Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.481
Filter
1.
J Hazard Mater ; 472: 134526, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38704908

ABSTRACT

The proliferation of toxic organisms caused by changes in the marine environment, coupled with the rising human activities along the coastal lines, has resulted in an increasing number of stinging incidents, posing a serious threat to public health. Here, we evaluated the systemic toxicity of the venom in jellyfish Chrysaora quinquecirrha at both cellular and animal levels, and found that jellyfish tentacle extract (TE) has strong lethality accompanied by abnormal elevation of blood biochemical indicators and pathological changes. Joint analysis of transcriptome and proteome indicated that metalloproteinases are the predominant toxins in jellyfish. Specially, two key metalloproteinases DN6695_c0_g3 and DN8184_c0_g7 were identified by mass spectrometry of the red blood cell membrane and tetracycline hydrochloride (Tch) inhibition models. Structurally, molecular docking and kinetic analysis are employed and observed that Tch could inhibit the enzyme activity by binding to the hydrophobic pocket of the catalytic center. In this study, we demonstrated that Tch impedes the metalloproteinase activity thereby reducing the lethal effect of jellyfish, which suggests a potential strategy for combating the health threat of marine toxic jellyfish.


Subject(s)
Cnidarian Venoms , Metalloproteases , Molecular Docking Simulation , Scyphozoa , Animals , Metalloproteases/chemistry , Metalloproteases/metabolism , Cnidarian Venoms/chemistry , Tetracycline/toxicity , Transcriptome/drug effects
2.
Toxicon ; 244: 107740, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705487

ABSTRACT

Although non-front fanged snakes account for almost two-thirds of snake diversity, most studies on venom composition and evolution focus exclusively on front-fanged species, which comprise most of the clinically relevant accidents. Comprehensive reports on venom composition of non-front fanged snakes are still scarce for several groups. In this study, we address such shortage of knowledge by providing new insights about the venom composition among species of Phalotris, a poorly studied Neotropical dipsadid genus. Phalotris are known for their specialized venom delivery system and toxic venoms, which can cause life-threatening accidents in humans. We evaluate the venom-gland transcriptome of Phalotris, comparing the following three South American species: P. reticulatus for the Araucaria Pine forests, P. lemniscatus for the Pampa grasslands, and P. mertensi for the Brazilian Cerrado. Our results indicate similar venom profiles, in which they share a high expression level of Kunitz-type inhibitors (KUNZ). On the other hand, comparative analyses revealed substantial differences in the expression levels of C-type lectins (CTL) and snake venom metalloproteinases (SVMP). The diverse set of SVMP and CTL isoforms shows signals of positive selection, and we also identified truncated forms of type III SVMPs, which resemble type II and type I SVMPs of viperids. Additionally, we identified a CNP precursor hosting a proline-rich region containing a BPP motif resembling those commonly detected in viperid venoms with hypotensive activity. Altogether, our results suggest an evolutionary history favoring high expression levels of few KUNZ isoforms in Phalotris venoms, contrasting with a highly diverse set of SVMP and CTL isoforms. Such diversity can be comparable with the venom variability observed in some viperids. Our findings highlight the extreme phenotypic diversity of non-front fanged snakes and the importance to allocate greater effort to study neglected groups of Colubroidea.


Subject(s)
Transcriptome , Animals , Snake Venoms/genetics , Lectins, C-Type/genetics , Brazil , Metalloproteases/genetics
3.
Chem Biol Interact ; 394: 110986, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38583853

ABSTRACT

Snake venom metalloproteases (SVMPs) are hydrolytic enzymes dependent on metal binding, primarily zinc (Zn2+), at their catalytic site. They are classified into three classes (P-I to P-III). BjussuMP-II, a P-I SVMP isolated from Bothrops jararacussu snake venom, has a molecular mass of 24 kDa. It exhibits inhibitory activity on platelet aggregation and hydrolyzes fibrinogen. TNF-α upregulates the expression of adhesion molecules on endothelial cell surfaces, promoting leukocyte adhesion and migration during inflammation. Literature indicates that SVMPs may cleave the TNF-α precursor, possibly due to significant homology between metalloproteases from mammalian extracellular matrix and SVMPs. This study aimed to investigate BjussuMP-II's effects on human umbilical vein endothelial cells (HUVEC), focusing on viability, detachment, adhesion, release, and cleavage of TNF-α, IL-1ß, IL-6, IL-8, and IL-10. HUVEC were incubated with BjussuMP-II (1.5-50 µg/mL) for 3-24 h. Viability was determined using LDH release, MTT metabolization, and 7AAD for membrane integrity. Adhesion and detachment were assessed by incubating cells with BjussuMP-II and staining with Giemsa. Cytokines were quantified in HUVEC supernatants using EIA. TNF-α cleavage was evaluated using supernatants from PMA-stimulated cells or recombinant TNF-α. Results demonstrated BjussuMP-II's proteolytic activity on casein. It was not toxic to HUVEC at any concentration or duration studied but interfered with adhesion and promoted detachment. PMA induced TNF-α release by HUVEC, but this effect was not observed with BjussuMP-II, which cleaved TNF-α. Additionally, BjussuMP-II cleaved IL-1ß, IL-6, and IL-10. These findings suggest that the zinc metalloprotease BjussuMP-II could be a valuable biotechnological tool for treating inflammatory disorders involving cytokine deregulation.


Subject(s)
Cell Adhesion , Cytokines , Human Umbilical Vein Endothelial Cells , Metalloproteases , Humans , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Cytokines/metabolism , Metalloproteases/metabolism , Cell Adhesion/drug effects , Cell Survival/drug effects , Bothrops/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Crotalid Venoms/metabolism , Crotalid Venoms/toxicity , Proteolysis/drug effects
4.
J Microbiol Biotechnol ; 34(5): 1040-1050, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38604803

ABSTRACT

To isolate and analyze bacteria with Verticillium wilt-resistant properties from the fermentation residue of kitchen wastes, as well as explore their potential for new applications of the residue. A total of six bacterial strains exhibiting Verticillium wilt-resistant capabilities were isolated from the biogas residue of kitchen waste fermentation. Using a polyphasic approach, strain ZL6, which displayed the highest antagonistic activity against cotton Verticillium wilt, was identified as belonging to the Pseudomonas aeruginosa. Bioassay results demonstrated that this strain possessed robust antagonistic abilities, effectively inhibiting V. dahliae spore germination and mycelial growth. Furthermore, P. aeruginosa ZL6 exhibited high temperature resistance (42°C), nitrogen fixation, and phosphorus removal activities. Pot experiments revealed that P. aeruginosa ZL6 fermentation broth treatment achieved a 47.72% biological control effect compared to the control group. Through activity tracking and protein mass spectrometry identification, a neutral metalloproteinase (Nml) was hypothesized as the main virulence factor. The mutant strain ZL6ΔNml exhibited a significant reduction in its ability to inhibit cotton Verticillium wilt compared to the strain P. aeruginosa ZL6. While the inhibitory activities could be partially restored by a complementation of nml gene in the mutant strain ZL6CMΔNml. This research provides a theoretical foundation for the future development and application of biogas residue as biocontrol agents against Verticillium wilt and as biological preservatives for agricultural products. Additionally, this study presents a novel approach for mitigating the substantial amount of biogas residue generated from kitchen waste fermentation.


Subject(s)
Fermentation , Gossypium , Plant Diseases , Pseudomonas aeruginosa , Verticillium , Plant Diseases/microbiology , Plant Diseases/prevention & control , Gossypium/microbiology , Antibiosis , Metalloproteases/metabolism , Virulence Factors/genetics
5.
J Cell Biol ; 223(5)2024 May 06.
Article in English | MEDLINE | ID: mdl-38619450

ABSTRACT

Using an engineered mitochondrial clogger, Krakowczyk et al. (https://doi.org/10.1083/jcb.202306051) identified the OMA1 protease as a critical component that eliminates import failure at the TOM translocase in mammalian cells, providing a novel quality control mechanism that is distinct from those described in yeast.


Subject(s)
Mammals , Metalloproteases , Mitochondrial Precursor Protein Import Complex Proteins , Mitochondrial Proteins , Animals , Mitochondria , Peptide Hydrolases , Saccharomyces cerevisiae/genetics , Metalloproteases/metabolism , Mitochondrial Proteins/metabolism
6.
Arch Microbiol ; 206(4): 180, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38502196

ABSTRACT

Serratiopeptidase is a bacterial metalloprotease used in a variety of medical applications. The multidimensional properties of serratiopeptidase make it noticeable as a miraculous enzyme. Anti-coagulant, anti-inflammatory and anti-biofilm activity of serratiopeptidase making it useful in reducing pain and swelling associated with various conditions including arthritis, diabetes, cancer, swelling, pain and also thrombolytic disorders. It breaks down fibrin, thins the fluids formed during inflammation and due to its anti-biofilm activity, can be used in the combination of antibiotics to reduce development of antibiotic resistance. However, some drawbacks like sensitivity to environmental conditions and low penetration into cells due to its large size have limited its usage as a potent pharmaceutical agent. To overcome such limitations, improved versions of the enzyme were introduced using protein engineering in our previous studies. Novel functional serratiopeptidases with shorter length and higher stability have seemingly created a hope for using this enzyme as a more effective therapeutic enzyme. This review explains the structural properties and functional aspects of serratiopeptidase, its main characteristics and properties, pre-clinical and clinical applications of the enzyme, improved qualities of the modified forms, different formulations of the enzyme, and the potential future developments.


Subject(s)
Metalloproteases , Peptide Hydrolases , Humans , Peptide Hydrolases/metabolism , Metalloproteases/chemistry , Anti-Inflammatory Agents , Pain/drug therapy
7.
J Ethnopharmacol ; 328: 118095, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38548121

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The Gu Yan Xiao tincture, a blend of traditional Chinese herbs, is traditionally used for osteoarthritis and related pain. This study investigated its mechanism of action in order to rationalize and validate its therapeutic use. AIM OF THE STUDY: This study analyzed, in a rabbit model of knee osteoarthritis, whether and how Gu Yan Xiao tincture exerts therapeutic benefits by modulating chondrocyte autophagy. MATERIALS AND METHODS: The active constituents within the GYX tincture were identified using liquid chromatography-mass spectrometry. The rabbit model was established by injecting animals with type II collagenase intra-articularly, and the effects of topically applied tincture were examined on osteoarthritis lesions of the knee using histopathology, micro-computed tomography and x-ray imaging. Effects of the tincture were also evaluated on levels of inflammatory cytokines, matrix metalloproteases, and autophagy in chondrocytes. As a positive control, animals were treated with sodium diclofenac. RESULTS: The tincture mitigated the reduction in joint space, hyperplasia of the synovium and matrix metalloproteases in serum that occurred after injection of type II collagenase in rabbits. These therapeutic effects were associated with inhibition of mTOR and activation of autophagy in articular chondrocytes. Inhibiting mTOR with rapamycin potentiated the therapeutic effects of the tincture, while inhibiting autophagy with 3-methyladenine antagonized them. CONCLUSIONS: Gu Yan Xiao tincture mitigates tissue injury in a rabbit model of osteoarthritis, at least in part by inhibiting mTOR and thereby promoting autophagy in chondrocytes. These results rationalize the use of the tincture not only against osteoarthritis but also potentially other diseases involving inhibition of autophagy in bones and joints.


Subject(s)
Cartilage, Articular , Osteoarthritis, Knee , Animals , Rabbits , Chondrocytes , X-Ray Microtomography , TOR Serine-Threonine Kinases , Osteoarthritis, Knee/drug therapy , Osteoarthritis, Knee/pathology , Metalloproteases/pharmacology , Metalloproteases/therapeutic use , Autophagy , Collagenases
8.
Biochem Biophys Res Commun ; 706: 149748, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38460450

ABSTRACT

Angiogenesis is a process that is controlled by a delicate combination of proangiogenic and antiangiogenic molecules and can be disrupted in various illnesses, including cancer. Non-cancerous diseases can also have an abnormal or insufficient vascular growth, inflammation and hypoxia, which exacerbate angiogenesis. These conditions include atherosclerosis, psoriasis, endometriosis, asthma, obesity and AIDS. Based on that, the present work assessed the in vitro and ex vivo antiangiogenic properties stemming from BthMP, a P-I metalloproteinase from Bothrops moojeni snake venom, via the VEGF pathway. BthMP at a concentration of 5 and 40 µg/mL showed no toxicity to endothelial cells (HUVEC) in the MTT assay and was not able to induce necrosis and colony proliferation. Interestingly, BthMP inhibited adhesion, migration and invasion of HUVECs in Matrigel and arrested in vitro angiogenesis by reducing the average number of nodules in toxin-treated cells by 9.6 and 17.32 at 5 and 40 µg/mL, respectively, and the number of tubules by 15.9 at 5 µg/mL and 21.6 at 40 µg/mL in a VEGF-dependent way, an essential proangiogenic property. Furthermore, BthMP inhibited the occurrence of the angiogenic process in an ex vivo aortic ring test by decreasing new vessel formation by 52% at 5 µg/mL and by 66% at 40 µg/mL and by increasing the expression of an antiangiogenic gene, SFLT-1, and decreasing the expression of the proangiogenic genes VEGFA and ANGPT-1. Finally, this toxin reduces the production of nitric oxide, a marker that promotes angiogenesis and VEGF modulation, and decreases the protein expression of VEGFA in the supernatant of the HUVEC culture by about 30 %. These results suggest that BthMP has a promising antiangiogenic property and proves to be a biotechnological mechanism for understanding the antiangiogenic responses induced by snake venom metalloproteinases, which could be applied to a variety of diseases that exhibit an imbalance of angiogenesis mechanisms.


Subject(s)
Bothrops , Endothelial Cells , Venomous Snakes , Animals , Female , Humans , Endothelial Cells/metabolism , Vascular Endothelial Growth Factor A/metabolism , Bothrops/metabolism , Metalloproteases/metabolism , Snake Venoms , Human Umbilical Vein Endothelial Cells/metabolism , Angiogenesis Inhibitors/pharmacology
9.
Int J Biochem Cell Biol ; 170: 106567, 2024 May.
Article in English | MEDLINE | ID: mdl-38522506

ABSTRACT

The diagnosis and treatment of biliary atresia pose challenges due to the absence of reliable biomarkers and limited understanding of its etiology. The plasma and liver of patients with biliary atresia exhibit elevated levels of neurotensin. To investigate the specific role of neurotensin in the progression of biliary atresia, the patient's liver pathological section was employed. Biliary organoids, cultured biliary cells, and a mouse model were employed to elucidate both the potential diagnostic significance of neurotensin and its underlying mechanistic pathway. In patients' blood, the levels of neurotensin were positively correlated with matrix metalloprotease-7, interleukin-8, and liver function enzymes. Neurotensin and neurotensin receptors were mainly expressed in the intrahepatic biliary cells and were stimulated by bile acids. Neurotensin suppressed the growth and increased expression of matrix metalloprotease-7 in biliary organoids. Neurotensin inhibited mitochondrial respiration, oxidative phosphorylation, and attenuated the activation of calmodulin-dependent kinase kinase 2-adenosine monophosphate-activated protein kinase (CaMKK2-AMPK) signaling in cultured biliary cells. The stimulation of neurotensin in mice and cultured cholangiocytes resulted in the upregulation of matrix metalloprotease-7 expression through binding to its receptors, namely neurotensin receptors 1/3, thereby attenuating the activation of the CaMKK2-AMPK pathway. In conclusion, these findings revealed the changes of neurotensin in patients with cholestatic liver disease and its mechanism in the progression of the disease, providing a new understanding of the complex mechanism of hepatobiliary injury in children with biliary atresia.


Subject(s)
Biliary Atresia , Liver Diseases , Animals , Child , Humans , Mice , AMP-Activated Protein Kinases/metabolism , Biliary Atresia/metabolism , Biliary Atresia/pathology , Liver/metabolism , Liver Diseases/metabolism , Metalloproteases/metabolism , Neurotensin/metabolism , Receptors, Neurotensin/metabolism
10.
Mol Biochem Parasitol ; 258: 111617, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38554736

ABSTRACT

Malaria poses a significant global health threat particularly due to the prevalence of Plasmodium falciparum infection. With the emergence of parasite resistance to existing drugs including the recently discovered artemisinin, ongoing research seeks novel therapeutic avenues within the malaria parasite. Proteases are promising drug targets due to their essential roles in parasite biology, including hemoglobin digestion, merozoite invasion, and egress. While exploring the genomic landscape of Plasmodium falciparum, it has been revealed that there are 92 predicted proteases, with only approximately 14 of them having been characterized. These proteases are further distributed among 26 families grouped into five clans: aspartic proteases, cysteine proteases, metalloproteases, serine proteases, and threonine proteases. Focus on metalloprotease class shows further role in organelle processing for mitochondria and apicoplasts suggesting the potential of metalloproteases as viable drug targets. Holistic understanding of the parasite intricate life cycle and identification of potential drug targets are essential for developing effective therapeutic strategies against malaria and mitigating its devastating global impact.


Subject(s)
Antimalarials , Metalloproteases , Plasmodium falciparum , Plasmodium falciparum/enzymology , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Antimalarials/pharmacology , Metalloproteases/metabolism , Metalloproteases/genetics , Humans , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Malaria, Falciparum/parasitology , Malaria, Falciparum/drug therapy , Protease Inhibitors/pharmacology , Protease Inhibitors/metabolism , Peptide Hydrolases/metabolism , Peptide Hydrolases/genetics
11.
Curr Opin Biotechnol ; 86: 103094, 2024 04.
Article in English | MEDLINE | ID: mdl-38430575

ABSTRACT

Targeting metalloproteinases (MPs) has been the center of attention for developing therapeutics due to their contribution to a wide range of diseases, including cancer, cardiovascular, neurodegenerative disease, and preterm labor. Protein-based MP inhibitors offer higher stability and selectivity, which is critical for developing efficient therapeutics with low off-target effects. Tissue inhibitors of metalloproteinases (TIMPs), natural inhibitors of MPs, and antibodies provide excellent protein scaffolds for engineering selective or multispecific MP inhibitors. Advances in protein engineering and design techniques, such as rational design and directed evolution using yeast display to develop potent MP inhibitors, are discussed, including but not limited to loop grafting, swapping, and counterselective selection.


Subject(s)
Neurodegenerative Diseases , Infant, Newborn , Humans , Tissue Inhibitor of Metalloproteinases/metabolism , Tissue Inhibitor of Metalloproteinases/pharmacology , Metalloproteases , Antibodies , Protein Engineering
12.
J Inorg Biochem ; 253: 112500, 2024 04.
Article in English | MEDLINE | ID: mdl-38301386

ABSTRACT

Metallopeptidases are a group of metal-dependent enzymes that hydrolyze peptide bonds. These enzymes found in Streptococcus pneumoniae assist the pathogen in infecting the host by breaking down host tissues and extracellular matrix proteins. Considering metallopeptidases' significant role in bacterial virulence, inhibiting this enzyme represents a promising avenue for research. These enzymes are characterized by the presence of Zn(II) in the active site, proper coordination of which is essential for their catalytic function. This work aims to determine the significance of the specific amino acids in the metal binding domain of metallopeptidase from S. pneumoniae. For this purpose, we investigated the coordination chemistry of Zn(II), Ni(II), and Cu(II) ions with point-mutated peptide models of the metal-binding domain. Mutations were introduced at His-2 (L1) and Glu-1. Studies have shown that at pH 7.14 (pH of infected lungs by S. pneumoniae), point mutation on glutamic acid caused only minor effects on the binding of Zn(II) and Ni(II), while significantly improving Cu(II) binding. The stability of copper complexes is greater with the mutant Glu-1 â†’ Gln-1 than with the original domain due to a hydrogen bonding network created by the Gln backbone with its side chain. Substituting histidine resulted in a significant reduction in metal binding for all metal ions, highlighting the crucial role of His-2 in metal coordination. Introduced mutations at neutral pH did not significantly affect the secondary structure of metal complexes. However, at alkaline pH, the peptides showed a higher percentage of antiparallel ß-sheet structures upon the addition of Cu(II), Ni(II) and Zn(II).


Subject(s)
Copper , Zinc , Copper/chemistry , Catalytic Domain , Zinc/chemistry , Amino Acids , Metals , Peptides/metabolism , Metalloproteases , Chelating Agents , Ions
13.
Toxicon ; 241: 107663, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38423218

ABSTRACT

Deinagkistrodon acutus is a medically important pitviper inhabiting mainly South China and Taiwan. The hemorrhagic effects of its envenoming are compatible to its venom, which is abundant in metalloproteases (svMPs) and C-type lectin-like proteins. In this study, we investigated geographic variations in the venom of D. acutus collected from Taiwan and four Mainland Chinese provinces: Fujian, Jiangxi, Anhui, and Hunan. The variations were assessed through high-performance liquid chromatography, non-metric multidimensional scaling analysis, gel electrophoresis, and enzyme-linked immunosorbent assay (ELISA) with a monospecific antivenom (DaMAV) generated against the Taiwanese D. acutus venom, and discussed based on venom-protein sequences in databases and literature related to D. acutus venom. Additionally, the cross-reactivity of DaMAV against Crotalus horridus and Calloselasma rhodostoma venoms was investigated. We noted differential abundances of D. acutus venom metalloproteases, C-type lectin-like proteins, and phospholipase A2, along with point mutations and selective expression of serine protease isoforms. The ELISA results revealed that the venom from Taiwan was more reactive toward Taiwanese DaMAV than the four Mainland Chinese venoms, consistent with chromatographic profile differences, whereas C. horridus venom presented moderate cross-reactivity with DaMAV. The observed immunoreactivities of these venom with DaMAV can be attributed to the high prevalence of their PIII-svMPs, which are the dominant antigens, and the conservation of PIII-svMP epitopes.


Subject(s)
Antivenins , Crotalinae , Crotalus , Venomous Snakes , Venoms , Animals , Taiwan , Enzyme-Linked Immunosorbent Assay , Electrophoresis , Metalloproteases/analysis , Computational Biology , Lectins, C-Type
14.
SAR QSAR Environ Res ; 35(3): 219-240, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38380444

ABSTRACT

In this study, a methodology is proposed, combining ligand- and structure-based virtual screening tools, for the identification of phosphorus-containing compounds as inhibitors of zinc metalloproteases. First, we use Dragon molecular descriptors to develop a Linear Discriminant Analysis classification model, which is widely validated according to the OECD principles. This model is simple, robust, stable and has good discriminating power. Furthermore, it has a defined applicability domain and it is used for virtual screening of the DrugBank database. Second, docking experiments are carried out on the identified compounds that showed good binding energies to the enzyme thermolysin. Considering the potential toxicity of phosphorus-containing compounds, their toxicological profile is evaluated according to Protox II. Of the five molecules evaluated, two show carcinogenic and mutagenic potential at small LD50, not recommended as drugs, while three of them are classified as non-toxic, and could constitute a starting point for the development of new vasoactive metalloprotease inhibitor drugs. According to molecular dynamics simulation, two of them show stable interactions with the active site maintaining coordination with the metal. A high agreement is evident between QSAR, docking and molecular dynamics results, demonstrating the potentialities of the combination of these tools.


Subject(s)
Molecular Dynamics Simulation , Quantitative Structure-Activity Relationship , Molecular Docking Simulation , Ligands , Metalloproteases , Phosphorus
15.
Nat Commun ; 15(1): 1892, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424107

ABSTRACT

Bacteria have evolved various response systems to adapt to environmental stress. A protease-based derepression mechanism in response to DNA damage was characterized in Deinococcus, which is controlled by the specific cleavage of repressor DdrO by metallopeptidase PprI (also called IrrE). Despite the efforts to document the biochemical, physiological, and downstream regulation of PprI-DdrO, the upstream regulatory signal activating this system remains unclear. Here, we show that single-stranded DNA physically interacts with PprI protease, which enhances the PprI-DdrO interactions as well as the DdrO cleavage in a length-dependent manner both in vivo and in vitro. Structures of PprI, in its apo and complexed forms with single-stranded DNA, reveal two DNA-binding interfaces shaping the cleavage site. Moreover, we show that the dynamic monomer-dimer equilibrium of PprI is also important for its cleavage activity. Our data provide evidence that single-stranded DNA could serve as the signal for DNA damage sensing in the metalloprotease/repressor system in bacteria. These results also shed light on the survival and acquired drug resistance of certain bacteria under antimicrobial stress through a SOS-independent pathway.


Subject(s)
Deinococcus , Peptide Hydrolases , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Deinococcus/genetics , Deinococcus/metabolism , DNA, Single-Stranded/metabolism , DNA Damage , Metalloproteases/chemistry , Endopeptidases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
16.
Int J Mol Sci ; 25(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38396794

ABSTRACT

Rosavin, a phenylpropanoid in Rhodiola rosea's rhizome, and an adaptogen, is known for enhancing the body's response to environmental stress. It significantly affects cellular metabolism in health and many diseases, particularly influencing bone tissue metabolism. In vitro, rosavin inhibits osteoclastogenesis, disrupts F-actin ring formation, and reduces the expression of osteoclastogenesis-related genes such as cathepsin K, calcitonin receptor (CTR), tumor necrosis factor receptor-associated factor 6 (TRAF6), tartrate-resistant acid phosphatase (TRAP), and matrix metallopeptidase 9 (MMP-9). It also impedes the nuclear factor of activated T-cell cytoplasmic 1 (NFATc1), c-Fos, the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and mitogen-activated protein kinase (MAPK) signaling pathways and blocks phosphorylation processes crucial for bone resorption. Moreover, rosavin promotes osteogenesis and osteoblast differentiation and increases mouse runt-related transcription factor 2 (Runx2) and osteocalcin (OCN) expression. In vivo studies show its effectiveness in enhancing bone mineral density (BMD) in postmenopausal osteoporosis (PMOP) mice, restraining osteoclast maturation, and increasing the active osteoblast percentage in bone tissue. It modulates mRNA expressions by increasing eukaryotic translation elongation factor 2 (EEF2) and decreasing histone deacetylase 1 (HDAC1), thereby activating osteoprotective epigenetic mechanisms, and alters many serum markers, including decreasing cross-linked C-telopeptide of type I collagen (CTX-1), tartrate-resistant acid phosphatase 5b (TRACP5b), receptor activator for nuclear factor κ B ligand (RANKL), macrophage-colony-stimulating factor (M-CSF), and TRAP, while increasing alkaline phosphatase (ALP) and OCN. Additionally, when combined with zinc and probiotics, it reduces pro-osteoporotic matrix metallopeptidase 3 (MMP-3), interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α), and enhances anti-osteoporotic interleukin 10 (IL-10) and tissue inhibitor of metalloproteinase 3 (TIMP3) expressions. This paper aims to systematically review rosavin's impact on bone tissue metabolism, exploring its potential in osteoporosis prevention and treatment, and suggesting future research directions.


Subject(s)
Bone Resorption , Disaccharides , Osteoclasts , Animals , Mice , Osteoclasts/metabolism , Tartrate-Resistant Acid Phosphatase/metabolism , Osteogenesis , Bone Resorption/metabolism , Cell Differentiation , NF-kappa B/metabolism , Metalloproteases/metabolism , RANK Ligand/metabolism , NFATC Transcription Factors/metabolism
17.
Placenta ; 148: 59-68, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38401207

ABSTRACT

INTRODUCTION: Almost 80% of urinary tract infections during pregnancy are caused by uropathogenic strains of Escherichia coli. Alpha-hemolysin, toxin secreted by them, has a fundamental role in this pathology development. Considering that urinary tract infections are related with premature rupture of fetal membranes, we proposed to evaluate the effects that alpha-hemolysin induces on human-fetal-membranes. METHODS: Thirteen fetal membranes obtained from elective cesarean sections (>37 weeks) were mounted in a transwell-device generating two independent chambers. To mimic an ascendant-urinary-tract infection, membranes were incubated with different concentrations of pure alpha-hemolysin from the choriodecidual side during 24h. Extensive histological analyses were performed and transepithelial electrical-resistance were determined. Cell viability, metalloproteinase activity and cyclooxygenase-2- gene expression was estimated by lactate-dehydrogenase-release assay, zymography and RT-qPCR, respectively. Finally, four fetal membranes were treated with hemolysin preincubated with polyclonal anti-hemolysin antibodies. Cell viability and metalloproteinase activity were monitored. RESULTS: After 24 h of treatment, fetal membranes evidenced a structural damage and a decrease in membrane resistance that progressed as the concentration of alpha hemolysin increased. While the amniotic-epithelial-layer remained practically unaffected, the chorion cells manifested an increase in vacuolization and necrosis. In addition, the extracellular matrix exhibited collagen-fiber disorganization, a marked decrease in fiber content, and became thicker in presence of the toxin. Cyclooxigenase-2 expression and metalloproteinase activity were also higher in the treated groups than in untreated ones. Finally, a preincubation of hemolysin with specific antibodies prevented the cytotoxicity on the chorion cells and the increase in metalloproteinase activity. DISCUSSION: Hemolysin induces structural and molecular changes associated with the remodeling of human-fetal-membranes in-vitro.


Subject(s)
Escherichia coli , Urinary Tract Infections , Pregnancy , Female , Humans , Hemolysin Proteins/pharmacology , Hemolysin Proteins/metabolism , Extraembryonic Membranes/metabolism , Urinary Tract Infections/metabolism , Metalloproteases/metabolism
18.
Life Sci Alliance ; 7(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38331475

ABSTRACT

Brachydactyly type E (BDE), shortened metacarpals, metatarsals, cone-shaped epiphyses, and short stature commonly occurs as a sole phenotype. Parathyroid hormone-like protein (PTHrP) has been shown to be responsible in all forms to date, either directly or indirectly. We used linkage and then whole genome sequencing in a small pedigree, to elucidate BDE and identified a truncated disintegrin-and-metalloproteinase-19 (ADAM19) allele in all affected family members, but not in nonaffected persons. Since we had shown earlier that the extracellular domain of the parathyroid hormone receptor (PTHR1) is subject to an unidentified metalloproteinase cleavage, we tested the hypothesis that ADAM19 is a sheddase for PTHR1. WT ADAM19 cleaved PTHR1, while mutated ADAM-19 did not. We mapped the cleavage site that we verified with mass spectrometry between amino acids 64-65. ADAM-19 cleavage increased Gq and decreased Gs activation. Moreover, perturbed PTHR1 cleavage by ADAM19 increased ß-arrestin2 recruitment, while cAMP accumulation was not altered. We suggest that ADAM19 serves as a regulatory element for PTHR1 and could be responsible for BDE. This sheddase may affect other PTHrP or PTH-related functions.


Subject(s)
Brachydactyly , Parathyroid Hormone-Related Protein , Humans , Parathyroid Hormone-Related Protein/genetics , Brachydactyly/genetics , Receptor, Parathyroid Hormone, Type 1/genetics , Receptor, Parathyroid Hormone, Type 1/metabolism , Metalloproteases , ADAM Proteins
19.
Tissue Cell ; 87: 102303, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38244401

ABSTRACT

BACKGROUND: To investigate the mechanism of action of stathmin1 (STMN1) in mesothelioma (MSM) and whether it has any role in its treatment. METHODS: STMN1 expression was examined using immunohistochemistry in biopsy tissues taken from MSM patients. The relationships between the levels of STMN1 expression in the pathology preparations of MSM patients, and the clinicopathological characteristics of these patients, and their survival times were investigated. Transfection of STMN1-specific siRNA into SPC212 cells was compared to negative control siRNAs. The mRNA levels of genes that may play a role in invasion, apoptosis, and autophagy were evaluated by RT-PCR. RESULTS: The expression of STMN1 was shown to be high in MSM tissues (p < 0.05). It was found that the only independent predictor factor affecting the survival time of MSM patients was the disease stage (p < 0.05). STMN1 was significantly reduced after siRNA intervention (81.5%). STMN1 with specific siRNA has been shown to suppress invasion by reducing the mRNA levels of cadherin-6 (CDH6), fibroblast growth factor-8 (FGF8), hypoxia-inducible factor 1 (HIF1A), matrix metallopeptidase 1-2 (gelatinase A) (MMP1-2), and TIMP metallopeptidase inhibitor 2 (TIMP2), which are important markers for invasion. Although the expression of apoptosis and autophagy-related genes, caspase-2 (Casp2) and LC-3, was reduced by silencing STMN1 with specific siRNA in western blot analysis, this effect was not observed in PCR results. CONCLUSIONS: Immunohistochemical analysis of STMN1 may contribute to the differential diagnosis of MSM, and STMN1 may also be considered as a potential therapeutic target in the early invasive stage of MSM therapy.


Subject(s)
Mesothelioma, Malignant , Mesothelioma , Humans , Mesothelioma/genetics , Metalloproteases , RNA, Messenger , RNA, Small Interfering/genetics , Stathmin/genetics , Stathmin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...