Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.864
Filter
1.
J Hazard Mater ; 472: 134526, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38704908

ABSTRACT

The proliferation of toxic organisms caused by changes in the marine environment, coupled with the rising human activities along the coastal lines, has resulted in an increasing number of stinging incidents, posing a serious threat to public health. Here, we evaluated the systemic toxicity of the venom in jellyfish Chrysaora quinquecirrha at both cellular and animal levels, and found that jellyfish tentacle extract (TE) has strong lethality accompanied by abnormal elevation of blood biochemical indicators and pathological changes. Joint analysis of transcriptome and proteome indicated that metalloproteinases are the predominant toxins in jellyfish. Specially, two key metalloproteinases DN6695_c0_g3 and DN8184_c0_g7 were identified by mass spectrometry of the red blood cell membrane and tetracycline hydrochloride (Tch) inhibition models. Structurally, molecular docking and kinetic analysis are employed and observed that Tch could inhibit the enzyme activity by binding to the hydrophobic pocket of the catalytic center. In this study, we demonstrated that Tch impedes the metalloproteinase activity thereby reducing the lethal effect of jellyfish, which suggests a potential strategy for combating the health threat of marine toxic jellyfish.


Subject(s)
Cnidarian Venoms , Metalloproteases , Molecular Docking Simulation , Scyphozoa , Animals , Metalloproteases/chemistry , Metalloproteases/metabolism , Cnidarian Venoms/chemistry , Tetracycline/toxicity , Transcriptome/drug effects
2.
J Cell Biol ; 223(5)2024 May 06.
Article in English | MEDLINE | ID: mdl-38619450

ABSTRACT

Using an engineered mitochondrial clogger, Krakowczyk et al. (https://doi.org/10.1083/jcb.202306051) identified the OMA1 protease as a critical component that eliminates import failure at the TOM translocase in mammalian cells, providing a novel quality control mechanism that is distinct from those described in yeast.


Subject(s)
Mammals , Metalloproteases , Mitochondrial Precursor Protein Import Complex Proteins , Mitochondrial Proteins , Animals , Mitochondria , Peptide Hydrolases , Saccharomyces cerevisiae/genetics , Metalloproteases/metabolism , Mitochondrial Proteins/metabolism
3.
Chem Biol Interact ; 394: 110986, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38583853

ABSTRACT

Snake venom metalloproteases (SVMPs) are hydrolytic enzymes dependent on metal binding, primarily zinc (Zn2+), at their catalytic site. They are classified into three classes (P-I to P-III). BjussuMP-II, a P-I SVMP isolated from Bothrops jararacussu snake venom, has a molecular mass of 24 kDa. It exhibits inhibitory activity on platelet aggregation and hydrolyzes fibrinogen. TNF-α upregulates the expression of adhesion molecules on endothelial cell surfaces, promoting leukocyte adhesion and migration during inflammation. Literature indicates that SVMPs may cleave the TNF-α precursor, possibly due to significant homology between metalloproteases from mammalian extracellular matrix and SVMPs. This study aimed to investigate BjussuMP-II's effects on human umbilical vein endothelial cells (HUVEC), focusing on viability, detachment, adhesion, release, and cleavage of TNF-α, IL-1ß, IL-6, IL-8, and IL-10. HUVEC were incubated with BjussuMP-II (1.5-50 µg/mL) for 3-24 h. Viability was determined using LDH release, MTT metabolization, and 7AAD for membrane integrity. Adhesion and detachment were assessed by incubating cells with BjussuMP-II and staining with Giemsa. Cytokines were quantified in HUVEC supernatants using EIA. TNF-α cleavage was evaluated using supernatants from PMA-stimulated cells or recombinant TNF-α. Results demonstrated BjussuMP-II's proteolytic activity on casein. It was not toxic to HUVEC at any concentration or duration studied but interfered with adhesion and promoted detachment. PMA induced TNF-α release by HUVEC, but this effect was not observed with BjussuMP-II, which cleaved TNF-α. Additionally, BjussuMP-II cleaved IL-1ß, IL-6, and IL-10. These findings suggest that the zinc metalloprotease BjussuMP-II could be a valuable biotechnological tool for treating inflammatory disorders involving cytokine deregulation.


Subject(s)
Cell Adhesion , Cytokines , Human Umbilical Vein Endothelial Cells , Metalloproteases , Humans , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Cytokines/metabolism , Metalloproteases/metabolism , Cell Adhesion/drug effects , Cell Survival/drug effects , Bothrops/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Crotalid Venoms/metabolism , Crotalid Venoms/toxicity , Proteolysis/drug effects
4.
J Microbiol Biotechnol ; 34(5): 1040-1050, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38604803

ABSTRACT

To isolate and analyze bacteria with Verticillium wilt-resistant properties from the fermentation residue of kitchen wastes, as well as explore their potential for new applications of the residue. A total of six bacterial strains exhibiting Verticillium wilt-resistant capabilities were isolated from the biogas residue of kitchen waste fermentation. Using a polyphasic approach, strain ZL6, which displayed the highest antagonistic activity against cotton Verticillium wilt, was identified as belonging to the Pseudomonas aeruginosa. Bioassay results demonstrated that this strain possessed robust antagonistic abilities, effectively inhibiting V. dahliae spore germination and mycelial growth. Furthermore, P. aeruginosa ZL6 exhibited high temperature resistance (42°C), nitrogen fixation, and phosphorus removal activities. Pot experiments revealed that P. aeruginosa ZL6 fermentation broth treatment achieved a 47.72% biological control effect compared to the control group. Through activity tracking and protein mass spectrometry identification, a neutral metalloproteinase (Nml) was hypothesized as the main virulence factor. The mutant strain ZL6ΔNml exhibited a significant reduction in its ability to inhibit cotton Verticillium wilt compared to the strain P. aeruginosa ZL6. While the inhibitory activities could be partially restored by a complementation of nml gene in the mutant strain ZL6CMΔNml. This research provides a theoretical foundation for the future development and application of biogas residue as biocontrol agents against Verticillium wilt and as biological preservatives for agricultural products. Additionally, this study presents a novel approach for mitigating the substantial amount of biogas residue generated from kitchen waste fermentation.


Subject(s)
Fermentation , Gossypium , Plant Diseases , Pseudomonas aeruginosa , Verticillium , Plant Diseases/microbiology , Plant Diseases/prevention & control , Gossypium/microbiology , Antibiosis , Metalloproteases/metabolism , Virulence Factors/genetics
5.
Mol Biochem Parasitol ; 258: 111617, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38554736

ABSTRACT

Malaria poses a significant global health threat particularly due to the prevalence of Plasmodium falciparum infection. With the emergence of parasite resistance to existing drugs including the recently discovered artemisinin, ongoing research seeks novel therapeutic avenues within the malaria parasite. Proteases are promising drug targets due to their essential roles in parasite biology, including hemoglobin digestion, merozoite invasion, and egress. While exploring the genomic landscape of Plasmodium falciparum, it has been revealed that there are 92 predicted proteases, with only approximately 14 of them having been characterized. These proteases are further distributed among 26 families grouped into five clans: aspartic proteases, cysteine proteases, metalloproteases, serine proteases, and threonine proteases. Focus on metalloprotease class shows further role in organelle processing for mitochondria and apicoplasts suggesting the potential of metalloproteases as viable drug targets. Holistic understanding of the parasite intricate life cycle and identification of potential drug targets are essential for developing effective therapeutic strategies against malaria and mitigating its devastating global impact.


Subject(s)
Antimalarials , Metalloproteases , Plasmodium falciparum , Plasmodium falciparum/enzymology , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Antimalarials/pharmacology , Metalloproteases/metabolism , Metalloproteases/genetics , Humans , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Malaria, Falciparum/parasitology , Malaria, Falciparum/drug therapy , Protease Inhibitors/pharmacology , Protease Inhibitors/metabolism , Peptide Hydrolases/metabolism , Peptide Hydrolases/genetics
6.
Int J Biochem Cell Biol ; 170: 106567, 2024 May.
Article in English | MEDLINE | ID: mdl-38522506

ABSTRACT

The diagnosis and treatment of biliary atresia pose challenges due to the absence of reliable biomarkers and limited understanding of its etiology. The plasma and liver of patients with biliary atresia exhibit elevated levels of neurotensin. To investigate the specific role of neurotensin in the progression of biliary atresia, the patient's liver pathological section was employed. Biliary organoids, cultured biliary cells, and a mouse model were employed to elucidate both the potential diagnostic significance of neurotensin and its underlying mechanistic pathway. In patients' blood, the levels of neurotensin were positively correlated with matrix metalloprotease-7, interleukin-8, and liver function enzymes. Neurotensin and neurotensin receptors were mainly expressed in the intrahepatic biliary cells and were stimulated by bile acids. Neurotensin suppressed the growth and increased expression of matrix metalloprotease-7 in biliary organoids. Neurotensin inhibited mitochondrial respiration, oxidative phosphorylation, and attenuated the activation of calmodulin-dependent kinase kinase 2-adenosine monophosphate-activated protein kinase (CaMKK2-AMPK) signaling in cultured biliary cells. The stimulation of neurotensin in mice and cultured cholangiocytes resulted in the upregulation of matrix metalloprotease-7 expression through binding to its receptors, namely neurotensin receptors 1/3, thereby attenuating the activation of the CaMKK2-AMPK pathway. In conclusion, these findings revealed the changes of neurotensin in patients with cholestatic liver disease and its mechanism in the progression of the disease, providing a new understanding of the complex mechanism of hepatobiliary injury in children with biliary atresia.


Subject(s)
Biliary Atresia , Liver Diseases , Animals , Child , Humans , Mice , AMP-Activated Protein Kinases/metabolism , Biliary Atresia/metabolism , Biliary Atresia/pathology , Liver/metabolism , Liver Diseases/metabolism , Metalloproteases/metabolism , Neurotensin/metabolism , Receptors, Neurotensin/metabolism
7.
Biochem Biophys Res Commun ; 706: 149748, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38460450

ABSTRACT

Angiogenesis is a process that is controlled by a delicate combination of proangiogenic and antiangiogenic molecules and can be disrupted in various illnesses, including cancer. Non-cancerous diseases can also have an abnormal or insufficient vascular growth, inflammation and hypoxia, which exacerbate angiogenesis. These conditions include atherosclerosis, psoriasis, endometriosis, asthma, obesity and AIDS. Based on that, the present work assessed the in vitro and ex vivo antiangiogenic properties stemming from BthMP, a P-I metalloproteinase from Bothrops moojeni snake venom, via the VEGF pathway. BthMP at a concentration of 5 and 40 µg/mL showed no toxicity to endothelial cells (HUVEC) in the MTT assay and was not able to induce necrosis and colony proliferation. Interestingly, BthMP inhibited adhesion, migration and invasion of HUVECs in Matrigel and arrested in vitro angiogenesis by reducing the average number of nodules in toxin-treated cells by 9.6 and 17.32 at 5 and 40 µg/mL, respectively, and the number of tubules by 15.9 at 5 µg/mL and 21.6 at 40 µg/mL in a VEGF-dependent way, an essential proangiogenic property. Furthermore, BthMP inhibited the occurrence of the angiogenic process in an ex vivo aortic ring test by decreasing new vessel formation by 52% at 5 µg/mL and by 66% at 40 µg/mL and by increasing the expression of an antiangiogenic gene, SFLT-1, and decreasing the expression of the proangiogenic genes VEGFA and ANGPT-1. Finally, this toxin reduces the production of nitric oxide, a marker that promotes angiogenesis and VEGF modulation, and decreases the protein expression of VEGFA in the supernatant of the HUVEC culture by about 30 %. These results suggest that BthMP has a promising antiangiogenic property and proves to be a biotechnological mechanism for understanding the antiangiogenic responses induced by snake venom metalloproteinases, which could be applied to a variety of diseases that exhibit an imbalance of angiogenesis mechanisms.


Subject(s)
Bothrops , Endothelial Cells , Venomous Snakes , Animals , Female , Humans , Endothelial Cells/metabolism , Vascular Endothelial Growth Factor A/metabolism , Bothrops/metabolism , Metalloproteases/metabolism , Snake Venoms , Human Umbilical Vein Endothelial Cells/metabolism , Angiogenesis Inhibitors/pharmacology
8.
Placenta ; 148: 59-68, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38401207

ABSTRACT

INTRODUCTION: Almost 80% of urinary tract infections during pregnancy are caused by uropathogenic strains of Escherichia coli. Alpha-hemolysin, toxin secreted by them, has a fundamental role in this pathology development. Considering that urinary tract infections are related with premature rupture of fetal membranes, we proposed to evaluate the effects that alpha-hemolysin induces on human-fetal-membranes. METHODS: Thirteen fetal membranes obtained from elective cesarean sections (>37 weeks) were mounted in a transwell-device generating two independent chambers. To mimic an ascendant-urinary-tract infection, membranes were incubated with different concentrations of pure alpha-hemolysin from the choriodecidual side during 24h. Extensive histological analyses were performed and transepithelial electrical-resistance were determined. Cell viability, metalloproteinase activity and cyclooxygenase-2- gene expression was estimated by lactate-dehydrogenase-release assay, zymography and RT-qPCR, respectively. Finally, four fetal membranes were treated with hemolysin preincubated with polyclonal anti-hemolysin antibodies. Cell viability and metalloproteinase activity were monitored. RESULTS: After 24 h of treatment, fetal membranes evidenced a structural damage and a decrease in membrane resistance that progressed as the concentration of alpha hemolysin increased. While the amniotic-epithelial-layer remained practically unaffected, the chorion cells manifested an increase in vacuolization and necrosis. In addition, the extracellular matrix exhibited collagen-fiber disorganization, a marked decrease in fiber content, and became thicker in presence of the toxin. Cyclooxigenase-2 expression and metalloproteinase activity were also higher in the treated groups than in untreated ones. Finally, a preincubation of hemolysin with specific antibodies prevented the cytotoxicity on the chorion cells and the increase in metalloproteinase activity. DISCUSSION: Hemolysin induces structural and molecular changes associated with the remodeling of human-fetal-membranes in-vitro.


Subject(s)
Escherichia coli , Urinary Tract Infections , Pregnancy , Female , Humans , Hemolysin Proteins/pharmacology , Hemolysin Proteins/metabolism , Extraembryonic Membranes/metabolism , Urinary Tract Infections/metabolism , Metalloproteases/metabolism
9.
Int J Mol Sci ; 25(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38396794

ABSTRACT

Rosavin, a phenylpropanoid in Rhodiola rosea's rhizome, and an adaptogen, is known for enhancing the body's response to environmental stress. It significantly affects cellular metabolism in health and many diseases, particularly influencing bone tissue metabolism. In vitro, rosavin inhibits osteoclastogenesis, disrupts F-actin ring formation, and reduces the expression of osteoclastogenesis-related genes such as cathepsin K, calcitonin receptor (CTR), tumor necrosis factor receptor-associated factor 6 (TRAF6), tartrate-resistant acid phosphatase (TRAP), and matrix metallopeptidase 9 (MMP-9). It also impedes the nuclear factor of activated T-cell cytoplasmic 1 (NFATc1), c-Fos, the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and mitogen-activated protein kinase (MAPK) signaling pathways and blocks phosphorylation processes crucial for bone resorption. Moreover, rosavin promotes osteogenesis and osteoblast differentiation and increases mouse runt-related transcription factor 2 (Runx2) and osteocalcin (OCN) expression. In vivo studies show its effectiveness in enhancing bone mineral density (BMD) in postmenopausal osteoporosis (PMOP) mice, restraining osteoclast maturation, and increasing the active osteoblast percentage in bone tissue. It modulates mRNA expressions by increasing eukaryotic translation elongation factor 2 (EEF2) and decreasing histone deacetylase 1 (HDAC1), thereby activating osteoprotective epigenetic mechanisms, and alters many serum markers, including decreasing cross-linked C-telopeptide of type I collagen (CTX-1), tartrate-resistant acid phosphatase 5b (TRACP5b), receptor activator for nuclear factor κ B ligand (RANKL), macrophage-colony-stimulating factor (M-CSF), and TRAP, while increasing alkaline phosphatase (ALP) and OCN. Additionally, when combined with zinc and probiotics, it reduces pro-osteoporotic matrix metallopeptidase 3 (MMP-3), interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α), and enhances anti-osteoporotic interleukin 10 (IL-10) and tissue inhibitor of metalloproteinase 3 (TIMP3) expressions. This paper aims to systematically review rosavin's impact on bone tissue metabolism, exploring its potential in osteoporosis prevention and treatment, and suggesting future research directions.


Subject(s)
Bone Resorption , Disaccharides , Osteoclasts , Animals , Mice , Osteoclasts/metabolism , Tartrate-Resistant Acid Phosphatase/metabolism , Osteogenesis , Bone Resorption/metabolism , Cell Differentiation , NF-kappa B/metabolism , Metalloproteases/metabolism , RANK Ligand/metabolism , NFATC Transcription Factors/metabolism
11.
Int J Mol Sci ; 25(2)2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38279292

ABSTRACT

Respiratory diseases in ruminants are a main cause of economic losses to farmers worldwide. Approximately 25% of ruminants experience at least one episode of respiratory disease during the first year of life. Mannheimia haemolytica is the main etiological bacterial agent in the ruminant respiratory disease complex. M. haemolytica can secrete several virulence factors, such as leukotoxin, lipopolysaccharide, and proteases, that can be targeted to treat infections. At present, little information has been reported on the secretion of M. haemolytica A2 proteases and their host protein targets. Here, we obtained evidence that M. haemolytica A2 proteases promote the degradation of hemoglobin, holo-lactoferrin, albumin, and fibrinogen. Additionally, we performed biochemical characterization for a specific 110 kDa Zn-dependent metalloprotease (110-Mh metalloprotease). This metalloprotease was purified through ion exchange chromatography and characterized using denaturing and chaotropic agents and through zymography assays. Furthermore, mass spectrometry identification and 3D modeling were performed. Then, antibodies against the 110 kDa-Mh metalloprotease were produced, which achieved great inhibition of proteolytic activity. Finally, the antibodies were used to perform immunohistochemical tests on postmortem lung samples from sheep with suggestive histology data of pneumonic mannheimiosis. Taken together, our results strongly suggest that the 110-Mh metalloprotease participates as a virulence mechanism that promotes damage to host tissues.


Subject(s)
Mannheimia haemolytica , Pasteurellosis, Pneumonic , Sheep Diseases , Cattle , Sheep , Animals , Pasteurellosis, Pneumonic/diagnosis , Pasteurellosis, Pneumonic/microbiology , Metalloproteases/metabolism , Peptide Hydrolases/metabolism , Ruminants , Collagenases/metabolism , Zinc/metabolism , Sheep Diseases/microbiology
12.
Commun Biol ; 7(1): 44, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38182793

ABSTRACT

Mitochondrial function plays an important role in the maintenance of male fertility. However, the mechanisms underlying mitochondrial defect-related infertility remain mostly unclear. Here we show that a deficiency of PARL (Parl-/-), a mitochondrial protease, causes complete arrest of spermatogenesis during meiosis I. PARL deficiency led to severe downregulation of proteins of respiratory chain complex IV in testes that did not occur in other tested organs, causing a deficit in complex IV activity and ATP production. Furthermore, Parl-/- testes showed an almost complete loss of HSD17B3, a protein of the sER responsible for the last step in testosterone synthesis. While testosterone production appeared to be restored by overexpression of HSD17B12, loss of the canonical testosterone synthesis led to an upregulation of luteinizing hormone (LH) and of LH-regulated responses. These results suggest an important impact of the downstream regulation of mitochondrial defects that manifest in a cell-type-specific manner and extend beyond mitochondria.


Subject(s)
Endopeptidases , Metalloproteases , Mitochondrial Proteins , Humans , Male , Mitochondria/genetics , Peptide Hydrolases , Spermatogenesis/genetics , Testosterone , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Metalloproteases/genetics , Metalloproteases/metabolism
13.
Osteoarthritis Cartilage ; 32(2): 187-199, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37717904

ABSTRACT

OBJECTIVE: Examine the mechanism by which advanced glycation end products (AGEs) induce intervertebral disc degeneration (IDD) in C57BL/6J mice. METHODS: Matrix metallopeptidase (MMP) gene mRNA levels were assessed using RT-qPCR. Immunoprecipitation and co-immunoprecipitation were performed to identify the transcriptional complex regulating MMP expression due to AGEs. The preventive effects of inhibitors targeting this complex were tested in mice on high AGE diets. RESULTS: IDD and AGE accumulation were evident in mice on high-AGE diets (HAGEs), persisting across dietary shifts but absent in mice exclusively on low-AGE diets. Molecularly, HAGEs activated p21-activated kinase 1 (PAK1), prompting peroxisome proliferator-activated receptor gamma coactivator-related protein 1 (PPRC1) phosphorylation. Ubiquitin-specific protease 12 (USP12) interacted with the phosphorylated PPRC1 (pPPRC1), safeguarding it from proteasomal degradation. This pPPRC1, in collaboration with two histone acetyltransferases p300/CREB-binding protein (CBP) and a transcription factor activator protein 1(AP1), enhanced the expression of 12 MMP genes (MMP1a/1b/3/7/9/10/12/13/16/19/23/28). In vitro AGE exposure on nucleus pulposus and annulus fibrosus cells replicated this gene activation pattern, driven by the PAK1/pPPRC1-p300/CBP-AP1 pathway. The application of PAK1, p300, and AP1 inhibitors reduced pPPRC1-p300/CBP-AP1 binding to MMP promoters, diminishing their expression. These inhibitors effectively thwarted IDD in HAGE mice. CONCLUSION: Our results revealed that HAGEs instigate IDD via the PAK1/pPPRC1-p300/CBP-AP1 signaling pathway. This insight can guide therapeutic strategies to slow IDD progression in prediabetic/diabetic patients.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Nucleus Pulposus , Humans , Mice , Animals , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/metabolism , Transcriptional Activation , Mice, Inbred C57BL , Nucleus Pulposus/metabolism , Glycation End Products, Advanced/metabolism , Metalloproteases/metabolism , Intervertebral Disc/metabolism
14.
FEBS J ; 291(1): 114-131, 2024 01.
Article in English | MEDLINE | ID: mdl-37690456

ABSTRACT

The metalloproteinase ovastacin is released by the mammalian egg upon fertilization and cleaves a distinct peptide bond in zona pellucida protein 2 (ZP2), a component of the enveloping extracellular matrix. This limited proteolysis causes zona pellucida hardening, abolishes sperm binding, and thereby regulates fertility. Accordingly, this process is tightly controlled by the plasma protein fetuin-B, an endogenous competitive inhibitor. At present, little is known about how the cleavage characteristics of ovastacin differ from closely related proteases. Physiological implications of ovastacin beyond ZP2 cleavage are still obscure. In this study, we employed N-terminal amine isotopic labeling of substrates (N-TAILS) contained in the secretome of mouse embryonic fibroblasts to elucidate the substrate specificity and the precise cleavage site specificity. Furthermore, we were able to unravel the physicochemical properties governing ovastacin-substrate interactions as well as the individual characteristics that distinguish ovastacin from similar proteases, such as meprins and tolloid. Eventually, we identified several substrates whose cleavage could affect mammalian fertilization. Consequently, these substrates indicate newly identified functions of ovastacin in mammalian fertilization beyond zona pellucida hardening.


Subject(s)
Fibroblasts , Semen , Male , Animals , Mice , Zona Pellucida Glycoproteins/metabolism , Fibroblasts/metabolism , Semen/metabolism , Metalloproteases/metabolism , Mammals/metabolism , Endopeptidases , Fertilization/physiology
15.
Brain Res Bull ; 206: 110836, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38042504

ABSTRACT

BACKGROUND: Protection against ischemic stroke may be most effective when multiple components of the neurovascular unit are protected, yet current treatments target mainly neurons. Here we explored whether the PSD-95 inhibitor Tat-NR2B9c (NA-1) can protect not only neurons but also the blood-brain barrier. METHODS: Adult male Sprague-Dawley rats were randomly divided into three groups, which were subjected to either sham surgery or transient cerebral ischemia-reperfusion, after which some animals were treated with Tat-NR2B9c. The therapeutic efficacy of Tat-NR2B9c was assessed in terms of the degree of neurological deficit and cerebral infarction, integrity of the blood-brain barrier, cerebral water content, as well as expression of PSD-95, nitric oxide synthase, and matrix metalloprotease-9. RESULTS: Tat-NR2B9c (NA-1) ameliorated neurofunctional deficit, reduced cerebral infarction, mitigated blood-brain barrier injury and improved its integrity following ischemia-reperfusion, leading to less cerebral edema. These improvements were associated with upregulation of tight junction proteins in the blood-brain barrier. At the same time, Tat-NR2B9c (NA-1) downregulated neuronal nitric oxide synthase and matrix metalloprotease-9, while reversing the ischemia-induced downregulation of endothelial nitric oxide synthase in brain. We report here the first evidence that PSD-95 is expressed in vascular endothelial cells in the brain. CONCLUSION: Our experiments in a rat model of transient occlusion of the middle cerebral artery suggest that Tat-NR2B9c (NA-1) can mitigate ischemic injury to the blood-brain barrier, and that it may do so by downregulating matrix metalloprotease-9 and upregulating endothelial nitric oxide synthase.


Subject(s)
Brain Ischemia , Neuroprotective Agents , Peptides , Rats , Male , Animals , Blood-Brain Barrier/metabolism , Brain Ischemia/metabolism , Rats, Sprague-Dawley , Nitric Oxide Synthase Type III/metabolism , Endothelial Cells/metabolism , Neuroprotective Agents/pharmacology , Disks Large Homolog 4 Protein/metabolism , Cerebral Infarction , Arteries/metabolism , Metalloproteases/metabolism , Infarction, Middle Cerebral Artery/metabolism
16.
Trends Mol Med ; 30(2): 147-163, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38036391

ABSTRACT

Proteolytic processes on cell surfaces and extracellular matrix (ECM) sustain cell behavior and tissue integrity in health and disease. Matrix metalloproteases (MMPs) and a disintegrin and metalloproteases (ADAMs) remodel cell microenvironments through irreversible proteolysis of ECM proteins and cell surface bioactive molecules. Pan-MMP inhibitors in inflammation and cancer clinical trials have encountered challenges due to promiscuous activities of MMPs. Systems biology advances revealed that MMPs initiate multifactorial proteolytic cascades, creating new substrates, activating or suppressing other MMPs, and generating signaling molecules. This review highlights the intricate network that underscores the role of MMPs beyond individual substrate-enzyme activities. Gaining insight into MMP function and tissue specificity is crucial for developing effective drug discovery strategies and novel therapeutics. This requires considering the dynamic cellular processes and consequences of network proteolysis.


Subject(s)
Metalloproteases , Neoplasms , Humans , Proteolysis , Metalloproteases/analysis , Metalloproteases/metabolism , Neoplasms/metabolism , Extracellular Matrix/metabolism , Inflammation/metabolism , Tumor Microenvironment
17.
Article in English | MEDLINE | ID: mdl-37961814

ABSTRACT

BACKGROUND: Continuous exposure of the skin to ultraviolet B (UVB) rays can cause inflammation and photodamage. In previous studies, we observed that the upregulation of nc886, a noncoding RNA (ncRNA), can alleviate UVB-induced inflammation through suppression of the protein kinase RNA (PKR) pathway. We aim to investigate the effect of fermented black ginseng extract (FBGE), which has been shown to increase the expression of nc886, on UVB-induced inflammation in keratinocytes. METHODS: To confirm the cytotoxicity of FBGE, MTT assay was performed, and no significant cytotoxicity was found on human keratinocytes. The efficacies of FBGE were assessed through qPCR, Western blotting, and ELISA analysis which confirmed regulation of UVB-induced inflammation. RESULTS: The analysis results showed that FBGE inhibited the decrease in nc886 expression and the increase in the methylated nc886 caused by UVB. It also prevented the UVB-induced increase of metalloproteinase-9 (MMP-9), metalloproteinase-1 (MMP-1), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), interleukin-8 (IL-8) and tumor necrosis factor-α (TNF-α). Additionally, FBGE suppressed the PKR-MAPK pathways activated by UVB. CONCLUSION: These results implicate that FBGE can alleviate UVB-induced inflammation through regulation of the nc886-PKR pathway.


Subject(s)
Keratinocytes , Panax , Humans , Keratinocytes/metabolism , Skin , Inflammation/metabolism , Metalloproteases/metabolism , Metalloproteases/pharmacology , Ultraviolet Rays/adverse effects
18.
Circulation ; 149(8): 605-626, 2024 02 20.
Article in English | MEDLINE | ID: mdl-38018454

ABSTRACT

BACKGROUND: A better understanding of the molecular mechanism of aortic valve development and bicuspid aortic valve (BAV) formation would significantly improve and optimize the therapeutic strategy for BAV treatment. Over the past decade, the genes involved in aortic valve development and BAV formation have been increasingly recognized. On the other hand, ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) gene family members have been reported to be able to modulate cardiovascular development and diseases. The present study aimed to further investigate the roles of ADAMTS family members in aortic valve development and BAV formation. METHODS: Morpholino-based ADAMTS family gene-targeted screening for zebrafish heart outflow tract phenotypes combined with DNA sequencing in a 304 cohort BAV patient registry study was initially carried out to identify potentially related genes. Both ADAMTS gene-specific fluorescence in situ hybridization assay and genetic tracing experiments were performed to evaluate the expression pattern in the aortic valve. Accordingly, related genetic mouse models (both knockout and knockin) were generated using the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9) method to further study the roles of ADAMTS family genes. The lineage-tracing technique was used again to evaluate how the cellular activity of specific progenitor cells was regulated by ADAMTS genes. Bulk RNA sequencing was used to investigate the signaling pathways involved. Inducible pluripotent stem cells derived from both BAV patients and genetic mouse tissue were used to study the molecular mechanism of ADAMTS. Immunohistochemistry was performed to examine the phenotype of cardiac valve anomalies, especially in the extracellular matrix components. RESULTS: ADAMTS genes targeting and phenotype screening in zebrafish and targeted DNA sequencing on a cohort of patients with BAV identified ADAMTS16 (a disintegrin and metalloproteinase with thrombospondin motifs 16) as a BAV-causing gene and found the ADAMTS16 p. H357Q variant in an inherited BAV family. Both in situ hybridization and genetic tracing studies described a unique spatiotemporal pattern of ADAMTS16 expression during aortic valve development. Adamts16+/- and Adamts16+/H355Q mouse models both exhibited a right coronary cusp-noncoronary cusp fusion-type BAV phenotype, with progressive aortic valve thickening associated with raphe formation (fusion of the commissure). Further, ADAMTS16 deficiency in Tie2 lineage cells recapitulated the BAV phenotype. This was confirmed in lineage-tracing mouse models in which Adamts16 deficiency affected endothelial and second heart field cells, not the neural crest cells. Accordingly, the changes were mainly detected in the noncoronary and right coronary leaflets. Bulk RNA sequencing using inducible pluripotent stem cells-derived endothelial cells and genetic mouse embryonic heart tissue unveiled enhanced FAK (focal adhesion kinase) signaling, which was accompanied by elevated fibronectin levels. Both in vitro inducible pluripotent stem cells-derived endothelial cells culture and ex vivo embryonic outflow tract explant studies validated the altered FAK signaling. CONCLUSIONS: Our present study identified a novel BAV-causing ADAMTS16 p. H357Q variant. ADAMTS16 deficiency led to BAV formation.


Subject(s)
Bicuspid Aortic Valve Disease , Heart Defects, Congenital , Heart Valve Diseases , Humans , Animals , Mice , Zebrafish/genetics , Heart Valve Diseases/metabolism , Endothelial Cells/metabolism , Disintegrins/genetics , Disintegrins/metabolism , In Situ Hybridization, Fluorescence , Aortic Valve/metabolism , Heart Defects, Congenital/complications , Extracellular Matrix/metabolism , Thrombospondins/metabolism , Metalloproteases/metabolism , ADAMTS Proteins/genetics , ADAMTS Proteins/metabolism
19.
Biochim Biophys Acta Bioenerg ; 1865(1): 149017, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37827327

ABSTRACT

Membrane-bound FtsH proteases are universally present in prokaryotes and in mitochondria and chloroplasts of eukaryotic cells. These metalloproteases are often critical for viability and play both protease and chaperone roles to maintain cellular homeostasis. In contrast to most bacteria bearing a single ftsH gene, cyanobacteria typically possess four FtsH proteases (FtsH1-4) forming heteromeric (FtsH1/3 and FtsH2/3) and homomeric (FtsH4) complexes. The functions and substrate repertoire of each complex are however poorly understood. To identify substrates of the FtsH4 protease complex we established a trapping assay in the cyanobacterium Synechocystis PCC 6803 utilizing a proteolytically inactivated trapFtsH4-His. Around 40 proteins were specifically enriched in trapFtsH4 pulldown when compared with the active FtsH4. As the list of putative FtsH4 substrates contained Ycf4 and Ycf37 assembly factors of Photosystem I (PSI), its core PsaB subunit and the IsiA chlorophyll-binding protein that associates with PSI during iron stress, we focused on these PSI-related proteins. Therefore, we analysed their degradation by FtsH4 in vivo in Synechocystis mutants and in vitro using purified substrates. The data confirmed that FtsH4 degrades Ycf4, Ycf37, IsiA, and also the individual PsaA and PsaB subunits in the unassembled state but not when assembled within the PSI complexes. A possible role of FtsH4 in the PSI life-cycle is discussed.


Subject(s)
Peptide Hydrolases , Synechocystis , Peptide Hydrolases/metabolism , Photosystem I Protein Complex/genetics , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Metalloproteases/genetics , Metalloproteases/metabolism , Synechocystis/genetics , Synechocystis/metabolism
20.
Biochim Biophys Acta Proteins Proteom ; 1872(1): 140969, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37852516

ABSTRACT

ATP-dependent proteases FtsH are conserved in bacteria, mitochondria, and chloroplasts, where they play an essential role in degradation of misfolded/unneeded membrane and cytosolic proteins. It has also been demonstrated that the FtsH homologous protein BB0789 is crucial for mouse and tick infectivity and in vitro growth of the Lyme disease-causing agent Borrelia burgdorferi. This is not surprising, considering B. burgdorferi complex life cycle, residing in both in mammals and ticks, which requires a wide range of membrane proteins and short-lived cytosolic regulatory proteins to invade and persist in the host organism. In the current study, we have solved the crystal structure of the cytosolic BB0789166-614, lacking both N-terminal transmembrane α-helices and the small periplasmic domain. The structure revealed the arrangement of the AAA+ ATPase and the zinc-dependent metalloprotease domains in a hexamer ring, which is essential for ATPase and proteolytic activity. The AAA+ domain was found in an ADP-bound state, while the protease domain showed coordination of a zinc ion by two histidine residues and one aspartic acid residue. The loop region that forms the central pore in the oligomer was poorly defined in the crystal structure and therefore predicted by AlphaFold to complement the missing structural details, providing a complete picture of the functionally relevant hexameric form of BB0789. We confirmed that BB0789 is functionally active, possessing both protease and ATPase activities, thus providing novel structural-functional insights into the protein, which is known to be absolutely necessary for B. burgdorferi to survive and cause Lyme disease.


Subject(s)
Borrelia burgdorferi , Lyme Disease , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Bacterial Proteins/chemistry , Borrelia burgdorferi/genetics , Borrelia burgdorferi/metabolism , Lyme Disease/microbiology , Mammals/metabolism , Metalloproteases/genetics , Metalloproteases/metabolism , Peptide Hydrolases/metabolism , Zinc/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...