Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 320
Filter
1.
J Hazard Mater ; 472: 134527, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38735184

ABSTRACT

Toxic metal(loid)s released into the soil by non-ferrous metal mining and smelting activities pose a serious threat to residents and the surrounding ecosystem. Considering only total metal(loid) concentrations likely overestimates routine (eco)toxicological risk assessment of soil. We hypothesize that considering metal(loid) bioavailability/accessibility will improve the accuracy of risk assessment. To test this hypothesis, four mining areas in Southwest China, including mining and surrounding sites, were studied. Bioavailability was determined considering metal(loid)s leached by a simulated strong acid rain (SSAR) treatment. In the four areas, the mining site showed higher cumulative releases of metal(loid)s under SSAR treatment than the agricultural field located in the surrounding sites. Thus, the bioavailable metal(loid)s contents were continuously being released during SSAR treatment and likely increased the environmental risk. Ecological and health risk assessment of soil, calculated using total metal(loid)s content, was corrected considering bioavailable/accessible metal(loid)s, which was determined by the heavy metal(loid)s forms and in vitro simulated intestinal stages. Although the corrected indices indicated that the risk of metal(loid)s-contaminated soil was reduced, unfavorable ecological and health risks remained in the four areas. Our study provides new perspectives to better predict the risk of bioavailable/accessible metal(loid)s in non-ferrous metal contaminated and surrounding soils.


Subject(s)
Biological Availability , Mining , Soil Pollutants , Soil Pollutants/analysis , Soil Pollutants/toxicity , Risk Assessment , China , Environmental Monitoring/methods , Metals, Heavy/analysis , Metals, Heavy/toxicity , Acid Rain , Soil/chemistry , Metalloids/analysis , Metalloids/toxicity , Metalloids/pharmacokinetics
2.
Ecotoxicol Environ Saf ; 279: 116472, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38761496

ABSTRACT

Exposure to metals/metalloids is reported to potentially influence semen quality. While most studies have focused on single metal impacts, the link between exposure to multiple metals and semen quality has remained less explored. The study aimed to investigate the effects of both individual and mixed metal/metalloid exposure on semen quality. A total of 330 men were recruited from three reproductive centers in eastern China. Seminal plasma levels of 25 metals/metalloids and sperm parameters were determined. We used the Generalized Linear Model (GLM) and Restricted Cubic Spline (RCS) to assess the relationships between single metals/metalloids and semen quality. The weighted quantile sum (WQS) models were then applied to evaluate the combined effect of all these metals/metalloids. We observed positive associations of exposure to lithium (Li), zinc (Zn), and magnesium (Mg) with an increased risk of below reference values for progressive motility and total motility using a logistic regression model (P < 0.05). Additionally, our results also revealed a significant inverse relationship between aluminum (Al) and both sperm concentration and count, while cobalt (Co) demonstrated a positive association with sperm concentration (P < 0.05). Notably, the WQS model indicated a significant positive association between exposure to metal/metalloid mixtures and the risk of abnormal progressive motility (OR: 1.57; 95%CI: 1.10, 2.24) and abnormal total motility (OR: 1.53; 95%CI: 1.06, 2.19), with this association primarily driven by Li, Mg, and Zn. In summary, our findings indicate that exposure to metal/metalloid mixtures might have an adverse effect on semen quality.


Subject(s)
Metalloids , Metals , Semen Analysis , Semen , Male , Semen/drug effects , Semen/chemistry , Metalloids/analysis , Cross-Sectional Studies , Humans , Adult , Metals/analysis , Metals/blood , China , Environmental Pollutants/blood , Sperm Motility/drug effects , Sperm Count , Young Adult
3.
Food Chem Toxicol ; 188: 114664, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636597

ABSTRACT

The aim of this study was to evaluate the inorganic elemental composition (49 elements) of 29 botanical preparations obtained from fruits, leaves, peels, seeds, roots, fungi, and spirulina by using inductively coupled-mass spectrometry and a mercury analyzer. Simultaneously, the risk associated with the chronic dietary exposure to 12 toxic metals and metalloids among the European population was evaluated by using a probabilistic approach based on Monte Carlo simulations. The analysis revealed worrying intake levels of Al, As, and Ni, primarily stemming from the consumption of spirulina-, peel-, and leaf-based botanicals by younger age groups. The intake of As from all analyzed botanicals posed a significant risk for infants, yielding margins of exposure (MOEs) below 1, while those deriving from peel-based botanicals raised concerns across all age groups (MOEs = 0.04-2.3). The consumption of peel-based botanicals contributed substantially (13-130%) also to the tolerable daily intake of Ni for infants, toddlers, and children, while that of spirulina-based botanicals raised concerns related to Al intake also among adults, contributing to 11-176% of the tolerable weekly intake of this element. The findings achieved underscore the importance of implementing a monitoring framework to address chemical contamination of botanicals, thus ensuring their safety for regular consumers.


Subject(s)
Dietary Exposure , Food Contamination , Metalloids , Humans , Infant , Metalloids/analysis , Metalloids/toxicity , Child , Child, Preschool , Food Contamination/analysis , Adult , Metals/analysis , Metals/toxicity , Monte Carlo Method , Adolescent , Risk Assessment , Young Adult , Plant Preparations/chemistry , Plant Preparations/analysis
4.
Environ Res ; 252(Pt 2): 118744, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38579993

ABSTRACT

BACKGROUND: The purpose of the Esteban study was to describe levels of various biomarkers of exposure to several environmental pollutants, including metals and metalloids, among the French population. This paper describes the distribution of concentrations of 28 metals and metalloids in two different populations, and estimates the main determinants of exposure to total arsenic, the sum of inorganic arsenic (iAs) and its two metabolites monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA), cadmium, chromium, copper, mercury and nickel. METHODS: Esteban is a cross-sectional study conducted between 2014 and 2016 on a random sample of 2503 adults (18-74 years old) and 1104 children (6-17 years old) from the general population. The data collected included biological samples (blood, hair, and urines), socio-demographic characteristics, environmental and occupational exposure, and information on dietary factors and lifestyle. The geometric mean and percentiles of the distribution were estimated for each metal. Multivariate analyses were performed to identify the determinants of exposure using a generalized linear model. RESULTS: Only four metals had a quantification rate below 90% in adults (beryllium, iridium, palladium, and platinum), and three metals in children (beryllium, iridium, and platinum). The concentrations of total arsenic, cadmium, chromium and mercury were higher than those found in most international studies. The determinants significantly associated with exposure were mainly diet and smoking. CONCLUSIONS: Esteban provided a nationwide description of 28 metal and metalloid exposure levels for adults (some never measured before) and for the first time in children. The study results highlighted widespread exposure to several metals and metalloids. These results could be used to advocate public health decisions for continued efforts to reduce harmful exposure to toxic metals. The Reference values (RV95) built from Esteban could also be used to support future government strategies.


Subject(s)
Environmental Exposure , Environmental Pollutants , Metalloids , Metals , Humans , Adult , Adolescent , Middle Aged , Child , France , Young Adult , Female , Cross-Sectional Studies , Male , Metalloids/analysis , Environmental Exposure/analysis , Aged , Metals/analysis , Environmental Pollutants/analysis
5.
Nutrients ; 16(6)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38542681

ABSTRACT

Preeclampsia is a primary placental disorder, with impaired placental vascularization leading to uteroplacental hypoperfusion. We aimed to investigate differences in metal and metalloid content between the placentas of women with preeclampsia and healthy controls. This was a case-control study in 63 women with preeclampsia and 113 healthy women. Clinical data were obtained from medical records. Inductively coupled plasma mass spectrometry (ICP-MS) was used to measure the placental metals and metalloids content. Compared with healthy control subjects, preeclampsia was associated with a significantly lower concentration of essential elements (magnesium, calcium, iron, copper, zinc, and selenium) in the placental tissue. After multivariable adjustment, an interquartile range (IQR) increase in selenium concentration was associated with a reduced risk of preeclampsia with an OR of 0.50 (95% CI: 0.33-0.77). The joint effects of multiple selected metals and metalloids were associated with a reduced risk of preeclampsia. The lower placental magnesium, chromium, iron, zinc, and selenium concentrations of preeclampsia cases indicate a potential link to its pathogenesis. It also provides an intriguing avenue for future research in revealing the underlying mechanisms and potential intervention strategies for preeclampsia.


Subject(s)
Metalloids , Pre-Eclampsia , Selenium , Pregnancy , Female , Humans , Placenta/chemistry , Metalloids/analysis , Case-Control Studies , Magnesium/analysis , Zinc , Iron/analysis
6.
Sci Total Environ ; 923: 171351, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38432370

ABSTRACT

Cigarette smoke contains many chemicals that are harmful to both smokers and non-smokers. Breathing just a little cigarette smoke can be harmful. There are >7000 chemicals in cigarette smoke, at least 250 are known to be harmful and many of them can cause cancer. Currently, many studies reported the types of harmful organic compounds in cigarette smoke; instead, there are almost no works that describe the presence of inorganic compounds. In this work, a cost-effective self-made passive sampler (SMPS) was tested as a tool to collect different types of particulate matter (PM) from cigarette smoke containing metals as hazardous compounds (HCs). To determine the nature of the metals, nonmetals and metalloids as HCs, a direct qualitative analysis of the particulate matter (PM) was conducted without developing any special sample preparation procedure. For that, non-invasive elemental (Scanning Electron Microscope coupled to Energy Dispersive X-ray Spectrometry) and molecular (Raman microscopy) micro-spectroscopic techniques were used. Thanks to this methodology, it was possible to determine in deposited PM, the presence of metals such as Fe, Cr, Ni, Ti, Co, Sn, Zn, Ba, Al, Cu, Zr, Ce, Bi, etc. most of them as oxides but also embedded in different clusters with sulfates, aluminosilicates, even phosphates.


Subject(s)
Cigarette Smoking , Metalloids , Humans , Metalloids/analysis , Metals , Particulate Matter/analysis , Spectrometry, X-Ray Emission
7.
Arch Environ Contam Toxicol ; 86(3): 304-324, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38459980

ABSTRACT

Snow composition depends on the long-range transport of pollutants. This article examines aspects of snow composition in the town of Nadym in Western Siberia. During fieldwork conducted in 2021 and 2022, we determined dust load, concentrations and ratio of dissolved and suspended forms of metals and metalloids (MMs). Moreover, we analyzed air mass trajectories using the HYSPLIT model, and the results showed that industrial regions of the southern Urals, southeastern Siberia, and Kazakhstan were the sources of MMs. Content of the insoluble fraction was increased by 23-fold in Nadym. The dust load in Nadym was higher than that in urban communities situated in the temperate zone, even though this town is relatively small in population and has little industrial infrastructure. This significant increase in dust load led to a ten- to 100-fold increase in the content MMs. Local soils (Fe, Al), vehicles (W), building dust (Mg, Ca), and anti-icing agents (Na) were found to be the sources of pollution. We found that the high dust load is caused by meteorological factors, such as temperature inversion and a large number of calm days, which reduce the dispersion of pollution. This case study demonstrates that winter air quality in polar settlements can be worse than that in urban areas in the temperate zone, even with few local sources of pollution. Furthermore, the trend toward an increase in the number of windless days, such as observed in Siberia as a result of global climate change, increases the risk of anthropogenic pollution of the atmosphere of polar cities.


Subject(s)
Metalloids , Metals, Heavy , Cities , Environmental Monitoring/methods , Metalloids/analysis , Snow , Metals/analysis , Russia , Dust/analysis , Metals, Heavy/analysis
8.
Environ Pollut ; 347: 123679, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38462199

ABSTRACT

Close relationships exist between metal(loid)s exposure and embryo implantation failure (EIF) from animal and epidemiological studies. However, there are still inconsistent results and lacking of sensitive metal(loid) exposure biomarkers associated with EIF risk. We aimed to ascertain sensitive metal(loid) biomarkers to EIF and provide potential biological explanations. Candidate metal(loid) biomarkers were measured in the female hair (FH), female serum (FS), and follicular fluid (FF) with various exposure time periods. An analytical framework was established by integrating epidemiological association results, comprehensive literature searching, and knowledge-based adverse outcome pathway (AOP) networks. The sensitive biomarkers of metal(loid)s along with potential biological pathways to EIF were identified in this framework. Among the concerned 272 candidates, 45 metal(loid)s biomarkers across six time periods and three biomatrix were initially identified by single-metal(loid) analyses. Two biomarkers with counterfactual results according to literature summary results were excluded, and a total of five biomarkers were further determined from 43 remained candidates in mixture models. Finally, four sensitive metal(loid) biomarkers were eventually assessed by overlapping AOP networks information, including Se and Co in FH, and Fe and Zn in FS. AOP networks also identified key GO pathways and proteins involved in regulation of oxygen species biosynthetic, cell proliferation, and inflammatory response. Partial dependence results revealed Fe in FS and Co in FH at their low levels might be potential sensitive exposure levels for EIF. Our study provided a typical framework to screen the crucial metal(loid) biomarkers and ascertain that Se and Co in FH, and Fe and Zn in FS played an important role in embryo implantation.


Subject(s)
Metalloids , Metals, Heavy , Animals , Female , Metals/toxicity , Metals/analysis , Embryo Implantation , Biomarkers , Hair/chemistry , Metals, Heavy/analysis , Environmental Monitoring , Metalloids/analysis , China , Risk Assessment
9.
Environ Res ; 252(Pt 2): 118653, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38518907

ABSTRACT

BACKGROUND: In China, the effects of heavy metals and metalloids (HMMs) on liver health are not consistently documented, despite their prevalent environmental presence. OBJECTIVE: Our research assessed the association between HMMs and liver function biomarkers in a comprehensive sample of Chinese adults. METHODS: We analyzed data from 9445 participants in the China National Human Biomonitoring survey. Blood and urine were evaluated for HMM concentrations, and liver health was gauged using serum albumin (ALB), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) metrics. Various statistical methods were employed to understand the relationship between 11 HMMs and liver function, adjusting for multiple factors. We also explored interactions with alcohol intake, gender, and age. RESULTS: Among HMMs, selenium in blood [weighted geometric mean (GM) = 95.56 µg/L] and molybdenum in urine (GM = 46.44 µg/L) showed the highest concentrations, while lead in blood (GM = 21.92 µg/L) and arsenic in urine (GM = 19.80 µg/L) had the highest levels among risk HMMs. Manganese and thallium consistently indicated potential risk factor to liver in both sample types, while selenium displayed potential liver protection. Blood HMM mixtures were negatively associated with ALB (ß = -0.614, 95% CI: -0.809, -0.418) and positively with AST (ß = 0.701, 95% CI: 0.290, 1.111). No significant associations were found in urine HMM mixtures. Manganese, tin, nickel, and selenium were notable in blood mixture associations, with selenium and cobalt being significant in urine. The relationship of certain HMMs varied based on alcohol consumption. CONCLUSION: This research highlights the complex relationship between HMM exposure and liver health in Chinese adults, particularly emphasizing metals like manganese, thallium, and selenium. The results suggest a need for public health attention to low dose HMM exposure and underscore the potential benefits of selenium for liver health. Further studies are essential to establish causality.


Subject(s)
Environmental Exposure , Environmental Pollutants , Liver , Metalloids , Metals, Heavy , Humans , China , Male , Female , Adult , Cross-Sectional Studies , Middle Aged , Metals, Heavy/urine , Metals, Heavy/blood , Metalloids/urine , Metalloids/blood , Metalloids/analysis , Liver/drug effects , Environmental Exposure/analysis , Environmental Pollutants/urine , Environmental Pollutants/blood , Young Adult , Aged , Liver Function Tests , East Asian People
10.
Sci Total Environ ; 924: 171720, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38490431

ABSTRACT

Resuspension of road dust is a major source of airborne particulate matter (PM) in urban environments. Inhalation of ultrafine particles (UFP; < 0.1 µm) represents a health concern due to their ability to reach the alveoli and be translocated into the blood stream. It is therefore important to characterize chemical properties of UFPs associated with vehicle emissions. We investigated the capability of Single-Particle ICP-MS (SP-ICP-MS) to quantify key metal(loid)s in nanoparticles (NPs; < 0.1 µm) isolated from road dust collected in Toronto, Canada. Water extraction was performed to separate the <1-µm fraction from two different road dust samples (local road vs. arterial road) and a multi-element SP-ICP-MS analysis was then conducted on the samples' supernatants. Based on the particle number concentrations obtained for both supernatants, the metal(loid)-containing NPs could be grouped in the following categories: high (Cu and Zn, > 1.3 × 1011 particles/L), medium (V, Cr, Ba, Pb, Sb, Ce, La), low (As, Co, Ni, < 4.6 × 109 particles/L). The limit of detection for particle number concentration was below 5.5 × 106 particles/L for most elements, except for Cu, Co, Ni, Cr, and V (between 0.9 and 7.7 × 107 particles/L). The results demonstrate that road dust contains a wide range of readily mobilizable metal(loid)-bearing NPs and that NP numbers may vary as a function of road type. These findings have important implications for human health risk assessments in urban areas. Further research is needed, however, to comprehensively assess the NP content of road dust as influenced by various factors, including traffic volume and speed, fleet composition, and street sweeping frequency. The described method can quickly characterize multiple isotopes per sample in complex matrices, and offers the advantage of rapid sample scanning for the identification of NPs containing potentially toxic transition metal(loid)s at a low detection limit.


Subject(s)
Metalloids , Metals, Heavy , Trace Elements , Humans , Dust/analysis , Environmental Monitoring/methods , Metals/analysis , Vehicle Emissions/analysis , Particulate Matter/analysis , Trace Elements/analysis , Risk Assessment , Metals, Heavy/analysis , Cities , Metalloids/analysis
11.
Chemosphere ; 353: 141576, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38462180

ABSTRACT

Bullfrog tadpoles, Aquarana catesbeiana, were exposed to settleable particulate matter (SePM), (1 g L-1, 96 h) and their organs were collected for analysis of metal/metalloid, oxidative stress and neurotoxicity in liver, muscle, kidney and brain. The SePM water of the exposed groups contained 18 of the 28 metals/metalloids detected in ambient particulate matter (APM). Fe56 and Al were those that presented the highest concentrations, Cr, Mn, Pb and Cu increased from 10 to 20 times and Ti, V, Sr, Rb, Cd, Sn and Ni increased from 1 to 3 times compared to the control. Bioaccumulation of metals/metalloids in the exposure water varied significantly between organs, with the muscle and liver showing the highest concentrations of metals, followed by the brain. Lipoperoxidation and malondialdehyde increased only in muscle, while carbonyl proteins increased only in the liver and brain. Regarding nitric oxide synthase, there was an increase in the liver and brain in the group exposed to SePM. Catalase activity decreased in the liver and muscle, while the activity of glutathione peroxidase, increased in the liver and kidney and decreased in muscle. Glutathione S-transferase, which is mainly responsible for detoxification, increased in the liver and decreased in muscle and the kidney. Cholinesterase activity increased only in the muscle. The results indicate oxidative stress, due to oxidation catalyzed by metals, components of SePM. Thus, the results contribute to the understanding that SePM has a deleterious effect on the aquatic environment, negatively affecting bullfrog tadpoles, in different ways and levels in relation to the analyzed organs.


Subject(s)
Metalloids , Water Pollutants, Chemical , Animals , Rana catesbeiana , Particulate Matter/analysis , Larva , Metals/analysis , Oxidative Stress , Water/pharmacology , Metalloids/analysis , Water Pollutants, Chemical/analysis
12.
Article in English | MEDLINE | ID: mdl-38397630

ABSTRACT

The consumption of take-out food has increased worldwide; consequently, people are increasingly being exposed to chemicals from food containers. However, research on the migration of metals from containers to food is limited, and therefore, information required to determine the health risks is lacking. Herein, the amount of transfer of nine metals and metalloids (Pb, Sb, Cd, Ge, Co, Mn, Sn, As, and Hg) from food containers to food in South Korea was assessed from take-out food containers classified into paper and plastic container groups. The sample containers were eluted over time by either warming with 4% acetic acid at 70 °C or cooling with 4% acetic acid at 100 °C /deionized water at 25 °C. It was analyzed using an inductively coupled plasma mass spectrometer and a direct mercury analyzer. The reliability of the quantitative results was verified by calculating the linearity, limit of detection, and limit of quantification. We found that the amount of metals and metalloids (Pb, Sb, Cd, and Co) eluting over time was highly significant in the plastic group. Regardless of the food simulant and elution time, the amount of Sb transferred from the food containers to food was substantially higher in the plastic (average concentration: 0.488-1.194 µg/L) than in the paper group (average concentration: 0.001-0.03 µg/L). Fortunately, all food containers were distributed at levels safe for human health (hazard index: 0.000-64.756%). However, caution is needed when warm food is added to food containers. Overall, our results provide baseline data for the management and use of take-out containers.


Subject(s)
Mercury , Metalloids , Metals, Heavy , Humans , Metalloids/analysis , Cadmium/analysis , Food Packaging , Lead , Reproducibility of Results , Metals, Heavy/analysis , Mercury/analysis , Republic of Korea , Acetates , Risk Assessment , Environmental Monitoring/methods
13.
Environ Res ; 247: 118241, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38244967

ABSTRACT

Landfills are sources of soil, water, and air pollution due to the release of toxic compounds such as metals and metalloids. In both tropical and temperate environments, scavenger birds such as the Black Vulture (Coragyps atratus) that have learned to use these sites as a feeding area are probably exposed to metals, metalloids and other "persistent bioaccumulative toxic substances (PBTs)" released in open dumpsite (OD) and sanitary landfill (SL). The objective of this study is to evaluate the presence and distribution of toxic metals (Al, Sn, Hg, Cu, Pb, Cd, Cr) and As in OD and SL from urban, semi-urban and rural localities in Campeche, México, using molting feathers of C. atratus as bioindicators. A total of 125 Black Vulture primary and secondary wing feathers were collected from OD and SL. Metals were determined by voltammetry through acid digestion. The highest levels of metals occurred in landfills in urban, semi-urban, and rural localities. The elements with the highest concentrations were Al, with an average of 35.67 ± 33.51 µg g-1 from rural environments, and As, with 16.20 ± 30.06 µg g-1 from the urban localities. Mercury was the only element that had a very homogeneous distribution between the three environments we studied. In general, Pb, Hg, Cu and Cd were the elements that presented the lowest concentrations with 0.32 ± 0.35, 0.16 ± 0.22, 0.14 ± 0.31 and 0.06 ± 0.10 µg g-1, respectively regardless of any particular location or environment. Black Vultures from dumpsites are good bioindicators of what humans consume in urban, semi-urban, and rural environments. However, the conservation of vultures is of great importance since these scavenger birds perform ecosystem services by feeding on decomposing organic material.


Subject(s)
Falconiformes , Mercury , Metalloids , Metals, Heavy , Humans , Animals , Environmental Biomarkers , Metalloids/analysis , Ecosystem , Cadmium , Feathers , Mexico , Lead , Environmental Monitoring , Birds , Metals, Heavy/analysis
14.
Environ Sci Pollut Res Int ; 31(8): 11983-11994, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38225500

ABSTRACT

The western-European hedgehog (Erinaceus europaeus) is an insectivore with a wide distribution in Portugal and a potential tool for biomonitoring relevant One Health hazards, including heavy metal(loid)s' pollution. The aim of this study was to positively contribute to the current knowledge about the metal(loid) pollution in Portugal. Forty-six hedgehogs (from rescue centres; with known provenance) were necropsied. Sex, age category and weight were determined. Spines, liver and kidney were collected, and metalloid concentrations were determined by inductively coupled plasma mass spectrophotometry (ICP-MS). In general, results did not present alarming metal(loid) concentrations, with the exception of cadmium (Cd) (in the kidneys) and copper (Cu). Hedgehogs from Viana do Castelo and Viseu showed elevated concentrations of arsenic (As) and Castelo Branco presented concerning values of cadmium (Cd). Adult and heavier hedgehogs tended to present higher levels of metal(loid)s. Sex does not seem to significantly affect the metal(loid)s' concentrations. Further analysis would be needed to prioritize areas with detail and allow the application of the necessary mitigation strategies.


Subject(s)
Metalloids , Metals, Heavy , Animals , Cadmium/analysis , Portugal , Hedgehogs , Environmental Monitoring/methods , Metals, Heavy/analysis , Metalloids/analysis , China , Risk Assessment
15.
Ecotoxicology ; 33(1): 94-103, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38227083

ABSTRACT

The paper presents the results of studies on the influence of selected concentrations (10-100 mg L-1) of heavy metals (Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Zn) and metalloids (As, Sb, Se) on the germination and root elongation of garden cress (Lepidium sativum L). There are not many studies on phytotoxicity of heavy metals and metalloids with the complex use of single plant species so far. On the basis of the germination index (GI) and inhibition concentration IC50, the following order of phytotoxicity of the tested elements was determined: Se> As> Hg> Sb > Mo > Cd> Co > Zn > Ni. The other metals showed no phytotoxicity or even stimulating effect. In our study the stimulating effect of the majority of Pb concentrations and the lowest concentrations of Cd and Hg has been revealed. These metals do not play any role in living organisms, however some authors confirm their stimulating effect on plants at low concentrations. Toxic concentration of metals and metalloids calculated as IC50 are lower than the concentration calculated as GI (not phytotoxic). It is well known that seeds are more independent and tolerant to toxicants when they contain reserve substances which are used during the germination period. On the basis of conducted research, high tolerance of L. sativum to heavy metals and metalloids was found, which may indicate its usefulness for phytotoxicity assessment of leachate from contaminated soil or waste (e.g. foundry waste) and its application for bioremediation to manage heavy metal pollution of soils or foundry wastes containing heavy metals and metalloids. The understanding of heavy metal and metalloids toxicity will facilitate bioremediation.


Subject(s)
Mercury , Metalloids , Metals, Heavy , Soil Pollutants , Lepidium sativum , Cadmium , Metalloids/toxicity , Metalloids/analysis , Lead , Metals, Heavy/toxicity , Metals, Heavy/analysis , Plants , Soil , Environmental Monitoring/methods , Soil Pollutants/toxicity , Soil Pollutants/analysis
16.
Mar Pollut Bull ; 199: 116010, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38211539

ABSTRACT

Sediments sampled at the estuary of the Oka River in the biosphere reserve of Urdaibai, Spain were analyzed for trace elements. Sediments were collected at 45 points of the estuary and the concentration of 14 elements was measured. The geoaccumulation indexes (Igeo), Normalized Average Weighted Concentrations (NAWC) and mean Effect Range-Median quotients (mERMq) were calculated. The results obtained were complementary and allowed intra- and inter-estuary comparison. According to the present findings, the estuary was classified as healthy, since the anthropogenic contribution of metals and metalloids was generally small. However, shipping and fishing activities at the ports of Bermeo and Mundaka and urban and industrial wastes from Gernika were regarded as the major pollution sources. Nevertheless, only slightly contaminated and toxic sediments, especially related to Ni and Cu, were found in the towns of Gernika and Mundaka.


Subject(s)
Metalloids , Metals, Heavy , Water Pollutants, Chemical , Metals, Heavy/analysis , Metalloids/analysis , Estuaries , Rivers , Spain , Environmental Monitoring/methods , Geologic Sediments , Water Pollutants, Chemical/analysis
17.
Mar Pollut Bull ; 200: 116050, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38262213

ABSTRACT

Sponges are not routinely employed as metal bioindicators in Brazil. In this sense, this study reports baseline metal and metalloid concentrations, determined by inductively coupled plasma mass spectrometry, for two Demospongiae sponge species, Hymeniacidon heliophila and Desmapsamma anchorata, sampled from two Southeastern Brazil areas. Sponges from Ilha Grande Bay, an Environmental Protection Area, exhibited higher Al, As, Cd, Co, Cr, Fe, and Ni levels compared to Vermelha Beach, a metropolitan area in the Rio de Janeiro city. Several strong correlations were noted between elemental pairs, indicating common contamination sources and/or similar metabolic detoxification routes. Comparisons of the means determined herein for each study site to other reports indicate mostly lower Ag, As, Co, Cd, and Cu levels, while Al levels were higher than other studies, and Cr, Ni, and Fe were within reported ranges. These baseline data further knowledge on metal pollution in Desmspongiae members, which are still limited.


Subject(s)
Metalloids , Metals, Heavy , Porifera , Water Pollutants, Chemical , Animals , Metalloids/analysis , Brazil , Cadmium/analysis , Porifera/metabolism , Metals/analysis , Environmental Monitoring/methods , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis
18.
Mar Pollut Bull ; 200: 116058, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38278015

ABSTRACT

The uptake and distribution of copper, zinc, arsenic, and lead was examined in two rare Australian saltmarsh species, Tecticornia pergranulata and Wilsonia backhousei. The bioconcentration factors and translocation factors were generally much lower than one, except for the Zn translocation factors for T. pergranulata. When compared to other Australian saltmarsh taxa, these species generally accumulated the lowest levels observed among taxa, especially in terms of their BCFs. Essential metals tended to be regulated, while non-essential metals increased in concentration with dose during transport among compartments, a pattern not previously observed in Australian saltmarsh taxa. The uptake of metals into roots was mainly explained by total sediment metal loads as well as more acidic pH, increased soil organic matter, and decreased salinity. The low uptake and limited translocation observed in these rare taxa may offer a competitive advantage for their establishment and survival in the last urbanised populations, where legacy metal contamination acts as a selective pressure.


Subject(s)
Arsenic , Chenopodiaceae , Metalloids , Metals, Heavy , Soil Pollutants , New South Wales , Australia , Metals , Arsenic/analysis , Zinc/analysis , Metals, Heavy/analysis , Soil Pollutants/analysis , Soil , Metalloids/analysis
19.
Environ Res ; 243: 117885, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38072100

ABSTRACT

The abundance and diversity of the microflora in a complex environment such as soil is everchanging. Mica mining has led to metalloid poisoning and changes in soil biogeochemistry affecting the overall produce and leading to toxic dietary exposure. The study focuses on two prominent stressors acidity and arsenic, in mining-contaminated agricultural locations. Soil samples were collected from agricultural fields at a distance of 50 m (zone 1) and 500 m (zone 2) from active mines. Mean arsenic concentration was higher in zone 1 and pH was lower. Geostatistical and self-organizing maps were employed to report that the pattern of localization of soil acidity and arsenic content is similar indicating a causal relationship. Cluster and principal component analysis were further used to materialize a negative effect of soil acidity fractions and arsenic labile pool on soil enzymatic activity (fluorescein diacetate, dehydrogenase, ß-1,4-glucosidase, phosphatase, and urease), respiration and Microbial biomass carbon. Soil metagenomic analysis revealed significant differences in the abundance of microbial populations with zone 1 (contaminated zone) having lower alpha and beta diversity. Finally, the efficacy of several machine-learning tools was tested using Taylor diagrams and an effort was made to select a potent algorithm to predict the causal stressors responsible for depreciating soil microbial health. Random Forrest had superior predictive power based on numerical evidence and was therefore chosen as the best-fitted model. The aforementioned insights into soil microbial health and sustenance in stressed conditions can be beneficial for predicting remedial strategies and practicing sustainable agriculture.


Subject(s)
Arsenic , Metalloids , Microbiota , Soil Pollutants , Arsenic/toxicity , Metalloids/analysis , Agriculture , Soil/chemistry , Soil Microbiology , Soil Pollutants/toxicity , Soil Pollutants/analysis
20.
Vet Res Commun ; 48(2): 1015-1023, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38052737

ABSTRACT

Wild boars (Sus scrofa) are part of the hunting economy and are highly consumed in the Iberian Peninsula, including in the Castile and Leon regions. As zoonotic diseases, chemical pollutants in wild boars' internal tissues should be interpreted as evidence of environmental contamination and a matter of concern for animal, human and ecosystem health; in other words, a One Health concern. Twenty-eight wild boars' livers and kidneys (n = 28) from Castile and Leon were submitted to metal(loid) determination (As, Cd, Co, Cr, Cu, Ni, Pb, and Zn) with inductively coupled plasma mass spectrophotometry (ICP-MS) and histopathological exam. Cd levels, especially in the kidneys (7.063 ± 7.271 mg/kg dw), were the most concerning results, considering the calculated maximum values for consumption (EC No. 915/2023) (2.491 mg/kg dw or 1.0 mg/kg ww). Wild boars with hydropic changes in the liver presented higher concentrations of Ni. Thus, the metal(loid) contamination of wild boar carcasses seems to be a "no trace" but very relevant problem that should raise awareness of a more accurate monitoring program and other strategies to avoid public health consequences.


Subject(s)
Metalloids , Metals, Heavy , Humans , Animals , Swine , Cadmium/analysis , Metalloids/analysis , Public Health , Ecosystem , Environmental Monitoring/methods , Metals, Heavy/analysis , Sus scrofa
SELECTION OF CITATIONS
SEARCH DETAIL
...