Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 237
Filter
1.
Bioelectrochemistry ; 156: 108611, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37995502

ABSTRACT

G-quadruplexes (G4) are stable alternative secondary structures of nucleic acids. With increasing understanding of their roles in biological processes and their application in bio- and nanotechnology, the exploration of novel methods for the analysis of these structures is becoming important. In this work, N-methyl mesoporphyrin IX (NMM) was used as a voltammetric probe for an easy electrochemical detection of G4s. Cyclic voltammetry on a hanging mercury drop electrode (HMDE) was used to detect NMM with a limit of detection (LOD) of 40 nM. Characteristic reduction signal of NMM was found to be substantially higher in the presence of G4 oligodeoxynucleotides (ODNs) than in the presence of single- or double-stranded ODNs and even ODNs susceptible to form G4s but in their unfolded, single-stranded forms. Gradual transition from unstructured single strand to G4, induced by increasing concentrations of the G4 stabilizing K+ ions, was detected by an electrochemical method for the first time. All obtained results were supported by circular dichroism spectroscopy. This work expands on the concept of electrochemical probes utilization in DNA secondary structure recognition and offers a proof of principle that can be potentially employed in the development of novel electroanalytical methods for nucleic acid structure studies.


Subject(s)
G-Quadruplexes , Mercury , DNA/chemistry , Mesoporphyrins/chemistry , Mercury/analysis
2.
Bioorg Med Chem ; 77: 117112, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36508994

ABSTRACT

DNA can fold into G-quadruplexes (GQs), non-canonical secondary structures formed by π-π stacking of G-tetrads. GQs are important in many biological processes, which makes them promising therapeutic targets. We identified a 42-nucleotide long, purine-only G-rich sequence from human genome, which contains eight G-stretches connected by A and AAAA loops. We divided this sequence into five unique segments, four guanine stretches each, named GA1-5. In order to investigate the role of adenines in GQ structure formation, we performed biophysical and X-ray crystallographic studies of GA1-5 and their complexes with a highly selective GQ ligand, N-methyl mesoporphyrin IX (NMM). Our data indicate that all variants form parallel GQs whose stability depends on the number of flexible AAAA loops. GA1-3 bind NMM with 1:1 stoichiometry. The Ka for GA1 and GA3 is modest, ∼0.3 µM -1, and that for GA2 is significantly higher, ∼1.2 µM -1. NMM stabilizes GA1-3 by 14.6, 13.1, and 7.0 °C, respectively, at 2 equivalents. We determined X-ray crystal structures of GA1-NMM (1.98 Å resolution) and GA3-NMM (2.01 Å). The structures confirm the parallel topology of GQs with all adenines forming loops and display NMM binding at the 3' G-tetrad. Both complexes dimerize through the 5' interface. We observe two novel structural features: 1) a 'symmetry tetrad' at the dimer interface, which is formed by two guanines from each GQ monomer and 2) a NMM dimer in GA1-NMM. Our structural work confirms great flexibility of adenines as structural elements in GQ formation and contributes greatly to our understanding of the structural diversity of GQs and their modes of interaction with small molecule ligands.


Subject(s)
G-Quadruplexes , Humans , Guanine , Mesoporphyrins/chemistry , DNA/chemistry , Nucleic Acid Conformation
3.
Methods Mol Biol ; 2439: 15-26, 2022.
Article in English | MEDLINE | ID: mdl-35226312

ABSTRACT

Mesoporphyrin IX (MPIX) contains a planar macrocycle center that can interact with various divalent metal ions through the exposed binding sites, leading to the metalation of MPIX. The DNA aptamers for porphyrin molecules usually display different catalytic functions (termed deoxyribozymes or DNAzymes), which can accelerate such chemical reactions. Inspired by this, an affinity chromatography selection approach was designed for identifying a porphyrin metalation DNAzyme. In our experiment, N-methyl mesoporphyrin IX (NMM), an analog of MPIX, is used as the target molecule, owing to its stable and high fluorescence enhancement after combining with specific oligonucleotides. Our results showed that the selected aptamer Nm1 is capable of binding to NMM with a low micromolar dissociation constant (0.75 ± 0.08 µM) and displays a catalytic activity for MPIX metalation with 3.3-fold rate enhancement. The protocol for isolation of such a porphyrin metalation DNAzyme is described in detail here.


Subject(s)
Aptamers, Nucleotide , DNA, Catalytic , Porphyrins , Aptamers, Nucleotide/genetics , DNA, Catalytic/metabolism , Mesoporphyrins/chemistry , Porphyrins/metabolism
4.
Nat Chem ; 13(12): 1186-1191, 2021 12.
Article in English | MEDLINE | ID: mdl-34650235

ABSTRACT

Synthetic biology enables microbial hosts to produce complex molecules from organisms that are rare or difficult to cultivate, but the structures of these molecules are limited to those formed by reactions of natural enzymes. The integration of artificial metalloenzymes (ArMs) that catalyse unnatural reactions into metabolic networks could broaden the cache of molecules produced biosynthetically. Here we report an engineered microbial cell expressing a heterologous biosynthetic pathway, containing both natural enzymes and ArMs, that produces an unnatural product with high diastereoselectivity. We engineered Escherichia coli with a heterologous terpene biosynthetic pathway and an ArM containing an iridium-porphyrin complex that was transported into the cell with a heterologous transport system. We improved the diastereoselectivity and product titre of the unnatural product by evolving the ArM and selecting the appropriate gene induction and cultivation conditions. This work shows that synthetic biology and synthetic chemistry can produce, by combining natural and artificial enzymes in whole cells, molecules that were previously inaccessible to nature.


Subject(s)
Bacterial Proteins/metabolism , Cytochrome P-450 Enzyme System/metabolism , Terpenes/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Iridium/chemistry , Mesoporphyrins/chemistry , Metabolic Engineering , Stereoisomerism , Sulfolobus solfataricus/enzymology , Terpenes/chemistry
5.
Chembiochem ; 22(22): 3190-3198, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34467611

ABSTRACT

Artificial supramolecular systems capable of self-assembly and that precisely function in biological media are in high demand. Herein, we demonstrate a highly specific host-guest-pair system that functions in living cells. A per-O-methyl-ß-cyclodextrin derivative (R8-B-CDMe ) bearing both an octaarginine peptide chain and a BODIPY dye was synthesized as a fluorescent intracellular delivery tool. R8-B-CDMe was efficiently taken up by HeLa cells through both endocytosis and direct transmembrane pathways. R8-B-CDMe formed a 2 : 1 inclusion complex with tetrakis(4-sulfonatophenyl)porphyrin (TPPS) as a guest molecule in water, from which fluorescence resonance energy transfer (FRET) from R8-B-CDMe to TPPS was observed. The FRET phenomenon was clearly detected in living cells using confocal microscopy techniques, which revealed that the formed supramolecular R8-B-CDMe /TPPS complex was maintained within the cells. The R8-B-CDMe cytotoxicity assay revealed that the addition of TPPS counteracts the strong cytotoxicity (IC50 =16 µM) of the CD cavity due to complexation within the cells. A series of experiments demonstrated the bio-orthogonality of the supramolecular per-O-methyl-ß-CD/tetraarylporphyrin host-guest pair in living cells.


Subject(s)
Boron Compounds/chemistry , Fluorescence Resonance Energy Transfer , Mesoporphyrins/chemistry , Peptides/chemistry , beta-Cyclodextrins/chemistry , HeLa Cells , Humans , Macromolecular Substances/chemistry , Molecular Structure , Spectrometry, Fluorescence
6.
Mol Ther ; 29(10): 2931-2948, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34023507

ABSTRACT

Checkpoint inhibitors, such as anti-PD-1/PD-L1 antibodies, have been shown to be extraordinarily effective, but their durable response rate remains low, especially in colorectal cancer (CRC). Recent studies have shown that photodynamic therapy (PDT) could effectively enhance PD-L1 blockade therapeutic effects, although the reason is still unclear. Here, we report the use of multifunctional nanoparticles (NPs) loaded with photosensitized mTHPC (mTHPC@VeC/T-RGD NPs)-mediated PDT treatment to potentiate the anti-tumor efficacy of PD-L1 blockade for CRC treatment and investigate the underlying mechanisms of PDT enhancing PD-L1 blockade therapeutic effect in this combination therapy. In this study, the mTHPC@VeC/T-RGD NPs under the 660-nm near infrared (NIR) laser could kill tumor cells by inducing apoptosis and/or necrosis and stimulating systemic immune response, which could be further promoted by the PD-L1 blockade to inhibit primary and distant tumor growth, as well as building long-term host immunological memory to prevent tumor recurrence. Furthermore, we detected that mTHPC@VeC/T-RGD NP-mediated PDT sensitizes tumors to PD-L1 blockade therapy mainly because PDT-mediated hypoxia could induce the hypoxia-inducible factor 1α (HIF-1α) signaling pathway that upregulates PD-L1 expression in CRC. Taken together, our work demonstrates that mTHPC@VeC/T-RGD NP-mediated PDT is a promising strategy that may potentiate the response rate of anti-PD-L1 checkpoint blockade immunotherapies in CRC.


Subject(s)
Colorectal Neoplasms/drug therapy , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Immune Checkpoint Inhibitors/administration & dosage , Photochemotherapy/methods , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Colorectal Neoplasms/genetics , Drug Synergism , Female , Gene Expression Regulation, Neoplastic/drug effects , HCT116 Cells , Humans , Immune Checkpoint Inhibitors/pharmacology , Mesoporphyrins/chemistry , Mesoporphyrins/pharmacology , Mice , Multifunctional Nanoparticles/administration & dosage , Multifunctional Nanoparticles/chemistry , Particle Size , Tumor Hypoxia/drug effects
7.
J Photochem Photobiol B ; 218: 112183, 2021 May.
Article in English | MEDLINE | ID: mdl-33831753

ABSTRACT

Photodynamic therapy is an attractive technique for various skin tumors and non-cancerous skin lesions. However, while the aim of photodynamic therapy is to target and damage only the malignant cells, it unavoidably affects some of the healthy cells surrounding the tumor as well. However, data on the effects of PDT to normal cells are scarce, and the characterization of the pathways activated after the photodamage of normal cells may help to improve clinical photodynamic therapy. In our study, primary human epidermal keratinocytes were used to evaluate photodynamic treatment effects of photosensitizers with different subcellular localization. We compared the response of keratinocytes to lysosomal photodamage induced by phthalocyanines, aluminum phthalocyanine disulfonate (AlPcS2a) or aluminum phthalocyanine tetrasulfonate (AlPcS4), and cellular membrane photodamage by m-tetra(3-hydroxyphenyl)-chlorin (mTHPC). Our data showed that mTHPC-PDT promoted autophagic flux, whereas lysosomal photodamage induced by aluminum phthalocyanines evoked differentiation and apoptosis. Photodamage by AlPcS2a, which is targeted to lysosomal membranes, induced keratinocyte differentiation and apoptosis more efficiently than AlPcS4, which is targeted to lysosomal lumen. Computational analysis of the interplay between these molecular pathways revealed that keratin 10 is the coordinating molecular hub of primary keratinocyte differentiation, apoptosis and autophagy.


Subject(s)
Indoles/chemistry , Lysosomes/metabolism , Organometallic Compounds/chemistry , Photosensitizing Agents/chemistry , Apoptosis/radiation effects , Autophagy/radiation effects , Cell Differentiation/radiation effects , Computer Simulation , Humans , Isoindoles , Keratinocytes/cytology , Kinetics , Mesoporphyrins/chemistry , Models, Biological , Photochemotherapy
8.
Food Chem ; 343: 128425, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33127221

ABSTRACT

Lead pollution are critical concerns for food safety and human health. Herein, a ratiometric metal-induced G-quadruplex polymorphism was introduced to construct aptamer probes, enabling label-free and ratiometric detection of lead in tea, thus is promising for on-site detection of lead pollution. The key feature of the aptamer probe is the synergistic utilization of the dual-wavelength fluorescent signal outputs from a G-quadruplex specific dye and a DNA intercalation dye under a single-wavelength excitation, leading to a more stable and reliable recognition of Pb2+ than that of analyses based on single fluorescent reporter. The aptamer probe allowed to a mix-and-read, rapid, cost-effective detection of Pb2+ with high specificity and accuracy. Pb2+ analysis in tap water and tea exhibited good performance with recovery rates of 92.3%-109.0%. The adoption of ratiometric metal-induced G-quadruplex polymorphism would be a compelling design strategy for constructing robust aptasensor, facilitating the translation of aptamer for food safety control.


Subject(s)
Food Analysis/methods , Food Contamination/analysis , G-Quadruplexes , Lead/analysis , Tea/chemistry , Aptamers, Nucleotide , DNA, Single-Stranded , Fluorescent Dyes/chemistry , Fresh Water/analysis , Indoles/chemistry , Limit of Detection , Mesoporphyrins/chemistry , Spectrometry, Fluorescence
9.
PLoS One ; 15(11): e0241513, 2020.
Article in English | MEDLINE | ID: mdl-33206666

ABSTRACT

The G-quadruplex (GQ) is a well-studied non-canonical DNA structure formed by G-rich sequences found at telomeres and gene promoters. Biological studies suggest that GQs may play roles in regulating gene expression, DNA replication, and DNA repair. Small molecule ligands were shown to alter GQ structure and stability and thereby serve as novel therapies, particularly against cancer. In this work, we investigate the interaction of a G-rich sequence, 5'-GGGTTGGGTTGGGTTGGG-3' (T1), with a water-soluble porphyrin, N-methyl mesoporphyrin IX (NMM) via biophysical and X-ray crystallographic studies. UV-vis and fluorescence titrations, as well as a Job plot, revealed a 1:1 binding stoichiometry with an impressively tight binding constant of 30-50 µM-1 and ΔG298 of -10.3 kcal/mol. Eight extended variants of T1 (named T2 -T9) were fully characterized and T7 was identified as a suitable candidate for crystallographic studies. We solved the crystal structures of the T1- and T7-NMM complexes at 2.39 and 2.34 Å resolution, respectively. Both complexes form a 5'-5' dimer of parallel GQs capped by NMM at the 3' G-quartet, supporting the 1:1 binding stoichiometry. Our work provides invaluable details about GQ-ligand binding interactions and informs the design of novel anticancer drugs that selectively recognize specific GQs and modulate their stability for therapeutic purposes.


Subject(s)
Biophysical Phenomena , G-Quadruplexes/radiation effects , Mesoporphyrins/chemistry , Area Under Curve , Base Sequence , Crystallography, X-Ray , Models, Molecular , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet , Thermodynamics
10.
Biochemistry ; 59(48): 4591-4600, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33231438

ABSTRACT

The selective targeting of protein-protein interactions remains a significant determinant for the proper modulation and regulation of cell apoptosis. Prototypic galectins such as human galectin-7 (GAL-7) are characterized by their ability to form homodimers that control the molecular fate of a cell by mediating subtle yet critical glycan-dependent interactions between pro- and anti-apoptotic molecular partners. Altering the structural architecture of GAL-7 can therefore result in resistance to apoptosis in various human cancer cells, further illustrating its importance in cell survival. In this study, we used a combination of biophysical and cellular assays to illustrate that binding of a water-soluble meso-tetraarylporphyrin molecule to GAL-7 induces protein oligomerization and modulation of GAL-7-induced apoptosis in human Jurkat T cells. Our results suggest that the integrity of the GAL-7 homodimer architecture is essential for its molecular function, in addition to providing an interesting porphyrin binding modulator for controlling apoptosis in mammalian cells.


Subject(s)
Galectins/chemistry , Galectins/metabolism , Mesoporphyrins/chemistry , Mesoporphyrins/metabolism , Apoptosis/drug effects , Binding Sites/drug effects , Galectins/pharmacology , Humans , In Vitro Techniques , Jurkat Cells , Molecular Docking Simulation , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Interaction Domains and Motifs/drug effects , Protein Multimerization/drug effects , Protein Structure, Quaternary/drug effects , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology , Scattering, Small Angle , Solubility , X-Ray Diffraction
11.
Comput Biol Chem ; 89: 107374, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32987286

ABSTRACT

In the fields of biocomputing and biomolecular, DNA molecules are applicable to be regarded as data of logical computing platform that uses elaborate logic gates to perform a variety of tasks. Graphene oxide (GO) is a type of novel nanomaterial, which brings new research focus to materials science and biosensors due to its special selectivity and excellent quenching ability. G-quadruplex as a unique DNA structure stimulates the intelligent application of DNA assembly on the strength of its exceptional binding activity. In this paper, we report a universal logic device assisted with GO and G-quadruplex under an enzyme-free condition. Integrated with the quenching ability of GO to the TAMRA (fluorophore, Carboxytetramethylrhodamine) and the enhancement of fluorescence intensity produced by the peculiar binding of G-quadruplex to the NMM (N-methylmesoporphyrin IX), a series of basic binary logic gates (AND. OR. INHIBIT. XOR) have been designed and verified through biological experiments. Given the modularity and programmability of this strategy, two advanced logic gates (half adder and half subtractor) were realized on the basis of the same work platform. The fluorescence signals generated from different input combinations possessed satisfactory results, which provided proof of feasibility. We believe that the proposed universal logical platform that operates at the nanoscale is expected to be utilized for future applications in molecular computing as well as disease diagnosis.


Subject(s)
Computers, Molecular , DNA/chemistry , G-Quadruplexes , Graphite/chemistry , Logic , Fluorescent Dyes/chemistry , Mesoporphyrins/chemistry , Rhodamines/chemistry
12.
Phys Chem Chem Phys ; 22(29): 16956-16964, 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32672774

ABSTRACT

Computational tools have been used to study the photophysical and photochemical features of photosensitizers in photodynamic therapy (PDT) - a minimally invasive, less aggressive alternative for cancer treatment. PDT is mainly based on the activation of molecular oxygen through the action of a photoexcited sensitizer (photosensitizer). Temoporfin, widely known as mTHPC, is a second-generation photosensitizer, which produces the cytotoxic singlet oxygen when irradiated with visible light and hence destroys tumor cells. However, the bioavailability of the mostly hydrophobic photosensitizer, and hence its incorporation into cells, is fundamental to achieve the desired effect on malignant tissues via PDT. In this study, we focus on the optical properties of the temoporfin chromophore in different environments -in vacuo, in solution, encapsulated in drug delivery agents, namely cyclodextrin, and interacting with a lipid bilayer.


Subject(s)
Environment , Mesoporphyrins/chemistry , Optical Phenomena , Lipid Bilayers/chemistry , Photochemotherapy , Photosensitizing Agents/chemistry
13.
Toxins (Basel) ; 12(6)2020 06 06.
Article in English | MEDLINE | ID: mdl-32517279

ABSTRACT

The monitoring and control of mycotoxins has caused widespread concern due to their adverse effects on human health. In this research, a simple, sensitive and non-label fluorescent aptasensor has been reported for mycotoxin ochratoxin A (OTA) detection based on high selectivity of aptamers and amplification of non-enzyme hybridization chain reaction (HCR). After the introduction of OTA, the aptamer portion of hairpin probe H1 will combine with OTA to form OTA-aptamer complexes. Subsequently, the remainder of the opened H1 will act as an initiator for the HCR between the two hairpin probes, causing H1 and H2 to be sequentially opened and assembled into continuous DNA duplexes embedded with numerous G-quadruplexes, leading to a significant enhancement in fluorescence signal after binding with N-methyl-mesoporphyrin IX (NMM). The proposed sensing strategy can detect OTA with concentration as low as 4.9 pM. Besides, satisfactory results have also been obtained in the tests of actual samples. More importantly, the thermodynamic properties of nucleic acid chains in the monitoring platform were analyzed and the reaction processes and conditions were simulated before carrying out biological experiments, which theoretically proved the feasibility and simplified subsequent experimental operations. Therefore, the proposed method possess a certain application value in terms of monitoring mycotoxins in food samples and improving the quality control of food security.


Subject(s)
Aptamers, Nucleotide/chemistry , Biosensing Techniques , Fluorescent Dyes/chemistry , G-Quadruplexes , Mesoporphyrins/chemistry , Ochratoxins/analysis , Aptamers, Nucleotide/genetics , Fluorometry
14.
Chemistry ; 26(39): 8631-8638, 2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32428287

ABSTRACT

Numerous studies have shown compelling evidence that incorporation of an inversion of polarity site (IPS) in G-rich sequences can affect the topological and structural characteristics of G-quadruplexes (G4s). Herein, the influence of IPS on the formation of a previously studied intramolecular parallel G4 of d(G3 TG3 TG3 TG3 ) (TTT) and its stacked higher-order structures is explored. Insertion of 3'-3' or 5'-5' IPS did not change the parallel folding pattern of TTT. However, both the species and position of the IPS in TTT have a significant impact on the G4 stability and end-stacking through the alteration of G4-G4 interfaces properties. The data demonstrate that one base flip in each terminal G-tetrad can stabilize parallel G4s and facilitate intermolecular packing of monomeric G4s. Such modifications can also enhance the fluorescence and enzymatic performances by promoting interactions between parallel G4s with N-methyl mesoporphyrin IX (NMM) and hemin, respectively.


Subject(s)
DNA, Catalytic/chemistry , Guanosine/chemistry , Hemin/chemistry , Mesoporphyrins/chemistry , G-Quadruplexes , Molecular Structure
15.
Int J Pharm ; 582: 119347, 2020 May 30.
Article in English | MEDLINE | ID: mdl-32315751

ABSTRACT

Nanoparticle albumin-bound (nab)-technology is an industrial applicable manufacturing method for the preparation of albumin-based drug carriers of poorly water-soluble drugs. In the present study the advantages of nanotechnology, albumin as an endogenous protein with the capability of high tumor enrichment and the selective light activation of the photosensitizer Temoporfin (mTHPC) were combined to a new delivery system for oncological use. The herewith provided well-established photodynamic therapy may enable a beneficial alternative for the treatment of solid tumors. In the present study a reproducible method for the preparation of stable mTHPC-albumin nanoparticles via nab-technology was established. The nanoparticles were physicochemically characterized with regard to particle size and size distribution and the impact of this preparation method on nanoparticle as well as mTHPC stability was investigated. Nanoparticles with improved colloidal stability over a broad pH range and in the presence of physiological NaCl concentrations were achieved in high yield. Due to high pressure homogenization a certain oxidative decay of mTHPC was observed. Cell culture experiments revealed an effective cellular uptake of mTHPC in a cholangiocarcinoma cell line (TFK-1). After light-activation high cytotoxicity was shown for photosensitizer loaded nanoparticles enabling the application of the proposed formulation in photodynamic therapy.


Subject(s)
Bile Duct Neoplasms/drug therapy , Cholangiocarcinoma/drug therapy , Drug Carriers , Mesoporphyrins/pharmacology , Nanoparticles , Photochemotherapy , Photosensitizing Agents/pharmacology , Serum Albumin, Bovine/chemistry , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/pathology , Cell Line, Tumor , Cell Survival/drug effects , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/pathology , Drug Compounding , Drug Liberation , Drug Stability , Humans , Mesoporphyrins/chemistry , Mesoporphyrins/metabolism , Photosensitizing Agents/chemistry , Photosensitizing Agents/metabolism , Solubility
16.
Eur J Pharm Biopharm ; 150: 50-65, 2020 May.
Article in English | MEDLINE | ID: mdl-32151728

ABSTRACT

5,10,15,20-Tetrakis(3-hydroxyphenyl)chlorin (mTHPC; temoporfin) is one of the most potent second-generation photosensitizers available today for the treatment of a variety of clinical disorders and has a unique capability of being activated at different wavelengths. However, due to its highly lipophilic nature, poor solubility in the aqueous media and poor bioavailability limits its application in anticancer therapies. To overcome these potential issues, we developed three different liposomal formulations with mTHPC encapsulated in hydrophobic milieu thus increasing the bioavailability of the drug. The prepared formulations were characterized in terms of hydrodynamic diameter, surface charge, encapsulation efficiency, and stability studies. The mean size of the liposomes was found to be in the nanoscale range (about 100 nm) with zeta potential ranging from -6.0 to -13.7 mV. mTHPC loaded liposomes were also evaluated for morphology using atomic force microscopy (AFM) and cryo-transmission electron microscopy (cryo-TEM). Data obtained from the hemocompatibility experiments showed that these formulations were compatible with blood showing less than 10% hemolysis and coagulation time lower than 40 s. The results obtained from the single-cell gel electrophoresis assay also demonstrated no incidence of genotoxicity. Photodynamic destruction of SK-OV-3 cells using mTHPC loaded liposomes showed a dose-response relationship upon irradiation with two different wavelength lights (blue λ = 457 nm & red λ = 652 nm). A 10-fold pronounced effect was produced when liposomal formulations were irradiated at 652 nm as compared to 457 nm. This was also evaluated by the quantitative assessment of reactive oxygen production (ROS) using fluorescence microscopy. The qualitative assessment of PDT pre- and post-irradiation was visualized using confocal laser scanning microscopy (CLSM) which demonstrated an intense localization of mTHPC liposomes in the perinuclear region. Chick chorioallantoic membrane assay (CAM) was used as an alternative in-ovo model to demonstrate the localized destruction of tumor microvasculature. Overall, the prepared nanoformulation is a biocompatible, efficient and well characterized delivery system for mTHPC for the safe and effective PDT.


Subject(s)
Carcinoma/drug therapy , Chorioallantoic Membrane/blood supply , Lipids/chemistry , Mesoporphyrins/pharmacology , Ovarian Neoplasms/drug therapy , Photochemotherapy , Photosensitizing Agents/pharmacology , Animals , Carcinoma/pathology , Cell Line, Tumor , Chick Embryo , Dose-Response Relationship, Drug , Drug Compounding , Female , Humans , Liposomes , Mesoporphyrins/chemistry , Microvascular Density/drug effects , Nanoparticles , Ovarian Neoplasms/pathology , Photosensitizing Agents/chemistry , Solubility
17.
Phys Chem Chem Phys ; 22(7): 4158-4164, 2020 Feb 19.
Article in English | MEDLINE | ID: mdl-32039427

ABSTRACT

Surface plasmon resonance (SPR) was used to investigate the interaction between N-methyl mesoporphyrin IX (NMM) and different G-quadruplex (G4) topologies. The study was associated with circular dichroism analysis (CD) to assess the topology of the G4s when they interacted with NMM. We demonstrate the high selectivity of NMM for the parallel G4 structure with a dissociation constant at least ten times lower than those of other G4 topologies. We also confirm the ability of NMM to shift the G4 conformation from both the hybrid and antiparallel topologies toward the parallel structure.


Subject(s)
G-Quadruplexes , Mesoporphyrins/chemistry , Surface Plasmon Resonance
18.
Talanta ; 209: 120510, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31892034

ABSTRACT

Exosomes play important roles in intercellular communications, tumor migration and invasion. However, the specific detection of cancer exosomes remains as a big challenge due to its low concentration in biofluids. Therefore, the sensitive and selective detection of cancer cells-derived exosomes has attracted growing attention owing to their potential in diagnostic and prognostic applications. Activatable strategies have received great attention for the detection of low abundant analytes due to their high sensitivity. Herein, based on molecular recognition between DNA aptamer and exosome surface biomarker (protein tyrosine kinase-7), a novel activatable and label-free strategy was designed for highly sensitive and specific sensing of exosomes. In this work, the target exosomes trigger strand replacement reaction to form G-quadruplex, which result in an obvious fluorescence enhancement of N-methylmesoporphyrin IX due to the bonding between G-quadruplex and N-methylmesoporphyrin IX. Under the optimum experimental conditions, the linear range for exosomes was measured to be 5.0 × 105-5.0 × 107 particles/µL and the detection limit (LOD) was calculated to be 3.4 × 105 particles/µL (3σ). This assay possesses high specificity to distinguish exosomes derived from different cell lines, and has successfully been validated in patient and healthy plasma samples. Furthermore, the probe can effectively detect the exosomes in 30% fetal bovine serum, indicating that the biological matrix has a negligible effect on this method. This developed label-free, convenient and highly sensitive biosensor will offer a great opportunity for exosomes quantification in biological study and clinical application.


Subject(s)
Aptamers, Nucleotide/chemistry , Exosomes/chemistry , Aptamers, Nucleotide/genetics , Cell Adhesion Molecules/chemistry , Cell Line, Tumor , Fluorescent Dyes/chemistry , G-Quadruplexes , Humans , Limit of Detection , Mesoporphyrins/chemistry , Nucleic Acid Hybridization , Receptor Protein-Tyrosine Kinases/chemistry , Spectrometry, Fluorescence/methods
19.
Proc Natl Acad Sci U S A ; 117(3): 1321-1329, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31896586

ABSTRACT

Cysteine thiols of many cancer-associated proteins are attractive targets of anticancer agents. Herein, we unequivocally demonstrate a distinct thiol-targeting property of gold(III) mesoporphyrin IX dimethyl ester (AuMesoIX) and its anticancer activities. While the binding of cysteine thiols with metal complexes usually occurs via M-S bond formation, AuMesoIX is unique in that the meso-carbon atom of the porphyrin ring is activated by the gold(III) ion to undergo nucleophilic aromatic substitution with thiols. AuMesoIX was shown to modify reactive cysteine residues and inhibit the activities of anticancer protein targets including thioredoxin, peroxiredoxin, and deubiquitinases. Treatment of cancer cells with AuMesoIX resulted in the formation of gold-bound sulfur-rich protein aggregates, oxidative stress-mediated cytotoxicity, and accumulation of ubiquitinated proteins. Importantly, AuMesoIX exhibited effective antitumor activity in mice. Our study has uncovered a gold(III)-induced ligand scaffold reactivity for thiol targeting that can be exploited for anticancer applications.


Subject(s)
Antineoplastic Agents/chemistry , Cysteine/chemistry , Gold/chemistry , Mesoporphyrins/chemistry , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Deubiquitinating Enzymes/chemistry , Deubiquitinating Enzymes/metabolism , HCT116 Cells , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasms, Experimental/drug therapy , Peroxiredoxins/chemistry , Peroxiredoxins/metabolism , Protein Binding , Thioredoxins/chemistry , Thioredoxins/metabolism , Tissue Distribution
20.
ACS Appl Mater Interfaces ; 11(49): 45368-45380, 2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31755692

ABSTRACT

Photodynamic therapy (PDT) is a promising recognized treatment for cancer. To date, PDT drugs are injected systemically, and the tumor area is irradiated to induce cell death. Current clinical protocols have several drawbacks, including limited accessibility to solid tumors and insufficient selectivity of drugs. Herein, we propose an alternative approach to improve PDT effectiveness by magnetic targeting of responsive carriers conjugated to the PDT drug. We coordinatively attached a meso-tetrahydroxyphenylchlorin (mTHPC) photosensitizer to Ce-doped-γ-Fe2O3 maghemite nanoparticles (MNPs). These MNPs are superparamagnetic and biocompatible, and the resulting mTHPC-MNPs nanocomposites are stable in aqueous suspensions. MDA-MB231 (human breast cancer) cells incubated with the mTHPC-MNPs showed high uptake and high death rates in cell population after PDT. The exposure to external magnetic forces during the incubation period directed the nanocomposites to selected sites enhancing drug accumulation that was double that of cells with no magnetic exposure. Next, breast cancer tumors were induced subcutaneously in mice and treated magnetically. In vivo results showed accelerated drug accumulation in tumors of mice injected with mTHPC-MNP nanocomposites, compared to the free drug. PDT irradiation led to a decrease in tumor size of both groups, whereas treatment with the focused magnetic nanocomposites led to significant tumor regression. Our results demonstrate a method to improve the current PDT treatments by applying magnetic forces to effectively direct the drug to cancerous tissue. This approach leads to a highly localized and effective PDT process, opening new directions for clinical PDT protocols.


Subject(s)
Magnetite Nanoparticles/chemistry , Mesoporphyrins/pharmacology , Photochemotherapy , Photosensitizing Agents/pharmacology , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cerium/chemistry , Ferric Compounds/chemistry , Ferric Compounds/pharmacology , Humans , Magnetics , Magnetite Nanoparticles/therapeutic use , Mesoporphyrins/chemistry , Mice , Neoplasms/drug therapy , Photosensitizing Agents/chemistry , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...