Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24.146
Filter
1.
Pharm Res ; 41(7): 1391-1400, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38981900

ABSTRACT

PURPOSE: Evaluation of distribution kinetics is a neglected aspect of pharmacokinetics. This study examines the utility of the model-independent parameter whole body distribution clearance (CLD) in this respect. METHODS: Since mammillary compartmental models are widely used, CLD was calculated in terms of parameters of this model for 15 drugs. The underlying distribution processes were explored by assessment of relationships to pharmacokinetic parameters and covariates. RESULTS: The model-independence of the definition of the parameter CLD allowed a comparison of distributional properties of different drugs and provided physiological insight. Significant changes in CLD were observed as a result of drug-drug interactions, transporter polymorphisms and a diseased state. CONCLUSION: Total distribution clearance CLD is a useful parameter to evaluate distribution kinetics of drugs. Its estimation as an adjunct to the model-independent parameters clearance and steady-state volume of distribution is advocated.


Subject(s)
Metabolic Clearance Rate , Models, Biological , Pharmacokinetics , Humans , Pharmaceutical Preparations/metabolism , Drug Interactions , Tissue Distribution
2.
PLoS One ; 19(7): e0306935, 2024.
Article in English | MEDLINE | ID: mdl-39018289

ABSTRACT

Implementing shortened one-compartment iohexol plasma clearance models for GFR measurement is crucial since the gold standard inulin renal clearance technique and the reference two-compartment, 10-hour, 16-samplings iohexol plasma clearance method are clinically unfeasible. Inulin may precipitate anaphylactic shock. Four-hour and 8-hour one-compartment iohexol plasma clearance models with Bröchner-Mortensen correction provide accurate GFR measurements in patients with estimated GFR (eGFR) > or ≤40 mL/min/1.73m2, respectively. We compared the performance of the simplified 5-hour, 4-samplings, two-compartment population pharmacokinetic model (popPK) with the performance of the reference two-compartment 10-hour iohexol method in 16 patients with GFR 15.2 to 56.5 mL/min/1.73 m2. We also compared the performance of shortened (5, 6 and 7-hour) one-compartment models with the performance of the standard 8-hour one-compartment model in 101 patients with eGFR ≤40 mL/min/1.73 m2. The performance of popPK and shortened methods versus reference methods was evaluated by total deviation index (TDI), concordance correlation coefficient (CCC) and coverage probability (CP). TDI <10%, CCC ≥0.9 and CP >90% indicated adequate performance. TDI, CCC and CP of popPK were 11.11%, 0.809 and 54.10%, respectively. All shortened, one-compartment models overestimated the GFR (p <0.0001 for all) as compared to the 8-hour model. TDI, CCC and CP were 7.02%, 0.815, and 75.80% for the 7-hour model, 7.26%, 0.803, and 74.20% for the 6-hour model, and 8.85%, 0.729 and 64.70% for the 5-hour model. The agreement of popPK model was comparable to that obtained with the Chronic-Kidney-Disease-Collaboration-Epidemiology (CKD-Epi) and the Modification-of-Diet-in-Renal-Disease (MDRD) serum-creatinine based equations for GFR estimation. PopPK model is remarkably unreliable for GFR measurement in stage III-IV CKD patients. In patients with eGFR ≤40 mL/min/1.73m2, shortened one-compartment models, in particular the 5-hour model, are less performant than the reference 8-hour model. For accurate GFR measurements, the iohexol plasma clearance should be measured with appropriate protocols. Over-simplified procedures should be avoided.


Subject(s)
Glomerular Filtration Rate , Iohexol , Renal Insufficiency, Chronic , Humans , Iohexol/pharmacokinetics , Iohexol/analysis , Female , Renal Insufficiency, Chronic/physiopathology , Renal Insufficiency, Chronic/blood , Male , Middle Aged , Aged , Adult , Contrast Media/pharmacokinetics , Feasibility Studies , Models, Biological , Metabolic Clearance Rate
3.
Drug Metab Dispos ; 52(8): 919-931, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013583

ABSTRACT

There is overwhelming preference for application of the unphysiologic, well-stirred model (WSM) over the parallel tube model (PTM) and dispersion model (DM) to predict hepatic drug clearance, CLH , despite that liver blood flow is dispersive and closer to the DM in nature. The reasoning is the ease in computation relating the hepatic intrinsic clearance ( CLint ), hepatic blood flow ( QH ), unbound fraction in blood ( fub ) and the transmembrane clearances ( CLin and CLef ) to CLH for the WSM. However, the WSM, being the least efficient liver model, predicts a lower EH that is associated with the in vitro CLint ( Vmax / Km ), therefore requiring scale-up to predict CLH in vivo. By contrast, the miniPTM, a three-subcompartment tank-in-series model of uniform enzymes, closely mimics the DM and yielded similar patterns for CLint versus EH , substrate concentration [S] , and KL / B , the tissue to outflow blood concentration ratio. We placed these liver models nested within physiologically based pharmacokinetic models to describe the kinetics of the flow-limited, phenolic substrate, harmol, using the WSM (single compartment) and the miniPTM and zonal liver models (ZLMs) of evenly and unevenly distributed glucuronidation and sulfation activities, respectively, to predict CLH For the same, given CLint ( Vmax and Km ), the WSM again furnished the lowest extraction ratio ( EH,WSM = 0.5) compared with the miniPTM and ZLM (>0.68). Values of EH,WSM were elevated to those for EH, PTM and EH, ZLM when the Vmax s for sulfation and glucuronidation were raised 5.7- to 1.15-fold. The miniPTM is easily manageable mathematically and should be the new normal for liver/physiologic modeling. SIGNIFICANCE STATEMENT: Selection of the proper liver clearance model impacts strongly on CLH predictions. The authors recommend use of the tank-in-series miniPTM (3 compartments mini-parallel tube model), which displays similar properties as the dispersion model (DM) in relating CLint and [ S ] to CLH as a stand-in for the DM, which best describes the liver microcirculation. The miniPTM is readily modified to accommodate enzyme and transporter zonation.


Subject(s)
Liver , Metabolic Clearance Rate , Models, Biological , Liver/metabolism , Humans , Metabolic Clearance Rate/physiology , Animals , Pharmaceutical Preparations/metabolism , Hepatobiliary Elimination/physiology , Pharmacokinetics
4.
Toxicol Appl Pharmacol ; 489: 117015, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38917890

ABSTRACT

Per- and poly-fluoroalkyl substances (PFAS) have a wide range of elimination half-lives (days to years) in humans, thought to be in part due to variation in proximal tubule reabsorption. While human biomonitoring studies provide important data for some PFAS, renal clearance (CLrenal) predictions for hundreds of PFAS in commerce requires experimental studies with in vitro models and physiologically-based in vitro-to-in vivo extrapolation (IVIVE). Options for studying renal proximal tubule pharmacokinetics include cultures of renal proximal tubule epithelial cells (RPTECs) and/or microphysiological systems. This study aimed to compare CLrenal predictions for PFAS using in vitro models of varying complexity (96-well plates, static 24-well Transwells and a fluidic microphysiological model, all using human telomerase reverse transcriptase-immortalized and OAT1-overexpressing RPTECs combined with in silico physiologically-based IVIVE. Three PFAS were tested: one with a long half-life (PFOS) and two with shorter half-lives (PFHxA and PFBS). PFAS were added either individually (5 µM) or as a mixture (2 µM of each substance) for 48 h. Bayesian methods were used to fit concentrations measured in media and cells to a three-compartmental model to obtain the in vitro permeability rates, which were then used as inputs for a physiologically-based IVIVE model to estimate in vivo CLrenal. Our predictions for human CLrenal of PFAS were highly concordant with available values from in vivo human studies. The relative values of CLrenal between slow- and faster-clearance PFAS were most highly concordant between predictions from 2D culture and corresponding in vivo values. However, the predictions from the more complex model (with or without flow) exhibited greater concordance with absolute CLrenal. Overall, we conclude that a combined in vitro-in silico workflow can predict absolute CLrenal values, and effectively distinguish between PFAS with slow and faster clearance, thereby allowing prioritization of PFAS with a greater potential for bioaccumulation in humans.


Subject(s)
Computer Simulation , Fluorocarbons , Kidney Tubules, Proximal , Models, Biological , Humans , Fluorocarbons/pharmacokinetics , Kidney Tubules, Proximal/metabolism , Half-Life , Metabolic Clearance Rate , Workflow , Renal Elimination , Environmental Pollutants/pharmacokinetics , Environmental Pollutants/metabolism , Epithelial Cells/metabolism
5.
AAPS J ; 26(3): 59, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724865

ABSTRACT

Drug clearance in obese subjects varies widely among different drugs and across subjects with different severity of obesity. This study investigates correlations between plasma clearance (CLp) and drug- and patient-related characteristics in obese subjects, and evaluates the systematic accuracy of common weight-based dosing methods. A physiologically-based pharmacokinetic (PBPK) modeling approach that uses recent information on obesity-related changes in physiology was used to simulate CLp for a normal-weight subject (body mass index [BMI] = 20) and subjects with various severities of obesity (BMI 25-60) for hypothetical hepatically cleared drugs with a wide range of properties. Influential variables for CLp change were investigated. For each drug and obese subject, the exponent that yields perfect allometric scaling of CLp from normal-weight subjects was assessed. Among all variables, BMI and relative changes in enzyme activity resulting from obesity proved highly correlated with obesity-related CLp changes. Drugs bound to α1-acid glycoprotein (AAG) had lower CLp changes compared to drugs bound to human serum albumin (HSA). Lower extraction ratios (ER) corresponded to higher CLp changes compared to higher ER. The allometric exponent for perfect scaling ranged from -3.84 to 3.34 illustrating that none of the scaling methods performed well in all situations. While all three dosing methods are generally systematically accurate for drugs with unchanged or up to 50% increased enzyme activity in subjects with a BMI below 30 kg/m2, in any of the other cases, information on the different drug properties and severity of obesity is required to select an appropriate dosing method for individuals with obesity.


Subject(s)
Body Mass Index , Models, Biological , Obesity , Humans , Obesity/metabolism , Metabolic Clearance Rate/physiology , Pharmaceutical Preparations/metabolism , Pharmaceutical Preparations/administration & dosage , Liver/metabolism , Orosomucoid/metabolism , Serum Albumin, Human/metabolism , Serum Albumin, Human/analysis , Male , Adult
6.
Drug Metab Dispos ; 52(8): 797-812, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38777596

ABSTRACT

In vitro clearance assays are routinely conducted in drug discovery to predict in vivo clearance, but low metabolic turnover compounds are often difficult to evaluate. Hepatocyte spheroids can be cultured for days, achieving higher drug turnover, but have been hindered by limitations on cell number per well. Corning Elplasia microcavity 96-well microplates enable the culture of 79 hepatocyte spheroids per well. In this study, microcavity spheroid properties (size, hepatocyte function, longevity, culturing techniques) were assessed and optimized for clearance assays, which were then compared with microsomes, hepatocyte suspensions, two-dimensional-plated hepatocytes, and macrowell spheroids cultured as one per well. Higher enzyme activity coupled with greater hepatocyte concentrations in microcavity spheroids enabled measurable turnover of all 17 test compounds, unlike the other models that exhibited less drug turnover. Microcavity spheroids also predicted intrinsic clearance (CLint) and blood clearance (CLb) within threefold for 53% [9/17; average absolute fold error (AAFE), 3.9] and 82% (14/17; AAFE, 2.6) of compounds using a linear regression correction model, respectively. An alternate method incorporating mechanistic modeling that accounts for mass transport (permeability and diffusion) within spheroids demonstrated improved predictivity for CLint (12/17; AAFE, 4.0) and CLb (14/17; AAFE, 2.1) without the need for empirical scaling factors. The estimated fraction of drug metabolized by cytochrome P450 3A4 (fm,CYP3A4) using 3 µM itraconazole was within 25% of observed values for 6 of 8 compounds, with 5 of 8 compounds within 10%. In sum, spheroid cultures in microcavity plates permit the ability to test and predict clearance as well as fm,CYP3A4 of low metabolic turnover compounds and represent a valuable complement to conventional in vitro clearance assays. SIGNIFICANCE STATEMENT: Culturing multiple spheroids in ultralow attachment microcavities permits accurate quantitation of metabolically stable compounds in substrate depletion assays, overcoming limitations with singly cultured spheroids. In turn, this permits robust estimates of intrinsic clearance, which is improved with the consideration of mass transport within the spheroid. Incubations with 3 µM itraconazole enabled assessments of CYP3A4 involvement in hepatic clearance.


Subject(s)
Hepatocytes , Metabolic Clearance Rate , Spheroids, Cellular , Hepatocytes/metabolism , Humans , Spheroids, Cellular/metabolism , Microsomes, Liver/metabolism , Pharmaceutical Preparations/metabolism , Models, Biological , Cytochrome P-450 CYP3A/metabolism , Cell Culture Techniques/methods , Cells, Cultured
7.
Pharmacol Res Perspect ; 12(3): e1193, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38775304

ABSTRACT

Aciclovir is considered the first-line treatment against Herpes simplex virus (HSV) infections in new-borns and infants. As renal excretion is the major route of elimination, in renally-impaired patients, aciclovir doses are adjusted according to the degree of impairment. However, limited attention has been given to the implications of immature renal function or dysfunction due to the viral disease itself. The aim of this investigation was to characterize the pharmacokinetics of aciclovir taking into account maturation and disease processes in the neonatal population. Pharmacokinetic data obtained from 2 previously published clinical trials (n = 28) were analyzed using a nonlinear mixed effects modeling approach. Post-menstrual age (PMA) and creatinine clearance (CLCR) were assessed as descriptors of maturation and renal function. Simulation scenarios were also implemented to illustrate the use of pharmacokinetic data to extrapolate efficacy from adults. Aciclovir pharmacokinetics was described by a one-compartment model with first-order elimination. Body weight and diagnosis (systemic infection) were statistically significant covariates on the volume of distribution, whereas body weight, CLCR and PMA had a significant effect on clearance. Median clearance varied from 0.2 to 1.0 L/h in subjects with PMA <34 or ≥34 weeks, respectively. Population estimate for volume of distribution was 1.93 L with systemic infection increasing this value by almost 3-fold (2.67 times higher). A suitable model parameterization was identified, which discriminates the effects of developmental growth, maturation, and organ function. Exposure to aciclovir was found to increase with decreasing PMA and renal function (CLCR), suggesting different dosing requirement for pre-term neonates.


Subject(s)
Acyclovir , Antiviral Agents , Herpes Simplex , Humans , Acyclovir/pharmacokinetics , Acyclovir/administration & dosage , Infant, Newborn , Antiviral Agents/pharmacokinetics , Antiviral Agents/administration & dosage , Herpes Simplex/drug therapy , Female , Male , Models, Biological , Creatinine/blood , Dose-Response Relationship, Drug , Metabolic Clearance Rate , Computer Simulation
8.
Eur J Pharm Sci ; 198: 106799, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38754592

ABSTRACT

The clearance concept has been used in pharmacokinetics for over 50 years. However, there is still much debate regarding mathematical clearance models. A recent article discussed that there is a critical error in a basic assumption that leads to the mechanistic hepatic clearance models (Benet, L.Z., Sodhi, J.K., 2024. Are all measures of liver Kpuu a function of FH, as determined following oral dosing, or have we made a critical error in defining hepatic drug clearance? European Journal of Pharmaceutical Sciences 196, 106,753. https://doi.org/10.1016/j.ejps.2024.106753). This commentary discusses this point based on the extended clearance model (ECM), which is increasingly used in modern drug discovery and development. Confusion about clearance can be avoided by using clearly defined drug concentrations based on hierarchical body structures.


Subject(s)
Liver , Models, Biological , Humans , Liver/metabolism , Administration, Oral , Pharmaceutical Preparations/metabolism , Pharmaceutical Preparations/administration & dosage , Metabolic Clearance Rate , Pharmacokinetics , Animals
9.
Toxicol Sci ; 200(1): 137-145, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38603617

ABSTRACT

Administration of high-dose vitamin K1 (VK1) overcomes coagulopathy and bleeding elicited by acute poisoning with long-acting anticoagulant rodenticides (LAARs). However, long-term (months) treatment is required due to long LAAR biological half-lives that may lead to poor compliance and recurrent coagulopathy. The half-lives of LAARs are extended by slow metabolism, and similar to warfarin, are thought to undergo enterohepatic recirculation. We now show that treatment with the bile acid sequestrant cholestyramine (CSA) administered concomitantly with VK1 decreases plasma LAAR levels and increases LAAR fecal excretion. Daily CSA treatment for 14 days did not reduce plasma VK1 levels, or increase prothrombin time. Collectively, these data show that CSA accelerates LAAR clearance from rabbits without adverse effects on VK1 anticoagulation, and could provide an additional therapeutic option for treatment of LAAR poisoning.


Subject(s)
Anticoagulants , Blood Coagulation , Cholestyramine Resin , Feces , Rodenticides , Vitamin K 1 , Animals , Rabbits , Rodenticides/pharmacokinetics , Rodenticides/blood , Anticoagulants/administration & dosage , Anticoagulants/pharmacokinetics , Vitamin K 1/blood , Vitamin K 1/administration & dosage , Blood Coagulation/drug effects , Male , Feces/chemistry , Half-Life , Prothrombin Time , Metabolic Clearance Rate
10.
Am J Physiol Regul Integr Comp Physiol ; 327(1): R25-R34, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38682243

ABSTRACT

Insulin insensitivity decreases exogenous glucose oxidation and metabolic clearance rate (MCR) during aerobic exercise in unacclimatized lowlanders at high altitude (HA). Whether use of an oral insulin sensitizer before acute HA exposure enhances exogenous glucose oxidation is unclear. This study investigated the impact of pioglitazone (PIO) on exogenous glucose oxidation and glucose turnover compared with placebo (PLA) during aerobic exercise at HA. With the use of a randomized crossover design, native lowlanders (n = 7 males, means ± SD, age: 23 ± 6 yr, body mass: 84 ± 11 kg) consumed 145 g (1.8 g/min) of glucose while performing 80 min of steady-state (1.43 ± 0.16 V̇o2 L/min) treadmill exercise at HA (460 mmHg; [Formula: see text] 96.6 mmHg) following short-term (5 days) use of PIO (15 mg oral dose per day) or PLA (microcrystalline cellulose pill). Substrate oxidation and glucose turnover were determined using indirect calorimetry and stable isotopes ([13C]glucose and 6,6-[2H2]glucose). Exogenous glucose oxidation was not different between PIO (0.31 ± 0.03 g/min) and PLA (0.32 ± 0.09 g/min). Total carbohydrate oxidation (PIO: 1.65 ± 0.22 g/min, PLA: 1.68 ± 0.32 g/min) or fat oxidation (PIO: 0.10 ± 0.0.08 g/min, PLA: 0.09 ± 0.07 g/min) was not different between treatments. There was no treatment effect on glucose rate of appearance (PIO: 2.46 ± 0.27, PLA: 2.43 ± 0.27 mg/kg/min), disappearance (PIO: 2.19 ± 0.17, PLA: 2.20 ± 0.22 mg/kg/min), or MCR (PIO: 1.63 ± 0.37, PLA: 1.73 ± 0.40 mL/kg/min). Results from this study indicate that PIO is not an effective intervention to enhance exogenous glucose oxidation or MCR during acute HA exposure. Lack of effect with PIO suggests that the etiology of glucose metabolism dysregulation during acute HA exposure may not result from insulin resistance in peripheral tissues.NEW & NOTEWORTHY Short-term (5 days) use of the oral insulin sensitizer pioglitazone does not alter circulating glucose or insulin responses to enhance exogenous glucose oxidation during steady-state aerobic exercise in young healthy men under simulated acute (8 h) high-altitude (460 mmHg) conditions. These results indicate that dysregulations in glucose metabolism in native lowlanders sojourning at high altitude may not be due to insulin resistance at peripheral tissue.


Subject(s)
Altitude , Cross-Over Studies , Exercise , Glucose , Hypoglycemic Agents , Oxidation-Reduction , Pioglitazone , Humans , Pioglitazone/administration & dosage , Pioglitazone/pharmacology , Male , Young Adult , Exercise/physiology , Adult , Glucose/metabolism , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/pharmacokinetics , Metabolic Clearance Rate , Blood Glucose/metabolism , Blood Glucose/drug effects , Insulin/blood , Insulin/metabolism
11.
Clin Pharmacokinet ; 63(5): 695-706, 2024 May.
Article in English | MEDLINE | ID: mdl-38613610

ABSTRACT

BACKGROUND AND OBJECTIVES: Milrinone is an inotrope and vasodilator used for prophylaxis or treatment of low cardiac output syndrome after weaning from cardiopulmonary bypass (CPB). It is renally eliminated and has an acceptable therapeutic range of 100-300 µg/L, but weight-based dosing alone is associated with poor target attainment. We aimed to develop a population pharmacokinetic model for milrinone from premature neonates to adolescents, and to evaluate how age, renal function and recovery from CPB may impact dose selection. METHODS: Fifty paediatric patients (aged 4 days to 16 years) were studied after undergoing cardiac surgery supported by CPB. Data from 29 premature neonates (23-28 weeks' postmenstrual age) treated for prophylaxis of low systemic blood flow were available for a pooled pharmacokinetic analysis. Population parameters were estimated using non-linear mixed effects modelling (NONMEM 7.5.1). RESULTS: There were 369 milrinone measurements available for analysis. A one-compartment model with zero-order input and first-order elimination was used to describe milrinone disposition. Population parameters were clearance 17.8 L/70 kg [95% CI 15.8-19.9] and volume 20.4 L/h/70 kg [95% CI 17.8-22.1]. Covariates included size, postmenstrual age and renal function for clearance, and size and postnatal age for volume. Milrinone clearance is reduced by 39.5% [95% CI 24.0-53.7] immediately after bypass, and recovers to baseline clearance with a half-time of 12.0 h [95% CI 9.7-15.2]. Milrinone volume was 2.07 [95% CI 1.87-2.27] times greater at birth than the population standard and decreased over the first days of life with a half-time of 0.977 days [95% CI 0.833-1.12]. CONCLUSION: Milrinone is predominately renally eliminated and so renal function is an important covariate describing variability in clearance. Increasing clearance over time likely reflects increasing cardiac output and renal perfusion due to milrinone and return to baseline following CPB.


Subject(s)
Cardiotonic Agents , Infant, Premature , Milrinone , Models, Biological , Humans , Milrinone/pharmacokinetics , Milrinone/administration & dosage , Infant, Newborn , Infant , Male , Adolescent , Female , Child , Child, Preschool , Cardiotonic Agents/pharmacokinetics , Cardiotonic Agents/administration & dosage , Cardiopulmonary Bypass/methods , Metabolic Clearance Rate , Vasodilator Agents/pharmacokinetics , Vasodilator Agents/administration & dosage
13.
Drug Metab Dispos ; 52(6): 548-554, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38604729

ABSTRACT

Extrapolating in vivo hepatic clearance from in vitro uptake data is a known challenge, especially for organic anion-transporting polypeptide transporter (OATP) substrates, and the well-stirred model (WSM) commonly yields systematic underpredictions for those anionic drugs, hypothetically due to "albumin-mediated hepatic drug uptake". In the present study, we demonstrate that the WSM incorporating the dynamic free fraction (f D), a measure of drug protein binding affinity, performs reasonably well in predicting hepatic clearance of OATP substrates. For a selection of anionic drugs, including atorvastatin, fluvastatin, pravastatin, rosuvastatin, pitavastatin, cerivastatin, and repaglinide, this dynamic well-stirred model (dWSM) correctly predicts hepatic plasma clearance within 2-fold error for six out of seven OATP substrates examined. The geometric mean of clearance ratios between the predicted and the observed values falls in the range of 1.21-1.38. As expected, the WSM with unbound fraction (f u) systematically underpredicts hepatic clearance with greater than 2-fold error for five out of seven drugs, and the geometric mean of clearance ratios between the predicted and the observed values is in the range of 0.20-0.29. The results suggest that, despite its simplicity, the dWSM operates well for transporter-mediated uptake clearance, and that clearance under-prediction of OATP substrates may not necessarily be associated with the chemical class of the anionic drugs, nor is it a result of albumin-mediated hepatic drug uptake as currently hypothesized. Instead, the superior prediction power of the dWSM confirms the utility of the dynamic free fraction in clearance prediction and the importance of drug plasma binding kinetics in hepatic uptake clearance. SIGNIFICANCE STATEMENT: The traditional well-stirred model (WSM) consistently underpredicts organin anion-transporting polypeptide transporter (OATP)-mediated hepatic uptake clearance, hypothetically due to the albumin-mediated hepatic drug uptake. In this manuscript, we apply the dynamic WSM to extrapolate hepatic clearance of the OATP substrates, and our results show significant improvements in clearance prediction without assuming albumin-mediated hepatic drug uptake.


Subject(s)
Liver , Models, Biological , Organic Anion Transporters , Organic Anion Transporters/metabolism , Liver/metabolism , Humans , Albumins/metabolism , Biological Transport/physiology , Metabolic Clearance Rate , Protein Binding , Pharmaceutical Preparations/metabolism , Animals
14.
Drug Metab Dispos ; 52(6): 539-547, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38604730

ABSTRACT

The accurate prediction of human clearance is an important task during drug development. The proportion of low clearance compounds has increased in drug development pipelines across the industry since such compounds may be dosed in lower amounts and at lower frequency. These type of compounds present new challenges to in vitro systems used for clearance extrapolation. In this study, we compared the accuracy of clearance predictions of suspension culture to four different long-term stable in vitro liver models, including HepaRG sandwich culture, the Hµrel stochastic co-culture, the Hepatopac micropatterned co-culture (MPCC), and a micro-array spheroid culture. Hepatocytes in long-term stable systems remained viable and active over several days of incubation. Although intrinsic clearance values were generally high in suspension culture, clearance of low turnover compounds could frequently not be determined using this method. Metabolic activity and intrinsic clearance values from HepaRG cultures were low and, consequently, many compounds with low turnover did not show significant decline despite long incubation times. Similarly, stochastic co-cultures occasionally failed to show significant turnover for multiple low and medium turnover compounds. Among the different methods, MPCCs and spheroids provided the most consistent measurements. Notably, all culture methods resulted in underprediction of clearance; this could, however, be compensated for by regression correction. Combined, the results indicate that spheroid culture as well as the MPCC system provide adequate in vitro tools for human extrapolation for compounds with low metabolic turnover. SIGNIFICANCE STATEMENT: In this study, we compared suspension cultures, HepaRG sandwich cultures, the Hµrel liver stochastic co-cultures, the Hepatopac micropatterned co-cultures (MPCC), and micro-array spheroid cultures for low clearance determination and prediction. Overall, HepaRG and suspension cultures showed modest value for the low determination and prediction of clearance compounds. The micro-array spheroid culture resulted in the most robust clearance measurements, whereas using the MPCC resulted in the most accurate prediction for low clearance compounds.


Subject(s)
Coculture Techniques , Hepatocytes , Liver , Metabolic Clearance Rate , Models, Biological , Spheroids, Cellular , Humans , Coculture Techniques/methods , Hepatocytes/metabolism , Liver/metabolism , Spheroids, Cellular/metabolism , Pharmaceutical Preparations/metabolism
15.
Environ Toxicol Chem ; 43(6): 1390-1405, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38652000

ABSTRACT

Bioaccumulation predictions can be substantially improved by combining in vitro metabolic rate measurements derived from rainbow trout hepatocytes and/or hepatic S9 fractions with quantitative structure-activity relationship (QSAR) modeling approaches. Compared with in vivo testing guidelines Organisation for Economic Co-operation and Development (OECD) 305 and Office of Chemical Safety and Pollution Prevention (OCSPP; an office of the US Environmental Protection Agency) 850.1730, the recently adopted OECD test guidelines 319A and 319B are in vitro approaches that have the potential to provide a time- and cost-efficient, humane solution, reducing animal use while addressing uncertainties in bioaccumulation across species. The present study compares the hepatic clearance of the S9 subcellular fraction of rainbow trout, bluegill, common carp, fathead minnow, and largemouth bass, discerning potential differences in metabolism between different warm- and cold-water species. With refinements to the in vitro metabolic S9 assay for high-throughput analysis, we measured in vitro clearance rates of seven chemicals crossing multiple classes of chemistry and modes of action. We confirmed that data from rainbow trout liver S9 fraction metabolic rates can be utilized to predict rainbow trout bioconcentration factors using an in vitro to in vivo extrapolation model, as intended in the OECD 319B applicability domain per the bioaccumulation prediction. Also, we determined that OECD 319B can be applied to other species, modified according to their habitat, adaptations to feeding behavior, and environmental conditions (e.g., temperature). Once toxicokinetics for each species is better understood and appropriate models are developed, this method can be an excellent tool to determine hepatic clearance and potential bioaccumulation across species. The present study could be leveraged prior to or in place of initiating in vivo bioconcentration studies, thus optimizing selection of appropriate fish species. Environ Toxicol Chem 2024;43:1390-1405. © 2024 SETAC.


Subject(s)
Liver , Water Pollutants, Chemical , Animals , Liver/metabolism , Water Pollutants, Chemical/metabolism , Fishes/metabolism , Oncorhynchus mykiss/metabolism , Quantitative Structure-Activity Relationship , Metabolic Clearance Rate
16.
Eur J Drug Metab Pharmacokinet ; 49(3): 393-403, 2024 May.
Article in English | MEDLINE | ID: mdl-38642299

ABSTRACT

BACKGROUND AND OBJECTIVE: The prediction of pharmacokinetic parameters for drugs metabolised by cytochrome P450 enzymes has been the subject of active research for many years, while the application of in vitro-in vivo extrapolation (IVIVE) techniques for non-cytochrome P450 enzymes has not been thoroughly evaluated. There is still no established quantitative method for predicting hepatic clearance of drugs metabolised by uridine 5'-diphospho-glucuronosyltransferases (UGTs), not to mention those which undergo hepatic uptake. The objective of the study was to predict the human hepatic clearance for telmisartan based on in vitro metabolic stability and hepatic uptake results. METHODS: Telmisartan was examined in liver systems, allowing to estimate intrinsic clearance (CLint, in vitro) based on the substrate disappearance rate with the use of liquid chromatography tandem mass spectrometry (LC-MS/MS) technique. Obtained CLint, in vitro values were corrected for corresponding unbound fractions. Prediction of human hepatic clearance was made from scaled unbound CLint, in vitro data with the use of the well-stirred model, and finally referenced to the literature value of observed clearance in humans, allowing determination of the essential scaling factors. RESULTS: The in vitro scaled CLint, in vitro by UGT1A3 was assessed using three systems, human hepatocytes, liver microsomes, and recombinant enzymes. Obtained values were scaled and hepatic metabolism clearance was predicted, resulting in significant clearance underprediction. Utilization of the extended clearance concept (ECC) and hepatic uptake improved prediction of hepatic metabolism clearance. The scaling factors for hepatocytes, assessing the in vitro-in vivo difference, changed from sixfold difference to only twofold difference with the application of the ECC. CONCLUSIONS: The study showed that taking into consideration hepatic uptake of a drug allows us to obtain satisfactory scaling factors, hence enabling the prediction of in vivo hepatic glucuronidation from in vitro data.


Subject(s)
Glucuronides , Glucuronosyltransferase , Microsomes, Liver , Solute Carrier Organic Anion Transporter Family Member 1B3 , Telmisartan , Glucuronosyltransferase/metabolism , Telmisartan/pharmacokinetics , Telmisartan/metabolism , Humans , Microsomes, Liver/metabolism , Glucuronides/metabolism , Solute Carrier Organic Anion Transporter Family Member 1B3/metabolism , Liver/metabolism , Liver/enzymology , Metabolic Clearance Rate , Tandem Mass Spectrometry/methods , Hepatocytes/metabolism , Models, Biological , Chromatography, Liquid/methods , Benzoates/pharmacokinetics , Benzoates/metabolism
17.
Clin Transl Sci ; 17(4): e13763, 2024 04.
Article in English | MEDLINE | ID: mdl-38545854

ABSTRACT

SHR-1819 is a novel anti-IL-4Rα monoclonal antibody currently under clinical development for use in patients with type 2 inflammatory diseases. In this randomized, double-blind, placebo-controlled, single-dose escalation phase I trial, we evaluated the safety, tolerability, pharmacokinetics, and pharmacodynamics of SHR-1819 in healthy subjects. Subjects received a single subcutaneous injection of SHR-1819 or placebo, with dose escalation starting at 60 mg and subsequently increasing to 120, 240, 360, and 720 mg. A total of 42 eligible subjects were randomized, and 33 received SHR-1819 (1 subject in the 60 mg cohort and 8 subjects each in the 120, 240, 360 , and 720 mg cohorts) and 9 received placebo. SHR-1819 was well-tolerated, with the majority of adverse events being mild in severity. The exposure of SHR-1819 increased in a manner greater than proportionally with a dose range of 120 to 720 mg. The median Tmax was within 4-7 days (60-720 mg), and the mean half-life ranged from 2.88 to 5.97 days (120-720 mg). The clearance rate of SHR-1819 exhibited a decrease with increasing dose level. Administration of SHR-1819 resulted in a certain degree of reduction in the percentage change from baseline in concentrations of inflammatory biomarkers TARC/CCL17 and IgE, while the reduction of TARC/CCL17 concentrations showed a dose-dependent trend. More than half of the total subjects treated with SHR-1819 were reported antidrug antibody-negative. The preliminary data from this phase I study support further development of SHR-1819 for the treatment of type 2 inflammatory diseases.


Subject(s)
Healthy Volunteers , Humans , Area Under Curve , Metabolic Clearance Rate , Injections, Subcutaneous , Biomarkers , Double-Blind Method , Dose-Response Relationship, Drug
18.
Drug Metab Dispos ; 52(5): 345-354, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38360916

ABSTRACT

It is common practice in drug discovery and development to predict in vivo hepatic clearance from in vitro incubations with liver microsomes or hepatocytes using the well-stirred model (WSM). When applying the WSM to a set of approximately 3000 Novartis research compounds, 73% of neutral and basic compounds (extended clearance classification system [ECCS] class 2) were well-predicted within 3-fold. In contrast, only 44% (ECCS class 1A) or 34% (ECCS class 1B) of acids were predicted within 3-fold. To explore the hypothesis whether the higher degree of plasma protein binding for acids contributes to the in vitro-in vivo correlation (IVIVC) disconnect, 68 proprietary compounds were incubated with rat liver microsomes in the presence and absence of 5% plasma. A minor impact of plasma on clearance IVIVC was found for moderately bound compounds (fraction unbound in plasma [fup] ≥1%). However, addition of plasma significantly improved the IVIVC for highly bound compounds (fup <1%) as indicated by an increase of the average fold error from 0.10 to 0.36. Correlating fup with the scaled unbound intrinsic clearance ratio in the presence or absence of plasma allowed the establishment of an empirical, nonlinear correction equation that depends on fup Taken together, estimation of the metabolic clearance of highly bound compounds was enhanced by the addition of plasma to microsomal incubations. For standard incubations in buffer only, application of an empirical correction provided improved clearance predictions. SIGNIFICANCE STATEMENT: Application of the well-stirred liver model for clearance in vitro-in vivo extrapolation (IVIVE) in rat generally underpredicts the clearance of acids and the strong protein binding of acids is suspected to be one responsible factor. Unbound intrinsic in vitro clearance (CLint,u) determinations using rat liver microsomes supplemented with 5% plasma resulted in an improved IVIVE. An empirical equation was derived that can be applied to correct CLint,u-values in dependance of fraction unbound in plasma (fup) and measured CLint in buffer.


Subject(s)
Microsomes, Liver , Models, Biological , Animals , Rats , Microsomes, Liver/metabolism , Metabolic Clearance Rate , Liver/metabolism , Hepatocytes/metabolism , Blood Proteins/metabolism
19.
Drug Metab Dispos ; 52(3): 153-158, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38216306

ABSTRACT

The administration of radiolabeled drug candidates is considered the gold standard in absorption, distribution, metabolism, and excretion studies for small-molecule drugs since it allows facile and accurate quantification of parent drug, metabolites, and total drug-related material independent of the compound structure. The choice of the position of the radiolabel, typically 14C or 3H, is critical to obtain relevant information. Sometimes, a biotransformation reaction may lead to cleavage of a part of the molecule. As a result, only the radiolabeled portion can be followed, and information on the fate of the nonlabeled metabolite may be lost. Synthesis and administration of two or more radiolabeled versions of the parent drug as a mixture or in separate studies may resolve this issue but comes with additional challenges. In this paper, we address the questions that may be considered to help make the right choice whether to use a single or multiple radiolabel approach and discuss the pros and cons of different multiple-labeling strategies that can be taken as well as alternative methods that allow the nonlabeled part of the molecule to be followed. SIGNIFICANCE STATEMENT: Radiolabeled studies are the gold standard in drug metabolism research, but molecules can undergo cleavage with loss of the label. This often results in discussions around potential use of multiple labels, which seem to be occurring with increased frequency since an increasing proportion of the small-molecule drugs are tending towards larger molecular weights. This review provides insight and decision criteria in considering a multiple-label approach as well as pros and cons of different strategies that can be followed.


Subject(s)
Pharmaceutical Preparations , Humans , Pharmaceutical Preparations/metabolism , Metabolic Clearance Rate , Biotransformation
20.
Theranostics ; 14(3): 1029-1048, 2024.
Article in English | MEDLINE | ID: mdl-38250044

ABSTRACT

Bacterial infections remain a formidable threat to human health, a situation exacerbated by the escalating problem of antibiotic resistance. While alternative antibacterial strategies such as oxidants, heat treatments, and metal nanoparticles (NPs) have shown potential, they come with significant drawbacks, ranging from non-specificity to potential environmental concerns. In the face of these challenges, the rapid evolution of micro/nanomotors (MNMs) stands out as a revolutionary development in the antimicrobial arena. MNMs harness various forms of energy and convert it into a substantial driving force, offering bright prospects for combating microbial threats. MNMs' mobility allows for swift and targeted interaction with bacteria, which not only improves the carrying potential of therapeutic agents but also narrows the required activation range for non-drug antimicrobial interventions like photothermal and photodynamic therapies, substantially improving their bacterial clearance rates. In this review, we summarized the diverse propulsion mechanisms of MNMs employed in antimicrobial applications and articulated their multiple functions, which include direct bactericidal action, capture and removal of microorganisms, detoxification processes, and the innovative detection of bacteria and associated toxins. Despite MNMs' potential to revolutionize antibacterial research, the translation from laboratory to clinical use remains challenging. Based on the current research status, we summarized the potential challenges and possible solutions and also prospected several key directions for future studies of MNMs for antimicrobial purposes. Collectively, by highlighting the important knowns and unknowns of antimicrobial MNMs, our present review would help to light the way forward for the field of antimicrobial MNMs and prevent unnecessary blindness and detours.


Subject(s)
Hyperthermia, Induced , Metal Nanoparticles , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Blindness , Metabolic Clearance Rate
SELECTION OF CITATIONS
SEARCH DETAIL
...