Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.675
Filter
1.
Bull Exp Biol Med ; 176(5): 626-630, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38730109

ABSTRACT

We studied the antitumor activity of the combined use of local proton irradiation in two modes (10 and 31 Gy) with preliminary intra-tumoral injection of two types of bismuth nanoparticles differing in surface coating: coated with the amphiphilic molecule Pluronic-F127 or Silane-PEG (5 kDa)-COOH polymer. Nanoparticles were used in doses of 0.75 and 1.5 mg/mouse. In two independent series on experimental tumor model (solid Ehrlich carcinoma), bismuth nanoparticles of both modifications injected directly into the tumor enhanced the antitumor effects of proton therapy. Moreover, the radiosensitizing effect of bismuth nanoparticles administered via this route increased with the increasing the doses of nanoparticles and the doses of radiation exposure. In our opinion, these promising data obtained for the first time extend the possibilities of treating malignant neoplasms.


Subject(s)
Bismuth , Carcinoma, Ehrlich Tumor , Poloxamer , Proton Therapy , Carcinoma, Ehrlich Tumor/radiotherapy , Carcinoma, Ehrlich Tumor/drug therapy , Carcinoma, Ehrlich Tumor/pathology , Animals , Bismuth/therapeutic use , Bismuth/chemistry , Mice , Proton Therapy/methods , Poloxamer/chemistry , Radiation-Sensitizing Agents/therapeutic use , Radiation-Sensitizing Agents/chemistry , Radiation-Sensitizing Agents/pharmacology , Polyethylene Glycols/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Nanoparticles/chemistry , Female
2.
Acta Biomater ; 181: 440-452, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729546

ABSTRACT

The treatment of full-thickness skin injuries complicated by severe infection is hampered by the lack of comprehensive solutions that can regulate the various stages of wound healing. Consequently, there is an urgent need for a multifunctional dressing capable of multi-level regulation. In this study, we propose a novel solution by covalently integrating ε-poly-l-lysine-grafted gallic acid (EG) and in situ bioreduced silver nanoparticles (AgNPs) onto nano-hydroxyapatite (nHAP), thereby developing a multi-layered, multifunctional nanoplatform (nHEA). Cell experiments have shown that, compared to nHAP and nHAP loaded only with EG (nHEG), the addition of AgNPs to nHEA confers excellent antibacterial properties while maintaining optimal biocompatibility. The incorporation of EG onto nHEG and nHEA imparts antioxidation, anti-inflammatory, and pro-angiogenic functions, and the release of Ca2+ and EG further enhances fibroblast migration and collagen secretion. In a rat model of full-thickness skin injury with severe infection, nHEA demonstrates remarkable antibacterial and anti-inflammatory effects, along with promoting collagen remodeling and regeneration. Together, both cell experiments and animal studies confirm the significant potential of this innovative multifunctional nanoplatform in the treatment of full-thickness skin injuries with severe infection. STATEMENT OF SIGNIFICANCE: Treating infected full-thickness skin injuries poses a longstanding challenge due to the lack of comprehensive solutions that can regulate different stages of wound healing. This study introduces a novel multifunctional nanoplatform, nHEA, developed by covalently integrating ε-poly-l-lysine grafted with gallic acid (EG) and in situ bioreduced AgNPs onto nano-hydroxyapatite (nHAP). Cell experiments reveal that the integration of AgNPs enhances nHEA's antibacterial performance while maintaining optimal biocompatibility. The inclusion of EG bestows antioxidant, inflammation-regulating, and angiogenetic properties upon nHEA, and the release of Ca2+ and EG stimulates the migration and collagen secretion of fibroblast cells. Consequently, nHEA exhibits superior antibacterial and inflammation-regulating efficacy, and stimulates collagen remodeling and regeneration in vivo, making it a promising treatment for severely infected skin injuries.


Subject(s)
Durapatite , Skin , Animals , Durapatite/chemistry , Durapatite/pharmacology , Skin/pathology , Skin/drug effects , Skin/injuries , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Gallic Acid/pharmacology , Gallic Acid/chemistry , Wound Healing/drug effects , Rats , Rats, Sprague-Dawley , Humans , Silver/chemistry , Silver/pharmacology , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Male , Mice
3.
Nanotechnology ; 35(33)2024 May 30.
Article in English | MEDLINE | ID: mdl-38749415

ABSTRACT

Candida auris, a rapidly emerging multidrug-resistant fungal pathogen, poses a global health threat, with cases reported in over 47 countries. Conventional detection methods struggle, and the increasing resistance ofC. auristo antifungal agents has limited treatment options. Nanoparticle-based therapies, utilizing materials like silver, carbon, zinc oxide, titanium dioxide, polymer, and gold, show promise in effectively treating cutaneous candidiasis. This review explores recent advancements in nanoparticle-based therapies, emphasizing their potential to revolutionize antifungal therapy, particularly in combatingC. aurisinfections. The discussion delves into mechanisms of action, combinations of nanomaterials, and their application against multidrug-resistant fungal pathogens, offering exciting prospects for improved clinical outcomes and reduced mortality rates. The aim is to inspire further research, ushering in a new era in the fight against multidrug-resistant fungal infections, paving the way for more effective and targeted therapeutic interventions.


Subject(s)
Antifungal Agents , Candidiasis , Drug Resistance, Multiple, Fungal , Nanoparticles , Humans , Antifungal Agents/therapeutic use , Antifungal Agents/pharmacology , Candidiasis/drug therapy , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Candida auris/drug effects , Animals , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use
4.
Int J Mol Sci ; 25(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38791253

ABSTRACT

The application of metal-based nanoparticles (mNPs) in cancer therapy and diagnostics (theranostics) has been a hot research topic since the early days of nanotechnology, becoming even more relevant in recent years. However, the clinical translation of this technology has been notably poor, with one of the main reasons being a lack of understanding of the disease and conceptual errors in the design of mNPs. Strikingly, throughout the reported studies to date on in vivo experiments, the concepts of "tumor targeting" and "tumor cell targeting" are often intertwined, particularly in the context of active targeting. These misconceptions may lead to design flaws, resulting in failed theranostic strategies. In the context of mNPs, tumor targeting can be described as the process by which mNPs reach the tumor mass (as a tissue), while tumor cell targeting refers to the specific interaction of mNPs with tumor cells once they have reached the tumor tissue. In this review, we conduct a critical analysis of key challenges that must be addressed for the successful targeting of either tumor tissue or cancer cells within the tumor tissue. Additionally, we explore essential features necessary for the smart design of theranostic mNPs, where 'smart design' refers to the process involving advanced consideration of the physicochemical features of the mNPs, targeting motifs, and physiological barriers that must be overcome for successful tumor targeting and/or tumor cell targeting.


Subject(s)
Metal Nanoparticles , Neoplasms , Theranostic Nanomedicine , Humans , Neoplasms/therapy , Neoplasms/drug therapy , Neoplasms/diagnosis , Neoplasms/pathology , Theranostic Nanomedicine/methods , Animals , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Drug Delivery Systems/methods
5.
J Nanobiotechnology ; 22(1): 248, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741193

ABSTRACT

The use of nanomaterials in medicine offers multiple opportunities to address neurodegenerative disorders such as Alzheimer's and Parkinson's disease. These diseases are a significant burden for society and the health system, affecting millions of people worldwide without sensitive and selective diagnostic methodologies or effective treatments to stop their progression. In this sense, the use of gold nanoparticles is a promising tool due to their unique properties at the nanometric level. They can be functionalized with specific molecules to selectively target pathological proteins such as Tau and α-synuclein for Alzheimer's and Parkinson's disease, respectively. Additionally, these proteins are used as diagnostic biomarkers, wherein gold nanoparticles play a key role in enhancing their signal, even at the low concentrations present in biological samples such as blood or cerebrospinal fluid, thus enabling an early and accurate diagnosis. On the other hand, gold nanoparticles act as drug delivery platforms, bringing therapeutic agents directly into the brain, improving treatment efficiency and precision, and reducing side effects in healthy tissues. However, despite the exciting potential of gold nanoparticles, it is crucial to address the challenges and issues associated with their use in the medical field before they can be widely applied in clinical settings. It is critical to ensure the safety and biocompatibility of these nanomaterials in the context of the central nervous system. Therefore, rigorous preclinical and clinical studies are needed to assess the efficacy and feasibility of these strategies in patients. Since there is scarce and sometimes contradictory literature about their use in this context, the main aim of this review is to discuss and analyze the current state-of-the-art of gold nanoparticles in relation to delivery, diagnosis, and therapy for Alzheimer's and Parkinson's disease, as well as recent research about their use in preclinical, clinical, and emerging research areas.


Subject(s)
Gold , Metal Nanoparticles , Neurodegenerative Diseases , alpha-Synuclein , tau Proteins , Humans , Gold/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , tau Proteins/metabolism , Animals , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/diagnosis , Parkinson Disease/diagnosis , Parkinson Disease/drug therapy , Alzheimer Disease/drug therapy , Alzheimer Disease/diagnosis , Drug Delivery Systems/methods , Biomarkers
6.
Nano Lett ; 24(20): 6165-6173, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38717317

ABSTRACT

Dynamic therapies, which induce reactive oxygen species (ROS) production in situ through endogenous and exogenous stimulation, are emerging as attractive options for tumor treatment. However, the complexity of the tumor substantially limits the efficacy of individual stimulus-triggered dynamic therapy. Herein, bimetallic copper and ruthenium (Cu@Ru) core-shell nanoparticles are applied for endo-exogenous stimulation-triggered dynamic therapy. The electronic structure of Cu@Ru is regulated through the ligand effects to improve the adsorption level for small molecules, such as water and oxygen. The core-shell heterojunction interface can rapidly separate electron-hole pairs generated by ultrasound and light stimulation, which initiate reactions with adsorbed small molecules, thus enhancing ROS generation. This synergistically complements tumor treatment together with ROS from endogenous stimulation. In vitro and in vivo experiments demonstrate that Cu@Ru nanoparticles can induce tumor cell apoptosis and ferroptosis through generated ROS. This study provides a new paradigm for endo-exogenous stimulation-based synergistic tumor treatment.


Subject(s)
Apoptosis , Copper , Reactive Oxygen Species , Ruthenium , Copper/chemistry , Copper/pharmacology , Humans , Reactive Oxygen Species/metabolism , Animals , Ruthenium/chemistry , Ruthenium/pharmacology , Apoptosis/drug effects , Mice , Cell Line, Tumor , Neoplasms/drug therapy , Neoplasms/therapy , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Ligands , Ferroptosis/drug effects , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology
7.
Biomater Adv ; 161: 213872, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38733802

ABSTRACT

Cells can sense the mechanical stimulation of nanoparticles (NPs) and then regulate the cellular uptake process. The enhanced endocytosis efficiency can improve the concentration of NPs in tumor cells significantly, which is the key prerequisite for achieving efficient biological performance. However, the preparation methods of NPs with flexible and tunable stiffness are relatively limited, and the impact of stiffness property on their interaction with tumor cells remains unclear. In this study, soft liquid metal (LM) core was coated with hard silica layer, the obtained core-shell NPs with a wide range of Young's modulus (130.5 ± 25.6 MPa - 1729.2 ± 146.7 MPa) were prepared by adjusting the amount of silica. It was found that the NPs with higher stiffness exhibited superior cellular uptake efficiency and lysosomal escape ability compared to the NPs with lower stiffness. The silica layer not only affected the stiffness, but also improved the photothermal stability of the LM NPs. Both in vitro and in vivo results demonstrated that the NPs with higher stiffness displayed significantly enhanced tumor hyperthermia capability. This work may provide a paradigm for the preparation of NPs with varying stiffness and offer insights into the role of the mechanical property of NPs in their delivery.


Subject(s)
Metal Nanoparticles , Photothermal Therapy , Silicon Dioxide , Silicon Dioxide/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Photothermal Therapy/methods , Animals , Humans , Mice , Cell Line, Tumor , Neoplasms/therapy , Neoplasms/drug therapy , Neoplasms/pathology , Endocytosis/drug effects
8.
Nanoscale ; 16(21): 10448-10457, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38752569

ABSTRACT

With continuous advances in medical technology, non-invasive embolization has emerged as a minimally invasive treatment, offering new possibilities in cancer therapy. Fluorescent labeling can achieve visualization of therapeutic agents in vivo, providing technical support for precise treatment. This paper introduces a novel in situ non-invasive embolization composite material, Au NPs@(mPEG-PLGTs), created through the electrostatic combination of L-cysteine-modified gold nanoparticles (Au NPs) and methoxy polyethylene glycol amine-poly[(L-glutamic acid)-(L-tyrosine)] (mPEG-PLGTs). Experiments were undertaken to confirm the biocompatibility, degradability, stability and performance of this tumor therapy. The research results demonstrated a reduction in tumor size as early as the fifth day after the initial injection, with a significant 90% shrinkage in tumor volume observed after a 20-day treatment cycle, successfully inhibiting tumor growth and exhibiting excellent anti-tumor effects. Utilizing near-infrared in vivo imaging, Au NPs@(mPEG-PLGTs) displayed effective fluorescence tracking within the bodies of nude BALB-c mice. This study provides a novel direction for the further development and innovation of in situ non-invasive embolization in the field, highlighting its potential for rapid, significant therapeutic effects with minimal invasiveness and enhanced safety.


Subject(s)
Gold , Metal Nanoparticles , Mice, Inbred BALB C , Mice, Nude , Polyethylene Glycols , Gold/chemistry , Animals , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Mice , Polyethylene Glycols/chemistry , Cell Line, Tumor , Humans , Hydrogen-Ion Concentration , Embolization, Therapeutic , Polyglutamic Acid/chemistry , Polyglutamic Acid/analogs & derivatives
9.
Dokl Biochem Biophys ; 516(1): 111-114, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38795244

ABSTRACT

Proton therapy can treat tumors located in radiation-sensitive tissues. This article demonstrates the possibility of enhancing the proton therapy with targeted gold nanoparticles that selectively recognize tumor cells. Au-PEG nanoparticles at concentrations above 25 mg/L and 4 Gy proton dose caused complete death of EMT6/P cells in vitro. Binary proton therapy using targeted Au-PEG-FA nanoparticles caused an 80% tumor growth inhibition effect in vivo. The use of targeted gold nanoparticles is promising for enhancing the proton irradiation effect on tumor cells and requires further research to increase the therapeutic index of the approach.


Subject(s)
Carcinoma, Ehrlich Tumor , Gold , Metal Nanoparticles , Proton Therapy , Gold/chemistry , Gold/pharmacology , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Proton Therapy/methods , Animals , Carcinoma, Ehrlich Tumor/radiotherapy , Carcinoma, Ehrlich Tumor/drug therapy , Carcinoma, Ehrlich Tumor/pathology , Mice , Cell Line, Tumor , Polyethylene Glycols/chemistry
10.
Nanoscale ; 16(22): 10656-10662, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38758021

ABSTRACT

The ever-growing challenges of traditional antibiotic therapy and chronic wound healing have created a hot topic for the development and application of new antimicrobial agents. Silver nanoclusters (Ag NCs) with ultrasmall sizes (<2 nm) and antibacterial effects are promising candidates for next-generation antibiotics, particularly against multi-drug resistant strains. However, the biosafety in the clinical application of Ag NCs remains suboptimal despite some existing studies of Ag NCs for biomedical applications. Considering this, an ultrasmall Ag NC with excellent water solubility was synthesized by a two-phase ligand-exchange method, which exhibits broad-spectrum antibacterial performance. The minimum inhibitory concentrations of Ag NCs against MRSA, S. aureus, P. aeruginosa and E. coli were evaluated as 50, 80, 5 and 5 µg mL-1, respectively. Furthermore, a carbomer hydrogel was prepared to be incorporated into the Ag NCs for achieving excellent biocompatibility and biosafety. In vitro experiments demonstrate that the Ag NC-gel exhibits good antibacterial properties with lower cytotoxicity. Finally, in vivo experiments suggest that this ultrasmall Ag NC functionalized with the hydrogel can serve as an effective and safe antimicrobial agent to aid in wound healing.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Hydrogels , Metal Nanoparticles , Microbial Sensitivity Tests , Silver , Wound Healing , Silver/chemistry , Silver/pharmacology , Wound Healing/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Animals , Escherichia coli/drug effects , Mice , Staphylococcus aureus/drug effects , Pseudomonas aeruginosa/drug effects , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects
11.
Article in English | MEDLINE | ID: mdl-38711134

ABSTRACT

Complex metal nanostructures represent an exceptional category of materials characterized by distinct morphologies and physicochemical properties. Nanostructures with shape anisotropies, such as nanorods, nanostars, nanocages, and nanoprisms, are particularly appealing due to their tunable surface plasmon resonances, controllable surface chemistries, and effective targeting capabilities. These complex nanostructures can absorb light in the near-infrared, enabling noteworthy applications in nanomedicine, molecular imaging, and biology. The engineering of targeting abilities through surface modifications involving ligands, antibodies, peptides, and other agents potentiates their effects. Recent years have witnessed the development of innovative structures with diverse compositions, expanding their applications in biomedicine. These applications encompass targeted imaging, surface-enhanced Raman spectroscopy, near-infrared II imaging, catalytic therapy, photothermal therapy, and cancer treatment. This review seeks to provide the nanomedicine community with a thorough and informative overview of the evolving landscape of complex metal nanoparticle research, with a specific emphasis on their roles in imaging, cancer therapy, infectious diseases, and biofilm treatment. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Diagnostic Tools > Diagnostic Nanodevices.


Subject(s)
Metal Nanoparticles , Nanomedicine , Neoplasms , Humans , Animals , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Neoplasms/diagnostic imaging , Neoplasms/therapy , Nanostructures/chemistry , Mice
12.
ACS Appl Mater Interfaces ; 16(22): 28245-28262, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38770930

ABSTRACT

Engineering bulk covalent organic frameworks (COFs) to access specific morphological structures holds paramount significance in boosting their functions in cancer treatment; nevertheless, scant effort has been dedicated to exploring this realm. Herein, silica core-shell templates and multifunctional COF-based reticulated hollow nanospheres (HCOFs) are novelly designed as a versatile nanoplatform to investigate the simultaneous effect of dual-drug chemotherapy and photothermal ablation. Taking advantage of the distinct structural properties of the template, the resulting two-dimensional (2D) HCOF, featuring large internal voids and a peripheral interconnected mesoporous shell, presents intriguing benefits over its bulk counterparts for cancer treatment, including a well-defined morphology, an outstanding drug loading capability (99.6%) attributed to its ultrahigh surface area (2087 m2/g), great crystallinity, improved tumor accumulation, and an adjustable drug release profile. After being loaded with hydrophilic doxorubicin with a remarkable loading capacity, the obtained drug-loaded HCOFs were coated with gold nanoparticles (Au NPs) to confer them with three properties, including pore entrance blockage, active-targeting capability, and improved biocompatibility via secondary modification, besides high near infrared (NIR) absorption for efficient photothermal hyperthermia cancer suppression. The resultant structure was functionalized with mono-6-thio-ß-cyclodextrin (ß-CD) as a second pocket to load docetaxel as the hydrophobic anticancer agent (combination index = 0.33). The dual-drug-loaded HCOF displayed both pH- and near-infrared-responsive on-demand drug release. In vitro and in vivo evaluations unveiled the prominent synergistic performance of coloaded HCOF in cancer elimination upon NIR light irradiation. This work opens up a new avenue for exciting applications of structurally engineered HCOFs as hydrophobic/hydrophilic drug carriers as well as multimodal treatment agents.


Subject(s)
Doxorubicin , Metal-Organic Frameworks , Photothermal Therapy , Animals , Doxorubicin/chemistry , Doxorubicin/pharmacology , Mice , Humans , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Gold/chemistry , Drug Delivery Systems , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Neoplasms/drug therapy , Neoplasms/therapy , Neoplasms/pathology , Drug Carriers/chemistry , Female , Drug Liberation , Mice, Inbred BALB C , Cell Line, Tumor , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Silicon Dioxide/chemistry
13.
Int Wound J ; 21(4): e14872, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38629691

ABSTRACT

Silver nanoparticle dressings have gained popularity recently as a way to treat challenging wounds. Notwithstanding the properties of Ag-NPS (silver nanoparticles) described by several articles, there is a lack of clinical studies that guide healthcare professionals to specific and conscious use. In this case series, Ag-NPS dressing was tested on a randomized group of 10 patients with complex wounds requiring conservative treatment. Each case was analysed, recording the patient's history, the peculiar characteristics and the progressive changes in the wound. The wound bed and the quality of the peri-wound skin improved and a decrease in signs of infection was observed. The application of the dressing was simple and comfortable for the patient and it was appreciated for its sealing ability. A few capacity restrictions showed up: those should be read as elements to improve the indications for this peculiar dressing. The thin tissue matrix of the Ag-NPS dressing does not allow for massive absorption and also performs poorly in reducing little exudate. The reduction in wound width is also limited: reconstructive surgery was required in half of the enrolled patients to achieve wound healing.


Subject(s)
Burns , Metal Nanoparticles , Silver , Humans , Bandages , Burns/drug therapy , Metal Nanoparticles/therapeutic use , Silver/therapeutic use , Wound Healing
14.
J Dent Res ; 103(5): 516-525, 2024 May.
Article in English | MEDLINE | ID: mdl-38581213

ABSTRACT

Titanium (Ti)-based biomaterials lack inherent antimicrobial activities, and the dental plaque formed on the implant surface is one of the main risk factors for implant infections. Construction of an antibacterial surface can effectively prevent implant infections and enhance implant success. Silver nanoparticles (AgNPs) exhibit broad antibacterial activity and a low tendency to induce drug resistance, but AgNPs easily self-aggregate in the aqueous environment, which significantly impairs their antibacterial activity. In this study, UiO-66/AgNP (U/A) nanocomposite was prepared, where zirconium metal-organic frameworks (UiO-66) were employed as the confinement matrix to control the particle size and prevent aggregation of AgNPs. The bactericidal activity of U/A against methicillin-resistant Staphylococcus aureus and Escherichia coli increased nearly 75.51 and 484.50 times compared with individually synthesized Ag. The antibacterial mechanism can be attributed to the enhanced membrane rupture caused by the ultrafine AgNPs on UiO-66, leading to protein leakage and generation of intracellular reactive oxygen species. Then, U/A was loaded onto Ti substrates (Ti-U/A) by using self-assembly deposition methods to construct an antibacterial surface coating. Ti-U/A exhibited excellent antibacterial activities and desired biocompatibility both in vitro and in vivo. The U/A nanocomposite coating technique is thus expected to be used as a promising surface modification strategy for Ti-based dental implants for preventing dental implant infections.


Subject(s)
Anti-Bacterial Agents , Coated Materials, Biocompatible , Dental Implants , Escherichia coli , Metal Nanoparticles , Methicillin-Resistant Staphylococcus aureus , Silver , Zirconium , Silver/pharmacology , Dental Implants/microbiology , Anti-Bacterial Agents/pharmacology , Metal Nanoparticles/therapeutic use , Escherichia coli/drug effects , Zirconium/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Coated Materials, Biocompatible/pharmacology , Metal-Organic Frameworks/pharmacology , Metal-Organic Frameworks/chemistry , Animals , Titanium/chemistry , Nanocomposites/chemistry , Surface Properties , Mice , Reactive Oxygen Species
15.
Int J Mol Sci ; 25(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38674073

ABSTRACT

Prostate cancer (PCA) is the second most common cancer diagnosis in men and the fifth leading cause of death worldwide. The conventional treatments available are beneficial to only a few patients and, in those, some present adverse side effects that eventually affect the quality of life of most patients. Thus, there is an urgent need for effective, less invasive and targeted specific treatments for PCA. Photothermal therapy (PTT) is a minimally invasive therapy that provides a localized effect for tumour cell ablation by activating photothermal agents (PTA) that mediate the conversion of the light beam's energy into heat at the site. As tumours are unable to easily dissipate heat, they become more susceptible to temperature increases. In the PTT field, gold nanoparticles (AuNPs) have been attracting interest as PTA. The aim of this study was to formulate AuNPs capable of remaining retained in the tumour and subsequently generating heat at the tumour site. AuNPs were synthesized and characterized in terms of size, polydispersity index (PdI), zeta potential (ZP), morphology and the surface plasmon resonance (SPR). The safety of AuNPs and their efficacy were assessed using in vitro models. A preliminary in vivo safety assessment of AuNPs with a mean size lower than 200 nm was confirmed. The morphology was spherical-like and the SPR band showed good absorbance at the laser wavelength. Without laser, AuNPs proved to be safe both in vitro (>70% viability) and in vivo. In addition, with laser irradiation, they proved to be relatively effective in PCA cells. Overall, the formulation appears to be promising for use in PTT.


Subject(s)
Gold , Metal Nanoparticles , Prostatic Neoplasms , Gold/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Male , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/therapy , Humans , Animals , Photothermal Therapy/methods , Cell Line, Tumor , Mice , Surface Plasmon Resonance , Lasers
16.
ACS Biomater Sci Eng ; 10(5): 3438-3453, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38564666

ABSTRACT

Despite being a weaker metal, zinc has become an increasingly popular candidate for biodegradable implant applications due to its suitable corrosion rate and biocompatibility. Previous studies have experimented with various alloy elements to improve the overall mechanical performance of pure Zn without compromising the corrosion performance and biocompatibility; however, the thermal stability of biodegradable Zn alloys has not been widely studied. In this study, TiC nanoparticles were introduced for the first time to a Zn-Al-Cu system. After hot rolling, TiC nanoparticles were uniformly distributed in the Zn matrix and effectively enabled phase control during solidification. The Zn-Cu phase, which was elongated and sharp in the reference alloy, became globular in the nanocomposite. The strength of the alloy, after introducing TiC nanoparticles, increased by 31% from 259.7 to 340.3 MPa, while its ductility remained high at 49.2% elongation to failure. Fatigue performance also improved greatly by adding TiC nanoparticles, increasing the fatigue limit by 47.6% from 44.7 to 66 MPa. Furthermore, TiC nanoparticles displayed excellent phase control capability during body-temperature aging. Without TiC restriction, Zn-Cu phases evolved into dendritic morphologies, and the Al-rich eutectic grew thicker at grain boundaries. However, both Zn-Cu and Al-rich eutectic phases remained relatively unchanged in shape and size in the nanocomposite. A combination of exceptional tensile properties, improved fatigue performance, better long-term stability with a suitable corrosion rate, and excellent biocompatibility makes this new Zn-Al-Cu-TiC material a promising candidate for biodegradable stents and other biodegradable applications.


Subject(s)
Absorbable Implants , Copper , Stents , Zinc , Zinc/chemistry , Zinc/pharmacology , Copper/chemistry , Copper/pharmacology , Alloys/chemistry , Humans , Titanium/chemistry , Titanium/pharmacology , Aluminum/chemistry , Aluminum/pharmacology , Materials Testing , Corrosion , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Nanoparticles/chemistry , Nanocomposites/chemistry
17.
Nanoscale ; 16(18): 8828-8835, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38572521

ABSTRACT

Here, we first introduce caged gold nanostars (C-GNS), a novel hybrid nanoplatform combining the exceptional plasmonic properties of nanostars with the loading capability of hollow-shell structures. We present two synthetic routes used to produce C-GNS particles and highlight the benefits of the galvanic replacement-free approach. FEM simulations explore the enhanced plasmonic properties of this novel nanoparticle morphology. Finally, in a proof-of-concept study, we successfully demonstrate in vivo hyperspectral imaging and photothermal treatment of tumors in a mouse model with the C-GNS nanoplatform.


Subject(s)
Gold , Metal Nanoparticles , Theranostic Nanomedicine , Gold/chemistry , Animals , Mice , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Humans , Photothermal Therapy , Neoplasms/diagnostic imaging , Neoplasms/therapy , Cell Line, Tumor , Female
18.
Phys Chem Chem Phys ; 26(17): 12915-12927, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38629229

ABSTRACT

Targeted alpha therapy (TAT) is a methodology that is being developed as a promising cancer treatment using the α-particle decay of radionuclides. This technique involves the use of heavy radioactive elements being placed near the cancer target area to cause maximum damage to the cancer cells while minimizing the damage to healthy cells. Using gold nanoparticles (AuNPs) as carriers, a more effective therapy methodology may be realized. AuNPs can be good candidates for transporting these radionuclides to the vicinity of the cancer cells since they can be labeled not just with the radionuclides, but also a host of other proteins and ligands to target these cells and serve as additional treatment options. Research has shown that astatine and iodine are capable of adsorbing onto the surface of gold, creating a covalent bond that is quite stable for use in experiments. However, there are still many challenges that lie ahead in this area, whether they be theoretical, experimental, and even in real-life applications. This review will cover some of the major developments, as well as the current state of technology, and the problems that need to be tackled as this research topic moves along to maturity. The hope is that with more workers joining the field, we can make a positive impact on society, in addition to bringing improvement and more knowledge to science.


Subject(s)
Astatine , Gold , Metal Nanoparticles , Gold/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Humans , Astatine/chemistry , Astatine/therapeutic use , Neoplasms/radiotherapy , Neoplasms/drug therapy
19.
ACS Biomater Sci Eng ; 10(5): 2703-2724, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38644798

ABSTRACT

The scientific world is increasingly focusing on rare earth metal oxide nanomaterials due to their consequential biological prospects, navigated by breakthroughs in biomedical applications. Terbium belongs to rare earth elements (lanthanide series) and possesses remarkably strong luminescence at lower energy emission and signal transduction properties, ushering in wide applications for diagnostic measurements (i.e., bioimaging, biosensors, fluorescence imaging, etc.) in the biomedical sectors. In addition, the theranostic applications of terbium-based nanoparticles further permit the targeted delivery of drugs to the specific site of the disease. Furthermore, the antimicrobial properties of terbium nanoparticles induced via reactive oxygen species (ROS) cause oxidative damage to the cell membrane and nuclei of living organisms, ion release, and surface charge interaction, thus further creating or exhibiting excellent antioxidant characteristics. Moreover, the recent applications of terbium nanoparticles in tissue engineering, wound healing, anticancer activity, etc., due to angiogenesis, cell proliferation, promotion of growth factors, biocompatibility, cytotoxicity mitigation, and anti-inflammatory potentials, make this nanoparticle anticipate a future epoch of nanomaterials. Terbium nanoparticles stand as a game changer in the realm of biomedical research, proffering a wide array of possibilities, from revolutionary imaging techniques to advanced drug delivery systems. Their unique properties, including luminescence, magnetic characteristics, and biocompatibility, have redefined the boundaries of what can be achieved in biomedicine. This review primarily delves into various mechanisms involved in biomedical applications via terbium-based nanoparticles due to their physicochemical characteristics. This review article further explains the potential biomedical applications of terbium nanoparticles with in-depth significant mechanisms from the individual literature. This review additionally stands as the first instance to furnish a "single-platted" comprehensive acquaintance of terbium nanoparticles in shaping the future of healthcare as well as potential limitations and overcoming strategies that require exploration before being trialed in clinical settings.


Subject(s)
Terbium , Humans , Terbium/chemistry , Animals , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Metal Nanoparticles/therapeutic use , Metal Nanoparticles/chemistry , Tissue Engineering/methods , Theranostic Nanomedicine/methods , Drug Delivery Systems/methods
20.
J Nanobiotechnology ; 22(1): 157, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589904

ABSTRACT

Osteoarthritis (OA) is a common degenerative joint disease that can cause severe pain, motor dysfunction, and even disability. A growing body of research indicates that gut microbiota and their associated metabolites are key players in maintaining bone health and in the progression of OA. Short-chain fatty acids (SCFAs) are a series of active metabolites that widely participate in bone homeostasis. Gold nanoparticles (GNPs) with outstanding anti-bacterial and anti-inflammatory properties, have been demonstrated to ameliorate excessive bone loss during the progression of osteoporosis (OP) and rheumatoid arthritis (RA). However, the protective effects of GNPs on OA progression are not clear. Here, we observed that GNPs significantly alleviated anterior cruciate ligament transection (ACLT)-induced OA in a gut microbiota-dependent manner. 16S rDNA gene sequencing showed that GNPs changed gut microbial diversity and structure, which manifested as an increase in the abundance of Akkermansia and Lactobacillus. Additionally, GNPs increased levels of SCFAs (such as butyric acid), which could have improved bone destruction by reducing the inflammatory response. Notably, GNPs modulated the dynamic balance of M1/M2 macrophages, and increased the serum levels of anti-inflammatory cytokines such as IL-10. To sum up, our study indicated that GNPs exhibited anti-osteoarthritis effects via modulating the interaction of "microbiota-gut-joint" axis, which might provide promising therapeutic strategies for OA.


Subject(s)
Gastrointestinal Microbiome , Metal Nanoparticles , Gold/pharmacology , Metal Nanoparticles/therapeutic use , Fatty Acids, Volatile , Anti-Inflammatory Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...