Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 5362, 2018 03 29.
Article in English | MEDLINE | ID: mdl-29599515

ABSTRACT

Creolimax fragrantissima is a member of the ichthyosporean clade, the earliest branching holozoan lineage. The kinome of Creolimax is markedly reduced as compared to those of metazoans. In particular, Creolimax possesses a single non-receptor tyrosine kinase: CfrSrc, the homolog of c-Src kinase. CfrSrc is an active tyrosine kinase, and it is expressed throughout the lifecycle of Creolimax. In animal cells, the regulatory mechanism for Src involves tyrosine phosphorylation at a C-terminal site by Csk kinase. The lack of Csk in Creolimax suggests that a different mode of negative regulation must exist for CfrSrc. We demonstrate that CfrPTP-3, one of the 7 tyrosine-specific phosphatases (PTPs) in Creolimax, suppresses CfrSrc activity in vitro and in vivo. Transcript levels of CfrPTP-3 and two other PTPs are significantly higher than that of CfrSrc in the motile amoeboid and sessile multinucleate stages of the Creolimax life cycle. Thus, in the context of a highly reduced kinome, a pre-existing PTP may have been co-opted for the role of Src regulation. Creolimax represents a unique model system to study the adaptation of tyrosine kinase signaling and regulatory mechanisms.


Subject(s)
Mesomycetozoea/enzymology , Protein Tyrosine Phosphatases/metabolism , src-Family Kinases/metabolism , Animals , Binding Sites , CSK Tyrosine-Protein Kinase , Phosphorylation , Signal Transduction , Tyrosine/metabolism
2.
Mol Biol Evol ; 31(3): 517-28, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24307687

ABSTRACT

Phosphotyrosine (pTyr) signaling is involved in development and maintenance of metazoans' multicellular body through cell-to-cell communication. Tyrosine kinases (TKs), tyrosine phosphatases, and other proteins relaying the signal compose the cascade. Domain architectures of the pTyr signaling proteins are diverse in metazoans, reflecting their complex intercellular communication. Previous studies had shown that the metazoan-type TKs, as well as other pTyr signaling proteins, were already diversified in the common ancestor of metazoans, choanoflagellates, and filastereans (which are together included in the clade Holozoa) whereas they are absent in fungi and other nonholozoan lineages. However, the earliest-branching holozoans Ichthyosporea and Corallochytrea, as well as the two fungi-related amoebae Fonticula and Nuclearia, have not been studied. Here, we analyze the complete genome sequences of two ichthyosporeans and Fonticula, and RNAseq data of three additional ichthyosporeans, one corallochytrean, and Nuclearia. Both the ichthyosporean and corallochytrean genomes encode a large variety of receptor TKs (RTKs) and cytoplasmic TKs (CTKs), as well as other pTyr signaling components showing highly complex domain architectures. However, Nuclearia and Fonticula have no TK, and show much less diversity in other pTyr signaling components. The CTK repertoires of both Ichthyosporea and Corallochytrea are similar to those of Metazoa, Choanoflagellida, and Filasterea, but the RTK sets are totally different from each other. The complex pTyr signaling equipped with positive/negative feedback mechanism likely emerged already at an early stage of holozoan evolution, yet keeping a high evolutionary plasticity in extracellular signal reception until the co-option of the system for cell-to-cell communication in metazoans.


Subject(s)
Choanoflagellata/enzymology , Phosphotyrosine/metabolism , Signal Transduction , Animals , Evolution, Molecular , Mesomycetozoea/enzymology , Models, Molecular , Phylogeny , Protein Structure, Tertiary , Protein-Tyrosine Kinases/chemistry
3.
Lipids ; 48(3): 263-74, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23239113

ABSTRACT

Sphaeroforma arctica is a unique, recently discovered marine protist belonging to a group falling close to the yeast/animal border. S. arctica is found in cold environments, and accordingly has a fatty acid composition containing a high proportion of very long chain polyunsaturated fatty acids, including the ω3 polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexanoic acid (DHA). Two elongases and five desaturases, representing the complete set of enzymes necessary for the synthesis of DHA from oleic acid, were isolated from this species and characterized in yeast. One elongase showed high conversion rates on a wide range of 18 and 20 carbon substrates, and was capable of sequential elongation reactions. The second elongase had a strong preference for the 20-carbon fatty acids EPA and arachidonic acid, with over 80 % of EPA converted to docosapentaenoic acid (DPA) in the heterologous yeast host. The isolation of a Δ8-desaturase, along with the detection of eicosadienoic acid in S. arctica cultures indicated that this species uses the alternate Δ8-pathway for the synthesis of long-chain polyunsaturated fatty acids. S. arctica also carried a Δ4-desaturase that proved to be very active in the production of DHA from DPA. Finally, a long chain acyl-CoA synthetase from S. arctica improved DHA uptake in the heterologous yeast host and led to an improvement in desaturation and elongation efficiencies.


Subject(s)
Fatty Acids, Unsaturated/metabolism , Mesomycetozoea/enzymology , Mesomycetozoea/metabolism , Acetyltransferases/genetics , Acetyltransferases/metabolism , Animals , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Fatty Acids, Unsaturated/genetics , Mesomycetozoea/genetics , Phylogeny , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...