
Cell Division , Cell Movement , Drosophila Proteins , Gene Expression Regulation, Developmental , Animals , Cell Movement/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Cell Division/genetics , Mesoderm/metabolism , Mesoderm/cytology , Transcription Factors/metabolism , Transcription Factors/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila melanogaster/embryology , E2F1 Transcription Factor/metabolism , E2F1 Transcription Factor/genetics , Embryo, Nonmammalian/metabolism , Embryo, Nonmammalian/cytology , Drosophila/genetics , Drosophila/metabolism , Drosophila/embryology , Snail Family Transcription Factors/metabolism , Snail Family Transcription Factors/genetics
14.
Dev Cell ; 59(12): 1489-1505.e14, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38579718

ABSTRACT

Embryogenesis requires substantial coordination to translate genetic programs to the collective behavior of differentiating cells, but understanding how cellular decisions control tissue morphology remains conceptually and technically challenging. Here, we combine continuous Cas9-based molecular recording with a mouse embryonic stem cell-based model of the embryonic trunk to build single-cell phylogenies that describe the behavior of transient, multipotent neuro-mesodermal progenitors (NMPs) as they commit into neural and somitic cell types. We find that NMPs show subtle transcriptional signatures related to their recent differentiation and contribute to downstream lineages through a surprisingly broad distribution of individual fate outcomes. Although decision-making can be heavily influenced by environmental cues to induce morphological phenotypes, axial progenitors intrinsically mature over developmental time to favor the neural lineage. Using these data, we present an experimental and analytical framework for exploring the non-homeostatic dynamics of transient progenitor populations as they shape complex tissues during critical developmental windows.


Subject(s)
Cell Differentiation , Cell Lineage , Mouse Embryonic Stem Cells , Animals , Mice , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Gene Expression Regulation, Developmental , Mesoderm/cytology , Embryonic Development , Somites/cytology , Somites/metabolism
15.
PLoS Biol ; 22(4): e3002611, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38683880

ABSTRACT

As tissues grow and change shape during animal development, they physically pull and push on each other, and these mechanical interactions can be important for morphogenesis. During Drosophila gastrulation, mesoderm invagination temporally overlaps with the convergence and extension of the ectodermal germband; the latter is caused primarily by Myosin II-driven polarised cell intercalation. Here, we investigate the impact of mesoderm invagination on ectoderm extension, examining possible mechanical and mechanotransductive effects on Myosin II recruitment and polarised cell intercalation. We find that the germband ectoderm is deformed by the mesoderm pulling in the orthogonal direction to germband extension (GBE), showing mechanical coupling between these tissues. However, we do not find a significant change in Myosin II planar polarisation in response to mesoderm invagination, nor in the rate of junction shrinkage leading to neighbour exchange events. We conclude that the main cellular mechanism of axis extension, polarised cell intercalation, is robust to the mesoderm invagination pull. We find, however, that mesoderm invagination slows down the rate of anterior-posterior cell elongation that contributes to axis extension, counteracting the tension from the endoderm invagination, which pulls along the direction of GBE.


Subject(s)
Drosophila melanogaster , Ectoderm , Gastrulation , Mesoderm , Myosin Type II , Animals , Mesoderm/embryology , Mesoderm/cytology , Gastrulation/physiology , Ectoderm/cytology , Ectoderm/embryology , Ectoderm/metabolism , Myosin Type II/metabolism , Drosophila melanogaster/embryology , Cell Polarity , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Embryo, Nonmammalian , Morphogenesis , Body Patterning/physiology , Drosophila/embryology
16.
FASEB J ; 38(9): e23632, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38686936

ABSTRACT

The upper Müllerian duct (MD) is patterned and specified into two morphologically and functionally distinct organs, the oviduct and uterus. It is known that this regionalization process is instructed by inductive signals from the adjacent mesenchyme. However, the interaction landscape between epithelium and mesenchyme during upper MD development remains largely unknown. Here, we performed single-cell transcriptomic profiling of mouse neonatal oviducts and uteri at the initiation of MD epithelial differentiation (postnatal day 3). We identified major cell types including epithelium, mesenchyme, pericytes, mesothelium, endothelium, and immune cells in both organs with established markers. Moreover, we uncovered region-specific epithelial and mesenchymal subpopulations and then deduced region-specific ligand-receptor pairs mediating mesenchymal-epithelial interactions along the craniocaudal axis. Unexpectedly, we discovered a mesenchymal subpopulation marked by neurofilaments with specific localizations at the mesometrial pole of both the neonatal oviduct and uterus. Lastly, we analyzed and revealed organ-specific signature genes of pericytes and mesothelial cells. Taken together, our study enriches our knowledge of upper MD development, and provides a manageable list of potential genes, pathways, and region-specific cell subtypes for future functional studies.


Subject(s)
Mullerian Ducts , Oviducts , Single-Cell Analysis , Transcriptome , Uterus , Animals , Female , Mice , Uterus/metabolism , Uterus/cytology , Mullerian Ducts/metabolism , Oviducts/metabolism , Oviducts/cytology , Gene Expression Profiling , Animals, Newborn , Cell Differentiation , Mesoderm/metabolism , Mesoderm/cytology , Epithelial Cells/metabolism , Mice, Inbred C57BL , Gene Expression Regulation, Developmental
17.
In Vitro Cell Dev Biol Anim ; 60(5): 535-543, 2024 May.
Article in English | MEDLINE | ID: mdl-38656570

ABSTRACT

Gastrulation is the first major differentiation process in animal embryos. However, the dynamics of human gastrulation remain mostly unknown owing to the ethical limitations. We studied the dynamics of the mesoderm and endoderm cell differentiation from human pluripotent stem cells for insight into the cellular dynamics of human gastrulation. Human pluripotent stem cells have properties similar to those of the epiblast, which gives rise to the three germ layers. The mesoderm and endoderm were induced with more than 75% purity from human induced pluripotent stem cells. Single-cell dynamics of pluripotent stem cell-derived mesoderm and endoderm cells were traced using time-lapse imaging. Both mesoderm and endoderm cells migrate randomly, accompanied by short-term directional persistence. No substantial differences were detected between mesoderm and endoderm migration. Computer simulations created using the measured parameters revealed that random movement and external force, such as the spread out of cells from the primitive streak area, mimicked the homogeneous discoidal germ layer formation. These results were consistent with the development of amniotes, which suggests the effectiveness of human pluripotent stem cells as a good model for studying human embryogenesis.


Subject(s)
Cell Differentiation , Cell Movement , Endoderm , Mesoderm , Pluripotent Stem Cells , Humans , Endoderm/cytology , Mesoderm/cytology , Pluripotent Stem Cells/cytology , Computer Simulation
18.
Int J Oral Sci ; 16(1): 33, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654018

ABSTRACT

Precise orchestration of cell fate determination underlies the success of scaffold-based skeletal regeneration. Despite extensive studies on mineralized parenchymal tissue rebuilding, regenerating and maintaining undifferentiated mesenchyme within calvarial bone remain very challenging with limited advances yet. Current knowledge has evidenced the indispensability of rebuilding suture mesenchymal stem cell niches to avoid severe brain or even systematic damage. But to date, the absence of promising therapeutic biomaterials/scaffolds remains. The reason lies in the shortage of fundamental knowledge and methodological evidence to understand the cellular fate regulations of scaffolds. To address these issues, in this study, we systematically investigated the cellular fate determinations and transcriptomic mechanisms by distinct types of commonly used calvarial scaffolds. Our data elucidated the natural processes without scaffold transplantation and demonstrated how different scaffolds altered in vivo cellular responses. A feasible scaffold, polylactic acid electrospinning membrane (PLA), was next identified to precisely control mesenchymal ingrowth and self-renewal to rebuild non-osteogenic suture-like tissue at the defect center, meanwhile supporting proper osteointegration with defect bony edges. Especially, transcriptome analysis and cellular mechanisms underlying the well-orchestrated cell fate determination of PLA were deciphered. This study for the first time cellularly decoded the fate regulations of scaffolds in suture-bony composite defect healing, offering clinicians potential choices for regenerating such complicated injuries.


Subject(s)
Bone Regeneration , Tissue Scaffolds , Transcriptome , Animals , Bone Regeneration/physiology , Polyesters , Skull/surgery , Mesenchymal Stem Cells , Mesoderm/cytology , Cell Differentiation , Tissue Engineering/methods , Cranial Sutures , Biocompatible Materials
19.
Stem Cell Reports ; 19(5): 618-628, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38579708

ABSTRACT

SOX2 is a transcription factor involved in the regulatory network maintaining the pluripotency of embryonic stem cells in culture as well as in early embryos. In addition, SOX2 plays a pivotal role in neural stem cell formation and neurogenesis. How SOX2 can serve both processes has remained elusive. Here, we identified a set of SOX2-dependent neural-associated enhancers required for neural lineage priming. They form a distinct subgroup (1,898) among 8,531 OCT4/SOX2/NANOG-bound enhancers characterized by enhanced SOX2 binding and chromatin accessibility. Activation of these enhancers is triggered by neural induction of wild-type cells or by default in Smad4-ablated cells resistant to mesoderm induction and is antagonized by mesodermal transcription factors via Sox2 repression. Our data provide mechanistic insight into the transition from the pluripotency state to the early neural fate and into the regulation of early neural versus mesodermal specification in embryonic stem cells and embryos.


Subject(s)
Enhancer Elements, Genetic , Mesoderm , Neural Stem Cells , SOXB1 Transcription Factors , SOXB1 Transcription Factors/metabolism , SOXB1 Transcription Factors/genetics , Animals , Mice , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Mesoderm/cytology , Mesoderm/metabolism , Neurogenesis , Gene Expression Regulation, Developmental , Octamer Transcription Factor-3/metabolism , Octamer Transcription Factor-3/genetics , Cell Differentiation/genetics , Nanog Homeobox Protein/metabolism , Nanog Homeobox Protein/genetics , Cell Lineage/genetics , Smad4 Protein/metabolism , Smad4 Protein/genetics , Embryonic Stem Cells/metabolism , Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/cytology , Chromatin/metabolism , Protein Binding
20.
J Chin Med Assoc ; 87(5): 488-497, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38451105

ABSTRACT

BACKGROUND: Mesenchymal stem cells (MSCs) have promising potential in clinical application, whereas their limited amount and sources hinder their bioavailability. Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have become prominent options in regenerative medicine as both possess the ability to differentiate into MSCs. METHODS: Recently, our research team has successfully developed human leukocyte antigen (HLA)-homozygous iPSC cell lines with high immune compatibility, covering 13.5% of the Taiwanese population. As we deepen our understanding of the differences between these ESCs and HLA-homozygous iPSCs, our study focused on morphological observations and flow cytometry analysis of specific surface marker proteins during the differentiation of ESCs and iPSCs into MSCs. RESULTS: The results showed no significant differences between the two pluripotent stem cells, and both of them demonstrated the equivalent ability to further differentiate into adipose, cartilage, and bone cells. CONCLUSION: Our research revealed that these iPSCs with high immune compatibility exhibit the same differentiation potential as ESCs, enhancing the future applicability of highly immune-compatible iPSCs.


Subject(s)
Cell Differentiation , Embryonic Stem Cells , Induced Pluripotent Stem Cells , Induced Pluripotent Stem Cells/cytology , Humans , Embryonic Stem Cells/cytology , Mesenchymal Stem Cells , Mesoderm/cytology , Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...