Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.109
Filter
1.
Planta Med ; 90(7-08): 512-522, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38843791

ABSTRACT

The use of Drosophila melanogaster as a biological platform to study the effect of diet and food bioactives on the metabolome remains a highly unexplored subject. Aiming to establish alternative solutions for the investigation of nutritional interventions with bioactive natural products by employing LC-MS-based metabolomics approaches, we assessed the effect of a phytonutrient-rich extract from the endemic Mediterranean plant Cichorium spinosum (stamnagkàthi) on a Drosophila population. The extract's modulating effect on the proteostasis network and metabolism of young D. melanogaster flies was evaluated. Furthermore, an untargeted metabolomics approach, employing a C18 UPLC-ESI-Orbitrap-HRMS/MS platform, permitted the detection of several biomarkers in the metabolic profile of Drosophila's tissues; while targeted amino acid quantification in Drosophila tissue was simultaneously performed by employing aTRAQ labeling and an ion-pairing UPLC-ESI-SWATH-HRMS/MS platform. The detected metabolites belong to different chemical classes, and statistical analysis with chemometrics tools was utilized to reveal patterns and trends, as well as to uncover potential class-distinguishing features and possible biomarkers. Our findings suggest that Drosophila can serve as a valuable in vivo model for investigating the role of bioactive phytoconstituents, like those found in C. spinosum's decoction, on diverse metabolic processes. Additionally, the fruit fly represents a highly effective platform to investigate the molecular mechanisms underlying sex differences in diverse aspects of nutrition and physiology in higher metazoans.


Subject(s)
Drosophila melanogaster , Metabolomics , Phytochemicals , Animals , Drosophila melanogaster/drug effects , Phytochemicals/pharmacology , Male , Female , Proteostasis/drug effects , Metabolic Networks and Pathways/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Metabolome/drug effects
2.
Molecules ; 29(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38731601

ABSTRACT

Alterations in cellular metabolism, such as dysregulation in glycolysis, lipid metabolism, and glutaminolysis in response to hypoxic and low-nutrient conditions within the tumor microenvironment, are well-recognized hallmarks of cancer. Therefore, understanding the interplay between aerobic glycolysis, lipid metabolism, and glutaminolysis is crucial for developing effective metabolism-based therapies for cancer, particularly in the context of colorectal cancer (CRC). In this regard, the present review explores the complex field of metabolic reprogramming in tumorigenesis and progression, providing insights into the current landscape of small molecule inhibitors targeting tumorigenic metabolic pathways and their implications for CRC treatment.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Humans , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Tumor Microenvironment/drug effects , Animals , Glycolysis/drug effects , Small Molecule Libraries/pharmacology , Small Molecule Libraries/therapeutic use , Lipid Metabolism/drug effects , Metabolic Networks and Pathways/drug effects
3.
Sci Total Environ ; 932: 173117, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38734097

ABSTRACT

2,2',6-Tribromobisphenol A (Tri-BBPA), the main debrominated congener of tetrabromobisphenol A (TBBPA), is ubiquitous in the environment and human body but with unknown toxicity. Tri-BBPA was synthesized and applied to investigate its sub-chronic exposure effects on 28 organ coefficients and clinical health indicators related to liver function, kidney function, and cardiovascular system function in female mice. Results showed that the liver was the targeted organ of Tri-BBPA exposure. Compared to the control group, the changes in liver coefficient, cholinesterase, total protein, albumin, γ-glutamyl transpeptidase, lactate dehydrogenase, and creatine kinase levels ranged from -61.2 % to 35.5 % in the high-exposed group. Creatine kinase was identified as a critical effect indicator of Tri-BBPA exposure. Using the Bayesian benchmark dose derivation method, a lower reference dose than TBBPA was established for Tri-BBPA (10.6 µg/kg-day). Serum metabolomics revealed that Tri-BBPA exposure may primarily damage the liver by disrupting tryptophan metabolism related to L-alanine, tryptamine, 5-hydroxyindoleacetic acid, and 5-methoxyindoleacetate in liver cells and leading to liver dysfunction. Notably, epilepsy, schizophrenia, early preeclampsia, and late-onset preeclampsia were the top six enriched diseases, suggesting that the nervous system may be particularly affected by Tri-BBPA exposure. Our findings hinted a non-negligible health risk of exposure to debrominated products of TBBPA.


Subject(s)
Polybrominated Biphenyls , Animals , Mice , Female , Polybrominated Biphenyls/toxicity , Metabolic Networks and Pathways/drug effects , Liver/metabolism , Liver/drug effects , Environmental Pollutants/toxicity
4.
J Agric Food Chem ; 72(21): 11990-12002, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38757490

ABSTRACT

The main challenge in the development of agrochemicals is the lack of new leads and/or targets. It is critical to discover new molecular targets and their corresponding ligands. YZK-C22, which contains a 1,2,3-thiadiazol-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole skeleton, is a fungicide lead compound with broad-spectrum fungicidal activity. Previous studies suggested that the [1,2,4]triazolo[3,4-b][1,3,4]thiadiazole scaffold exhibited good antifungal activity. Inspired by this, a series of pyrrolo[2,3-d]thiazole derivatives were designed and synthesized through a bioisosteric strategy. Compounds C1, C9, and C20 were found to be more active against Rhizoctonia solani than the positive control YZK-C22. More than half of the target compounds provided favorable activity against Botrytis cinerea, where the EC50 values of compounds C4, C6, C8, C10, and C20 varied from 1.17 to 1.77 µg/mL. Surface plasmon resonance and molecular docking suggested that in vitro potent compounds C9 and C20 have a new mode of action instead of acting as pyruvate kinase inhibitors. Transcriptome analysis revealed that compound C20 can impact the tryptophan metabolic pathway, cutin, suberin, and wax biosynthesis of B. cinerea. Overall, pyrrolo[2,3-d]thiazole is discovered as a new fungicidal lead structure with a potential new mode of action for further exploration.


Subject(s)
Botrytis , Fungicides, Industrial , Rhizoctonia , Thiazoles , Tryptophan , Waxes , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fungicides, Industrial/chemical synthesis , Rhizoctonia/drug effects , Botrytis/drug effects , Thiazoles/pharmacology , Thiazoles/chemistry , Thiazoles/metabolism , Tryptophan/metabolism , Tryptophan/chemistry , Waxes/chemistry , Waxes/metabolism , Structure-Activity Relationship , Metabolic Networks and Pathways/drug effects , Molecular Docking Simulation , Pyrroles/pharmacology , Pyrroles/chemistry , Pyrroles/metabolism , Plant Diseases/microbiology , Molecular Structure
5.
Sci Rep ; 14(1): 10546, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719979

ABSTRACT

Radioiodine refractory (RAIR) patients do not benefit from iodine-131 therapy. Thus, timely identification of RAIR patients is critical for avoiding ineffective radioactive iodine therapy. In addition, determining the causes of iodine resistance will facilitate the development of novel treatment strategies. This study was comprised of 20 RAIR and 14 non-radioiodine refractory (non-RAIR) thyroid cancer patients. Liquid chromatography-mass spectrometry was used to identify differences in the serum metabolites of RAIR and non-RAIR patients. In addition, chemical assays were performed to determine the effects of the differential metabolites on iodine uptake. Metabolic pathway enrichment analysis of the differential metabolites revealed significant differences in the phenylalanine and tyrosine metabolic pathways. Notably, quinate and shikimic acid, metabolites of the tyrosine pathway, were significantly increased in the RAIR group. In contrast, the phenylalanine pathway metabolites, hippuric acid and 2-phenylacetamide, were markedly decreased in the RAIR group. Thyroid peroxidase plays an important role in catalyzing the iodination of tyrosine residues, while the ionic state of iodine promotes the iodination reaction. Quinate, shikimic acid, hippuric acid, and 2-phenylacetamide were found to be involved in the iodination of tyrosine, which is a key step in thyroid hormone synthesis. Specifically, quinate and shikimic acid were found to inhibit iodination, while hippuric acid and 2-phenylacetamide promoted iodination. Abnormalities in phenylalanine and tyrosine metabolic pathways are closely associated with iodine resistance. Tyrosine is required for thyroid hormone synthesis and could be a potential cause of iodine resistance.


Subject(s)
Iodine Radioisotopes , Metabolomics , Thyroid Neoplasms , Humans , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/radiotherapy , Female , Male , Middle Aged , Metabolomics/methods , Adult , Iodine/metabolism , Metabolic Networks and Pathways/drug effects , Aged , Metabolome
6.
Article in English | MEDLINE | ID: mdl-38703714

ABSTRACT

This research investigates the effects of the immunotherapeutic agent nivolumab on the metabolism of lung cancer cells (NCI-H1975) using GC-MS metabolomic profiling. Multivariate analysis such as unsupervised PCA and supervised OPLS-DA along with univariate analysis and pathway analysis were employed to explore the metabolomic data and identify altered metabolic pathways induced by nivolumab treatment. The study revealed distinct metabolic alterations in cancer cells, linked to proliferative and survival advantages, such as enhanced glycolysis, increased glutaminolysis, and modified amino acid metabolism. Key findings indicate elevated levels of glycolysis-related metabolites (glycine, alanine, pyruvate, and lactate) and TCA cycle intermediates (succinate, fumarate, malate) in cancer cells, with a significant decrease following nivolumab treatment. Additionally, lower levels of aspartic acid and citrate in cancer cells imply altered nucleotide synthesis and fatty acid production essential for tumor growth. Treatment with nivolumab also reduced oleic acid levels, indicative of its effect on disrupted lipid metabolism. Our research shows nivolumab's potential to modify metabolic pathways involved in lung cancer progression, suggesting its dual role in cancer therapy: as an immune response modulator and a metabolic pathway disruptor.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Gas Chromatography-Mass Spectrometry , Lung Neoplasms , Metabolic Networks and Pathways , Metabolomics , Nivolumab , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Gas Chromatography-Mass Spectrometry/methods , Nivolumab/therapeutic use , Nivolumab/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Metabolomics/methods , Cell Line, Tumor , Multivariate Analysis , Metabolic Networks and Pathways/drug effects , Metabolome/drug effects
7.
Environ Sci Pollut Res Int ; 31(23): 34526-34549, 2024 May.
Article in English | MEDLINE | ID: mdl-38709411

ABSTRACT

Hesperidin (HSP), a flavonoid, is a potent antioxidant, metal chelator, mediator of signaling pathways, and regulator of metal uptake in plants. The study examined the ameliorative effects of HSP (100 µM) on Bassia scoparia grown under excessive levels of heavy metals (zinc (500 mg kg-1), copper (400 mg kg-1), cadmium (100 mg kg-1), and chromium (100 mg kg-1)). The study clarifies the underlying mechanisms by which HSP lessens metabolic mayhem to enhance metal stress tolerance and phytoremediation efficiency of Bassia scoparia. Plants manifested diminished growth because of a drop in chlorophyll content and nutrient acquisition, along with exacerbated deterioration of cellular membranes reflected in elevated reactive oxygen species (ROS) production, lipid peroxidation, and relative membrane permeability. Besides the colossal production of cytotoxic methylglyoxal, the activity of lipoxygenase was also higher in plants under metal toxicity. Conversely, hesperidin suppressed the production of cytotoxic ROS and methylglyoxal. Hesperidin improved oxidative defense that protected membrane integrity. Hesperidin caused a more significant accumulation of osmolytes, non-protein thiols, and phytochelatins, thereby rendering metal ions non-toxic. Hydrogen sulfide and nitric oxide endogenous levels were intricately maintained higher in plants treated with HSP. Hesperidin increased metal accumulation in Bassia scoparia and thereby had the potential to promote the reclamation of metal-contaminated soils.


Subject(s)
Biodegradation, Environmental , Hesperidin , Metals, Heavy , Metals, Heavy/metabolism , Hesperidin/metabolism , Metabolic Networks and Pathways/drug effects , Reactive Oxygen Species/metabolism
8.
Discov Med ; 36(183): 678-689, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38665017

ABSTRACT

BACKGROUND: An imbalance in energy metabolism serves as a causal factor for type 2 diabetes (T2D). Although metformin has been known to ameliorate the overall energy metabolism imbalance, but the direct correlation between metformin and central carbon metabolism (CCM) has not been thoroughly investigated. In this study, we employed a high-performance ion chromatography-tandem mass spectrometry (HPIC-MS/MS) technique to examine the alterations and significance of CCM both before and after metformin treatment for T2D. METHODS: We recruited 29 participants, comprising 10 individuals recently diagnosed with T2D (T2D group). Among these, 10 patients underwent a 4-6-week treatment with metformin (MET group). Additionally, we included 9 healthy subjects (CON group). Employing HPIC-MS/MS, we quantitatively analyzed 56 metabolites across 18 biologically relevant metabolic pathways associated with CCM. Univariate and multivariate statistical analyses were utilized to identify differential metabolites. Subsequently, correlation analyses and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted on the identified differential metabolites. RESULTS: We identified seven distinct metabolites in individuals with T2D (p < 0.05). Notably, cyclic 3',5'-Adenosine MonoPhosphate (AMP), Glucose 6-phosphate, L-lactic acid, Maleic acid, and Malic acid exhibited a reversal to normal levels following metformin treatment. Furthermore, Malic acid demonstrated a positive correlation with L-lactic acid (r = 0.94, p < 0.05), as did succinic acid with malic acid (r = 0.81, p < 0.05), L-lactic acid with succinic acid (r = 0.78, p < 0.05), and L-lactic acid with glucose-6-phosphate (r = 0.72, p < 0.05). These metabolites were notably enriched in pyruvate metabolism (p = 0.005), tricarboxylic acid cycle (TCA) (p = 0.007), propanoate metabolism (p = 0.007), and glycolysis or gluconeogenesis (p = 0.009), respectively. CONCLUSIONS: We employed HPIC-MS/MS to uncover alterations in CCM among individuals recently diagnosed with T2D before and after metformin treatment. The findings suggest that metformin may ameliorate the energy metabolism imbalance in T2D by reducing intermediates within the CCM pathway.


Subject(s)
Carbon , Diabetes Mellitus, Type 2 , Metformin , Tandem Mass Spectrometry , Humans , Metformin/therapeutic use , Metformin/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Male , Middle Aged , Female , Carbon/metabolism , Tandem Mass Spectrometry/methods , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Aged , Adult , Metabolic Networks and Pathways/drug effects , Energy Metabolism/drug effects
9.
Clin Immunol ; 263: 110224, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38648959

ABSTRACT

The pathophysiology of systemic lupus erythematosus (SLE) is multifactorial and involves alterations in metabolic pathways, including glycolysis, lipid metabolism, amino acid metabolism, and mitochondrial dysfunction. Increased glycolysis in SLE T cells, which is associated with elevated glucose transporter 1 expression, suggests targeting glucose transporters and hexokinase as potential treatments. Abnormalities in lipid metabolism, particularly in lipid rafts and enzymes, present new therapeutic targets. This review discusses how changes in glutaminolysis and tryptophan metabolism affect T-cell function, suggesting new therapeutic interventions, as well as mitochondrial dysfunction in SLE, which increases reactive oxygen species. The review also emphasizes that modulating metabolic pathways in immune cells is a promising approach for SLE treatment, and can facilitate personalized therapies based on individual metabolic profiles of patients with SLE. The review provides novel insights into strategies for managing SLE.


Subject(s)
Lupus Erythematosus, Systemic , Metabolic Networks and Pathways , Humans , Lupus Erythematosus, Systemic/metabolism , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/drug therapy , Metabolic Networks and Pathways/drug effects , Mitochondria/metabolism , Lipid Metabolism/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Tryptophan/metabolism , Animals , Glycolysis/drug effects
10.
Article in English | MEDLINE | ID: mdl-38642410

ABSTRACT

DangGui-KuShen (DK) is a well-known classic traditional Chinese medicine recipe that improves blood circulation, eliminates moisture, and detoxifies, and is frequently used in the treatment of cardiovascular problems. Some protective effects of DK on cardiovascular disease have previously been identified, but its precise mechanism remains unknown. The goal of this study is to combine metabolomics and network pharmacology to investigate DK's protective mechanism in Ischemic Heart Disease(IHD) rat models. A combination of metabolomics and network pharmacology based on UPLC-Q-TOF/MS technology was used in this study to verify the effect of DK on IHD through enzyme-linked immunosorbent assay, HE staining, and electrocardiogram, and it was determined that DK improves the synergistic mechanism of IHD. In total, 22 serum differential metabolites and 26 urine differential metabolites were discovered, with the majority of them involved in phenylalanine, tyrosine, and tryptophan biosynthesis, glycine, serine, and threonine metabolism, arginine and proline metabolism, aminoacyl-tRNA biosynthesis, purine metabolism, and other metabolic pathways. Furthermore, using network pharmacology, a composite target pathway network of DangGui and KuShen for treating IHD was created, which is primarily associated to the tumor necrosis factor (TNF) signaling pathway, P53 signaling, and HIF-1 signaling pathways. The combined research indicated that the NF-B signaling pathway and the HIF-1 signaling pathway are critical in DK treatment of IHD. This study clearly confirms and expands on current knowledge of the synergistic effects of DG and KS in IHD.


Subject(s)
Drugs, Chinese Herbal , Metabolome , Metabolomics , Myocardial Ischemia , Network Pharmacology , Rats, Sprague-Dawley , Animals , Drugs, Chinese Herbal/pharmacology , Metabolomics/methods , Rats , Male , Myocardial Ischemia/drug therapy , Myocardial Ischemia/metabolism , Metabolome/drug effects , Chromatography, High Pressure Liquid/methods , Mass Spectrometry/methods , Metabolic Networks and Pathways/drug effects
11.
J Ethnopharmacol ; 329: 118147, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38574779

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Non-alcoholic steatohepatitis (NASH) is a common metabolic liver injury disease that is closely associated with obesity and metabolic disorders. Paeonol, an active ingredient found in Moutan Cortex, a traditional Chinese medicine which exhibits significant therapeutic effect on liver protection, has shown promising effects in treating liver diseases, particularly NASH. However, the specific intervention mechanism of paeonol on NASH is still unknown. AIM OF THE STUDY: Our objective is to elucidate the pharmacological mechanism of paeonol in intervening NASH at the in vivo level, focusing on the impact on intestinal flora, tryptophan-related targeted metabolome, and related Aryl hydrocarbon receptor (AhR) pathways. MATERIALS AND METHODS: Here, we explored the intervention effect of paeonol on NASH by utilizing the NASH mouse model. The Illumina highthroughput sequencing technology was preformed to determine the differences of gut microbiota of model and paeonol treatment group. The concentration of Indoleacetic acid is determined by ELISA. The intervention effect of NASH mouse and AhR/NLRP3/Caspase-1 metabolic pathway is analyzed by HE staining, oil red O staining, Immunohistochemistry, Immunofluorescence, Western blot and qRT-PCR assays. Fecal microbiota transplantation experiment also was performed to verify the intervention effect of paeonol on NASH by affecting gut microbiota. RESULTS: Firstly, we discovered that paeonol effectively reduced liver pathology and blood lipid levels in NASH mice, thereby intervening in the progression of NASH. Subsequently, through 16S meta-analysis, we identified that paeonol can effectively regulate the composition of intestinal flora in NASH mice, transforming it to resemble that of normal mice. Specifically, paeonol decreased the abundance of certain Gram-negative tryptophan-metabolizing bacteria. Moreover, we discovered that paeonol significantly increased the levels of metabolites Indoleacetic acid, subsequently enhancing the expression of AhR-related pathway proteins. This led to the inhibition of the NOD-like receptor protein 3 (NLRP3) inflammasome production and inflammation generation in NASH. Lastly, we verified the efficacy of paeonol in intervening NASH by conducting fecal microbiota transplantation experiments, which confirmed its role in promoting the AhR/NLRP3/cysteinyl aspartate specific proteinase (Caspase-1) pathway. CONCLUSIONS: Our findings suggest that paeonol can increase the production of Indoleacetic acid by regulating the gut flora, and promote the AhR/NLRP3/Caspase-1 metabolic pathway to intervene NASH.


Subject(s)
Acetophenones , Caspase 1 , Gastrointestinal Microbiome , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Non-alcoholic Fatty Liver Disease , Receptors, Aryl Hydrocarbon , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Animals , Acetophenones/pharmacology , Gastrointestinal Microbiome/drug effects , Male , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Caspase 1/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Disease Models, Animal , Liver/drug effects , Liver/metabolism , Signal Transduction/drug effects , Metabolic Networks and Pathways/drug effects
12.
Drug Metab Dispos ; 52(6): 479-492, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38286637

ABSTRACT

Small molecule kinase inhibitors are one of the fastest growing classes of drugs, which are approved by the US Food and Drug Administration (FDA) for cancer and noncancer indications. As of September 2023, there were over 70 FDA-approved small molecule kinase inhibitors on the market, 42 of which were approved in the past five years (2018-2023). This minireview discusses recent advances in our understanding of the pharmacology, metabolism, and toxicity profiles of recently approved kinase inhibitors with a central focus on tyrosine kinase inhibitors (TKIs). In this minireview we discuss the most common therapeutic indications and molecular target(s) of kinase inhibitors FDA approved 2018-2023. We also describe unique aspects of the metabolism, bioactivation, and drug-drug interaction (DDI) potential of kinase inhibitors; discuss drug toxicity concerns related to kinase inhibitors, such as drug-induced liver injury; and highlight clinical outcomes and challenges relevant to TKI therapy. Case examples are provided for common TKI targets, metabolism pathways, DDI potential, and risks for serious adverse drug reactions. The minireview concludes with a discussion of perspectives on future research to optimize TKI therapy to maximize efficacy and minimize drug toxicity. SIGNIFICANCE STATEMENT: This minireview highlights important aspects of the clinical pharmacology and toxicology of small molecule kinase inhibitors FDA approved 2018-2023. We describe key advances in the therapeutic indications and molecular targets of TKIs. The major metabolism pathways and toxicity profiles of recently approved TKIs are discussed. Clinically relevant case examples are provided that demonstrate the risk for hepatotoxic drug interactions involving TKIs and coadministered drugs.


Subject(s)
Drug Approval , Drug Interactions , Protein Kinase Inhibitors , United States Food and Drug Administration , Humans , United States , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacokinetics , Drug Interactions/physiology , Metabolic Networks and Pathways/drug effects , Animals , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism , Antineoplastic Agents/adverse effects
13.
J Biol Chem ; 300(1): 105500, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38013089

ABSTRACT

The aryl hydrocarbon receptor is a ligand-activated transcription factor known for mediating the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. TCDD induces nonalcoholic fatty liver disease (NAFLD)-like pathologies including simple steatosis that can progress to steatohepatitis with fibrosis and bile duct proliferation in male mice. Dose-dependent progression of steatosis to steatohepatitis with fibrosis by TCDD has been associated with metabolic reprogramming, including the disruption of amino acid metabolism. Here, we used targeted metabolomic analysis to reveal dose-dependent changes in the level of ten serum and eleven hepatic amino acids in mice upon treatment with TCDD. Bulk RNA-seq and protein analysis showed TCDD repressed CPS1, OTS, ASS1, ASL, and GLUL, all of which are associated with the urea cycle and glutamine biosynthesis. Urea and glutamine are end products of the detoxification and excretion of ammonia, a toxic byproduct of amino acid catabolism. Furthermore, we found that the catalytic activity of OTC, a rate-limiting step in the urea cycle was also dose dependently repressed. These results are consistent with an increase in circulating ammonia. Collectively, the repression of the urea and glutamate-glutamine cycles increased circulating ammonia levels and the toxicity of TCDD.


Subject(s)
Ammonia , Metabolic Networks and Pathways , Non-alcoholic Fatty Liver Disease , Polychlorinated Dibenzodioxins , Animals , Male , Mice , Ammonia/blood , Ammonia/metabolism , Fibrosis , Glutamine/metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/chemically induced , Polychlorinated Dibenzodioxins/toxicity , Receptors, Aryl Hydrocarbon/metabolism , Metabolic Networks and Pathways/drug effects
14.
Phytomedicine ; 117: 154911, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37276724

ABSTRACT

BACKGROUND: Nervonic acid (NA) - a type of bioactive fatty acid that is found in natural sources - can inhibit inflammatory reactions and regulate immune system balance. Therefore, the use of NA for the treatment of neurodegenerative diseases has received considerable attention. Our previous study found that NA inhibited inflammatory responses in the brain of Parkinson's disease (PD) mouse models. In addition to the brain, PD is also associated with visceral organ dysfunction, especially impaired liver function. Thus, studying the role of NA in PD-mediated inflammation of the liver is particularly important. METHODS: A combined transcriptome and metabolomic approach was utilized to investigate the anti-inflammatory effects of NA on the liver of PD mice. Inflammatory signaling molecules and metabolic pathway-related genes were examined in the liver using real-time PCR and western blotting. RESULTS: Liver transcriptome analysis revealed that NA exerted anti-inflammatory effects by controlling several pro-inflammatory signaling pathways, such as the down-regulation of the tumor necrosis factor and nuclear factor kappa B signaling pathways, both of which were essential in the development of inflammatory disease. In addition, liver metabolomic results revealed that metabolites related to steroid hormone biosynthesis, arachidonic acid metabolism, and linoleic acid metabolism were up-regulated and those related to valine, leucine, and isoleucine degradation pathways were down-regulated in NA treatment groups compared with the PD model. The integration of metabolomic and transcriptomic results showed NA significantly exerted its anti-inflammatory function by regulating the transcription and metabolic pathways of multiple genes. Particularly, linoleic acid metabolism, arachidonic acid metabolism, and steroid hormone biosynthesis were the crucial pathways of the anti-inflammatory action of NA. Key genes in these metabolic pathways and key molecules in inflammatory signaling pathways were also verified, which were consistent with transcriptomic results. CONCLUSION: These findings provide novel insights into the liver protective effects of NA against PD mice. This study also showed that NA could be a useful dietary element for improving and treating PD-induced liver inflammation.


Subject(s)
Hepatitis , Metabolic Networks and Pathways , Signal Transduction , Metabolic Networks and Pathways/drug effects , Animals , Mice , Signal Transduction/drug effects , Hepatitis/drug therapy , Hepatitis/metabolism , Parkinson Disease/metabolism , Mice, Inbred C57BL , Male , Female
15.
J Ethnopharmacol ; 311: 116399, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-36997131

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Tiger bone, which had long been used in traditional Chinese medicine, had the action of removing wind and alleviating pain, strengthening the sinews and bones, and often used to treat bone impediment, and atrophic debility of bones in TCM clinical practice. As a substitute of natural bone tiger, artificial tiger bone Jintiange (JTG), has been approved by the State Food and Drug Administration of China for relief the symptom of osteoporosis, such as lumbago and back pain, lassitude in loin and legs, flaccidity and weakness legs, and walk with difficulty based on TCM theory. JTG has similar chemical profile to natural tiger bone, and contains mineral substance, peptides and proteins, and has been shown to protect bone loss in ovariectomized mice and exert the regulatory effects on osteoblast and osteoclast activities. But how the peptides and proteins in JTG modulate bone formation remains unclear. AIM: To investigate the stimulating effects of JTG proteins on osteogenesis and explore the possible underlying mechanisms. MATERIALS AND METHODS: JTG proteins were prepared from JTG Capsules by extracting calcium, phosphorus and other inorganic elements using SEP-PaktC18 desalting column. MC3T3-E1 cells were treated with JTG proteins to evaluate their effects and explore the underlying mechanisms. Osteoblast proliferation was detected by CCK-8 method. ALP activity was detected using a relevant assay kit, and bone mineralized nodules were stained with alizarin red-Tris-HCl solution. Cell apoptosis was analyzed by flow cytometry. Autophagy was observed by MDC staining, and autophagosomes were observed by TEM. Nuclear translocations of LC3 and CHOP were detected by immunofluorescence and observed under a laser confocal microscope. The expression of key proteins related to osteogenesis, apoptosis, autophagy and PI3K/AKT and ER stress pathways was analyzed by Western Blot analysis. RESULTS: JTG proteins improved osteogenesis as evidenced by the alteration of proliferation, differentiation and mineralization of MC3T3-E1 osteoblasts, inhibited their apoptosis, and enhanced autophagosome formation and autophagy. They also regulated the expression of key proteins of PI3K/AKT and ER stress pathways. In addition, PI3K/AKT and ER stress pathway inhibitors could reverse the regulatory effects of JTG proteins on osteogenesis, apoptosis, autophagy and PI3K/AKT and ER stress pathways. CONCLUSION: JTG proteins increased the osteogenesis and inhibited osteoblast apoptosis by enhancing autophagy via PI3K/AKT and ER stress signaling pathways.


Subject(s)
Apoptosis , Autophagy , Endoplasmic Reticulum Stress , Ethnopharmacology , Osteoblasts , Osteogenesis , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Osteoblasts/cytology , Osteoblasts/drug effects , Osteogenesis/drug effects , Apoptosis/drug effects , Autophagy/drug effects , Endoplasmic Reticulum Stress/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Tigers , Bone and Bones/chemistry , Bone and Bones/drug effects , Bone and Bones/physiology , Cell Line , Metabolic Networks and Pathways/drug effects , Cell Proliferation/drug effects , Cell Differentiation/drug effects , Animals , Mice , Ovariectomy , Female
16.
Reprod Biol Endocrinol ; 20(1): 43, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35236366

ABSTRACT

The heavy metal cadmium is proposed to be one of the environmental endocrine disruptors of spermatogenesis. Cadmium-induced inhibition of spermatogenesis is associated with a hormone secretion disorder. Letrozole is an aromatase inhibitor that increases peripheral androgen levels and stimulates spermatogenesis. However, the potential protective effects of letrozole on cadmium-induced reproductive toxicity remain to be elucidated. In this study, male mice were administered CdCl2 (4 mg/kg BW) orally by gavage alone or in combination with letrozole (0.25 mg/kg BW) for 30 days. Cd exposure caused a significant decreases in body weight, sperm count, motility, vitality, and plasma testosterone levels. Histopathological changes revealed extensive vacuolization and decreased spermatozoa in the lumen. However, in the Cd + letrozole group, letrozole treatment compensated for deficits in sperm parameters (count, motility, and vitality) induced by Cd. Letrozole treatment significantly increased serum testosterone levels, which were reduced by Cd. Histopathological studies revealed a systematic array of all germ cells, a preserved basement membrane and relatively less vacuolization. For a mechanistic examination, RNA-seq was used to profile alterations in gene expression in response to letrozole. Compared with that in the Cd-treated group, RNA-Seq analysis showed that 214 genes were differentially expressed in the presence of letrozole. Gene ontology (GO) enrichment analysis and KEGG signaling pathway analysis showed that steroid biosynthetic processes were the processes most affected by letrozole treatment. Furthermore, we found that the expression of the testosterone synthesis-related genes LHCGR (luteinizing hormone/choriogonadotropin receptor) and Hsd3b6 (3 beta- and steroid delta-isomerase 6) was significantly downregulated in Cd-treated testes, but these genes maintained similar expression levels in letrozole-treated testes as those in the control group. However, the transcription levels of inflammatory cytokines, such as IL-1ß and IL-6, and oxidative stress-related genes (Nrf2, Nqo1, and Ho-1) showed no changes. The present study suggests that the potential protective effect of letrozole on Cd-induced reproductive toxicity might be mediated by the upregulation of LHCGR and Hsd3b6, which would beneficially increase testosterone synthesis to achieve optimum protection of sperm quality and spermatogenesis.


Subject(s)
Cadmium , Letrozole , Spermatogenesis , Testosterone , Animals , Male , Mice , Cadmium/toxicity , Cytoprotection/drug effects , Cytoprotection/genetics , Letrozole/pharmacology , Metabolic Networks and Pathways/drug effects , Metabolic Networks and Pathways/genetics , Mice, Inbred ICR , Protective Agents/pharmacology , Receptors, LH/drug effects , Receptors, LH/genetics , Receptors, LH/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Spermatogenesis/drug effects , Spermatogenesis/genetics , Spermatozoa/drug effects , Spermatozoa/metabolism , Steroid Isomerases/drug effects , Steroid Isomerases/genetics , Steroid Isomerases/metabolism , Testis/drug effects , Testis/metabolism , Testosterone/biosynthesis
17.
Sci Rep ; 12(1): 2066, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35136077

ABSTRACT

In this study, we utilized an untargeted NMR metabolomics approach to identify the vector response in terms of metabolic profiling after temperature and insecticide exposure in comparison with the control. Clearly, temperature and insecticide exposure cause changes in the underlying metabolism, and the NMR metabolomic profile enables a direct examination of the immediate response of the vector to cope up with these changes. The present study was designed in four parts: A-Aedes aegypti were exposed to 40 °C for one-hour, DDT-4%, malathion-5%, and deltamethrin-0.05% separately and, part B-D; one-hour exposure at 35 °C and 40 °C temperatures followed by one-hour exposure to insecticide. The resultant metabolite profiles were compared with the control. In response to temperature and insecticide exposure, several metabolites and altered pathways were identified. Citrate, maltose, lipids, Nicotinate, Choline, Pyruvate and ß-hydroxybutyrate were found as important components of major biological pathways such as tri-carboxylic acid cycle, branched amino acid degradation, glycolysis/gluconeogenesis, amino acid metabolism, lipid and carbohydrate metabolism, nucleotide PRPP pathway, and phospholipid metabolism. Furthermore, the results also suggest that the changes imposed by exposure to temperature and insecticides individually, are reversed with combined exposure, thus negating the impact of each other and posing a threat to the control of Aedes-borne diseases such as dengue, chikungunya, Zika and yellow fever.


Subject(s)
Aedes/metabolism , Insecticides/pharmacology , Metabolic Networks and Pathways/drug effects , Metabolome/drug effects , Vector Borne Diseases/transmission , Aedes/drug effects , Animals , DDT/pharmacology , Insecticide Resistance/physiology , Malathion/pharmacology , Metabolomics/methods , Mosquito Vectors/drug effects , Nitriles/pharmacology , Pyrethrins/pharmacology , Temperature
18.
Toxicol Lett ; 359: 31-45, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35114313

ABSTRACT

OBJECTIVES: Tobacco hazard is one of the most severe public health issues in the world. It is believed that smoking is the most important factor leading to chronic obstructive pulmonary disease (COPD). Endothelial progenitor cells (EPCs) originate from the bone marrow and can effectively repair vascular endothelial damage and improve vascular endothelial function. Current studies suggest that EPCs senescence and EPCs depletion exist in smoking-related COPD, but the molecular mechanism remains unclear. METHODS: Co-immunoprecipitation was used to detect the interaction between USP7 and p300. EPCs from smoking COPD patients were isolated, and the expressions of USP7 and p300 were detected by RT-PCR and Western Blot. Different concentrations of cigarette smoke extract (CSE) and USP7 or p300 inhibitors were used to treat EPCs, then the expression of p53, p53 target genes and aging-related genes were detected. Cell Counting Kit - 8 (CCK8) was used to detect cell proliferation, flow cytometry was used to detect cell cycle distribution, ß-galactosidase (ß-gal) staining and Lamp1 immunofluorescence was used to detect the proportion of aging cells. COPD mouse models were used to confirm the molecular mechanism. RESULTS: USP7 and p300 interacted with each other, and USP7 affected the protein stability of p300 by regulating the ubiquitination of p300. There existed high expressions of USP7 and p300 proteins in EPCs of smoking COPD patients and COPD mouse model. CSE promoted the high expressions of USP7 and p300 in EPCs. Further studies showed that CSE mediated the USP7/p300-dependent high expression of p53 and activated the expression of p53 target genes especially p21. Activation of p53 - p21 pathway finally inhibited cell activity, led to cell cycle arrest and premature senescence of EPCs. CONCLUSION: CSE mediated up-regulation of USP7 and p300 activated p53 - p21 pathway was a molecular mechanism that might lead to COPD.


Subject(s)
E1A-Associated p300 Protein/drug effects , Endothelial Progenitor Cells/drug effects , Nicotiana/chemistry , Plant Extracts/therapeutic use , Pulmonary Disease, Chronic Obstructive/drug therapy , Smoke , Tobacco Products , Ubiquitin-Specific Peptidase 7/drug effects , Animals , Cellular Senescence/drug effects , Disease Models, Animal , E1A-Associated p300 Protein/metabolism , Endothelial Progenitor Cells/metabolism , Healthy Volunteers , Humans , Metabolic Networks and Pathways/drug effects , Mice , Pulmonary Disease, Chronic Obstructive/physiopathology , Signal Transduction/drug effects , Ubiquitin-Specific Peptidase 7/metabolism
19.
Int J Mol Sci ; 23(2)2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35055090

ABSTRACT

There is no doubt that chronic stress accompanied by adrenocortical stress hormone release affects the development and treatment outcome of several mental disorders. Less attention has been paid to the effects of psychotropic drugs on adrenocortical steroids, particularly in clinical studies. This review focuses on the knowledge related to the possible modulation of cortisol and aldosterone secretion under non-stress and stress conditions by antipsychotic drugs, which are being used in the treatment of several psychotic and affective disorders. The molecular mechanisms by which antipsychotic drugs may influence steroid stress hormones include the modulation of central and/or adrenocortical dopamine and serotonin receptors, modulation of inflammatory cytokines, influence on regulatory mechanisms in the central part of the hypothalamic-pituitary axis, inhibition of corticotropin-releasing hormone gene promoters, influencing glucocorticoid receptor-mediated gene transcription, indirect effects via prolactin release, alteration of signaling pathways of glucocorticoid and mineralocorticoid actions. Clinical studies performed in healthy subjects, patients with psychosis, and patients with bipolar disorder suggest that single and repeated antipsychotic treatments either reduce cortisol concentrations or do not affect its secretion. A single and potentially long-term treatment with dopamine receptor antagonists, including antipsychotics, has a stimulatory action on aldosterone release.


Subject(s)
Hydrocortisone/biosynthesis , Psychotropic Drugs/pharmacology , Stress, Physiological/drug effects , Adrenal Cortex Hormones/biosynthesis , Animals , Antipsychotic Agents/pharmacology , CLOCK Proteins/genetics , CLOCK Proteins/metabolism , Cytokines/metabolism , Epigenesis, Genetic , Gene Expression Regulation , Gene Expression Regulation, Enzymologic , Humans , Hypothalamo-Hypophyseal System/metabolism , Mental Disorders/drug therapy , Mental Disorders/etiology , Mental Disorders/metabolism , Metabolic Networks and Pathways/drug effects , Neurogenesis/drug effects , Neurotransmitter Agents/metabolism , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Receptors, Neurotransmitter/metabolism , Signal Transduction/drug effects , Stress, Physiological/genetics
20.
Nutrients ; 14(2)2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35057523

ABSTRACT

High consumption of fruit and vegetables has an inverse association with cardiometabolic risk factors. This study aimed to chemically characterize the hydroethanolic extract of P. domestica subsp. syriaca fruit pulp and evaluate its inhibitory activity against metabolic enzymes and production of proinflammatory mediators. Ultra-high-performance liquid chromatography high-resolution mass spectrometry(UHPLC-HRMS) analysis showed the presence of hydroxycinnamic acids, flavanols, and glycoside flavonols, while nuclear magnetic resonance(NMR) analysis showed, among saccharides, an abundant presence of glucose. P. domestica fruit extract inhibited α-amylase, α-glucosidase, pancreatic lipase, and HMG CoA reductase enzyme activities, with IC50 values of 7.01 mg/mL, 6.4 mg/mL, 6.0 mg/mL, and 2.5 mg/mL, respectively. P. domestica fruit extract inhibited lipopolysaccharide-induced production of nitrite, interleukin-1 ß and PGE2 in activated J774 macrophages. The findings of the present study indicate that P. domestica fruit extracts positively modulate in vitro a series of molecular mechanisms involved in the pathophysiology of cardiometabolic diseases. Further research is necessary to better characterize these properties and their potential application for human health.


Subject(s)
Fruit/chemistry , Metabolic Networks and Pathways/drug effects , Metabolic Syndrome/metabolism , Plant Extracts/pharmacology , Prunus domestica/chemistry , Chromatography, High Pressure Liquid , Coumaric Acids/metabolism , Flavonols/metabolism , Glucose/metabolism , Glycosides/metabolism , Humans , Magnetic Resonance Spectroscopy , Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...