Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.661
Filter
1.
BMC Genomics ; 25(1): 563, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840042

ABSTRACT

BACKGROUND: Broussonetia papyrifera is an economically significant tree with high utilization value, yet its cultivation is often constrained by soil contamination with heavy metals (HMs). Effective scientific cultivation management, which enhances the yield and quality of B. papyrifera, necessitates an understanding of its regulatory mechanisms in response to HM stress. RESULTS: Twelve Metallothionein (MT) genes were identified in B. papyrifera. Their open reading frames ranged from 186 to 372 bp, encoding proteins of 61 to 123 amino acids with molecular weights between 15,473.77 and 29,546.96 Da, and theoretical isoelectric points from 5.24 to 5.32. Phylogenetic analysis classified these BpMTs into three subclasses: MT1, MT2, and MT3, with MT2 containing seven members and MT3 only one. The expression of most BpMT genes was inducible by Cd, Mn, Cu, Zn, and abscisic acid (ABA) treatments, particularly BpMT2e, BpMT2d, BpMT2c, and BpMT1c, which showed significant responses and warrant further study. Yeast cells expressing these BpMT genes exhibited enhanced tolerance to Cd, Mn, Cu, and Zn stresses compared to control cells. Yeasts harboring BpMT1c, BpMT2e, and BpMT2d demonstrated higher accumulation of Cd, Cu, Mn, and Zn, suggesting a chelation and binding capacity of BpMTs towards HMs. Site-directed mutagenesis of cysteine (Cys) residues indicated that mutations in the C domain of type 1 BpMT led to increased sensitivity to HMs and reduced HM accumulation in yeast cells; While in type 2 BpMTs, the contribution of N and C domain to HMs' chelation possibly corelated to the quantity of Cys residues. CONCLUSION: The BpMT genes are crucial in responding to diverse HM stresses and are involved in ABA signaling. The Cys-rich domains of BpMTs are pivotal for HM tolerance and chelation. This study offers new insights into the structure-function relationships and metal-binding capabilities of type-1 and - 2 plant MTs, enhancing our understanding of their roles in plant adaptation to HM stresses.


Subject(s)
Broussonetia , Metallothionein , Metals, Heavy , Phylogeny , Metallothionein/genetics , Metallothionein/metabolism , Metallothionein/chemistry , Metals, Heavy/metabolism , Broussonetia/genetics , Broussonetia/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/chemistry , Stress, Physiological , Amino Acid Sequence , Protein Binding
2.
mSphere ; 9(5): e0021024, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38712943

ABSTRACT

Metallothioneins (MTs) are small cysteine-rich proteins that play important roles in homeostasis and protection against heavy metal toxicity and oxidative stress. The opportunistic pathogen, Pseudomonas aeruginosa, expresses a bacterial MT known as PmtA. Utilizing genetically modified P. aeruginosa PAO1 strains (a human clinical wound isolate), we show that inducing pmtA increases levels of pyocyanin and biofilm compared to other PAO1 isogenic strains, supporting previous results that pmtA is important for pyocyanin and biofilm production. We also show that overexpression of pmtA in vitro provides protection for cells exposed to oxidants, which is a characteristic of inflammation, indicating a role for PmtA as an antioxidant in inflammation. We found that a pmtA clean deletion mutant is phagocytized faster than other PAO1 isogenic strains in THP-1 human macrophage cells, indicating that PmtA provides protection from the phagocytic attack. Interestingly, we observed that monoclonal anti-PmtA antibody binds to PmtA, which is accessible on the surface of PAO1 strains using both flow cytometry and enzyme-linked immunosorbent assay techniques. Finally, we investigated intracellular persistence of these PAO1 strains within THP-1 macrophages cells and found that the phagocytic endurance of PAO1 strains is affected by pmtA expression. These data show for the first time that a bacterial MT (pmtA) can play a role in the phagocytic process and can be found on the outer surface of PAO1. Our results suggest that PmtA plays a role both in protection from oxidative stress and in the resistance to the host's innate immune response, identifying PmtA as a potential therapeutic target in P. aeruginosa infection. IMPORTANCE: The pathogen Pseudomonas aeruginosa is a highly problematic multidrug-resistant (MDR) pathogen with complex virulence networks. MDR P. aeruginosa infections have been associated with increased clinical visits, very poor healthcare outcomes, and these infections are ranked as critical on priority lists of both the Centers for Disease Control and Prevention and the World Health Organization. Known P. aeruginosa virulence factors have been extensively studied and are implicated in counteracting host defenses, causing direct damage to the host tissues, and increased microbial competitiveness. Targeting virulence factors has emerged as a new line of defense in the battle against MDR P. aeruginosa strains. Bacterial metallothionein is a newly recognized virulence factor that enables evasion of the host immune response. The studies described here identify mechanisms in which bacterial metallothionein (PmtA) plays a part in P. aeruginosa pathogenicity and identifies PmtA as a potential therapeutic target.


Subject(s)
Bacterial Proteins , Biofilms , Macrophages , Metallothionein , Oxidative Stress , Phagocytosis , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/pathogenicity , Pseudomonas aeruginosa/metabolism , Humans , Metallothionein/genetics , Metallothionein/metabolism , Macrophages/microbiology , Macrophages/immunology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms/growth & development , THP-1 Cells , Pyocyanine/metabolism
3.
Aging (Albany NY) ; 16(9): 8155-8170, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38747739

ABSTRACT

BACKGROUND: Osteosarcoma (OS) is a primary malignant bone tumor arising from mesenchymal cells. The standard clinical treatment for OS involves extensive tumor resection combined with neoadjuvant chemotherapy or radiotherapy. OS's invasiveness, lung metastasis, and drug resistance contribute to a low cure rate and poor prognosis with this treatment. Metallothionein 1G (MT1G), observed in various cancers, may serve as a potential therapeutic target for OS. METHODS: OS samples in GSE33382 and TARGET datasets were selected as the test cohorts. As the external validation cohort, 13 OS tissues and 13 adjacent cancerous tissues from The Second Affiliated Hospital of Nanchang University were collected. Patients with OS were divided into high and low MT1G mRNA-expression groups; differentially expressed genes (DEGs) were identified as MT1G-related genes. The biological function of MT1G was annotated using Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO) and gene set enrichment analysis (GSEA). Gene expression correlation analysis and competing endogenous RNA (ceRNA) regulatory network construction were used to determine potential biological regulatory relationships of DEGs. Survival analysis assessed the prognostic value of MT1G. RESULTS: MT1G expression increased in OS samples and presented higher in metastatic OS compared with non-metastatic OS. Functional analyses indicated that MT1G was mainly associated with spliceosome. A ceRNA network with DEGs was constructed. MT1G is an effective biomarker predicting survival and correlated with increased recurrence rates and poorer survival. CONCLUSIONS: This research identified MT1G as a potential biomarker for OS prognosis, highlighting its potential as a therapy target.


Subject(s)
Bone Neoplasms , Computational Biology , Gene Expression Regulation, Neoplastic , Mesenchymal Stem Cells , Metallothionein , Osteosarcoma , Female , Humans , Male , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Bone Neoplasms/metabolism , Bone Neoplasms/mortality , Gene Expression Profiling , Gene Regulatory Networks , Mesenchymal Stem Cells/metabolism , Metallothionein/genetics , Metallothionein/metabolism , Osteosarcoma/genetics , Osteosarcoma/pathology , Prognosis
4.
Ecotoxicol Environ Saf ; 278: 116421, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38705041

ABSTRACT

Subcellular metal distribution assessments are the most adequate biomonitoring approach to evaluate metal toxicity, instead of total metal assessments This study aimed to assess subcellular metal distributions and associations to the main metal exposure biomarker, metallothionein (MT), in two bromeliad species (Tillandsia usneoides and Tillandsia stricta) exposed established in industrial, urban, and port areas in the metropolitan region of Rio de Janeiro, southeastern Brazil, through an active biomonitoring approach conducted one year. Metals and metalloids in three subcellular fractions (insoluble, thermolabile and thermostable) obtained from the MT purification process were determined by inductively coupled plasma mass spectrometry (ICP-MS). Lower MT concentrations were observed both during the dry sampling periods, associated to the crassulacean acid metabolism (CAM) and during the COVID-19 pandemic, due to reduced urban mobility, decreasing pollutant emissions. The percentage of non-bioavailable metals detected in the insoluble fraction increased throughout the sampling period for both species. Several metals (Cr, Co, Cu, Cd, Mn, Ni, Se, and Zn), most associated with vehicle emissions, the main pollutant source in urban centers, were detected in the thermostable fraction and are, thus, associated with MT through the MT-metal detoxification route. Insoluble metal concentrations were higher in T. stricta, indicating that this species seems less susceptible to cellular metal exposure damage. A potential protective effect of Se and Fe was detected against Pb, suggested by a strong negative correlation, which may be attributed to antioxidant roles and similar uptake routes, respectively.


Subject(s)
Air Pollutants , Cities , Environmental Monitoring , Metallothionein , Tillandsia , Brazil , Metallothionein/metabolism , Metallothionein/analysis , Environmental Monitoring/methods , Air Pollutants/analysis , Air Pollutants/toxicity , Tillandsia/drug effects , Ecotoxicology/methods , Metals/analysis , Metals/toxicity , Biomarkers/analysis , Metals, Heavy/analysis , Metals, Heavy/toxicity
5.
Environ Sci Pollut Res Int ; 31(24): 35320-35331, 2024 May.
Article in English | MEDLINE | ID: mdl-38730214

ABSTRACT

A multibiomarker approach helps assess environmental health as it provides a complete tool to understand the effects of environmental stressors on ecosystems and human health. We applied this approach in the central Atlantic Ocean of Morocco, an area subjected to the impact of many types of pollutants, threatening the durability of its resources. In this study, four biomarkers acetylcholinesterase (AChE), glutathione-s-transferase (GST), metallothioneins (MTs), and catalase (CAT) were measured in the digestive gland of the mussel Mytilus galloprovincialis collected from four sites: Imsouane (S1), Cap Ghir (S2), Imi Ouaddar (S3), and Douira (S4). These sites were chosen due to the diversity of impacts ranging from industrial to agricultural and touristic. We also assembled all the enzymatic responses (AChE, GST, CAT, and MTs), using the integrated biomarker response (IBR), to estimate the degree of impact of pollutants at the prospected sites to reveal all the complex interactions between biomarkers and to classify sites via the integrated approach. Results show a seasonal change in biomarker responses with variability between sites. We also recorded the highest levels of AChE inhibition and GST induction in S1, higher levels of catalase activity in S4, and a significant impact on metallothionein concentration in S1 and S3. This project highlights the interest in using a multibiomarker approach to ensure accurate interpretation of biomarker variation to protect the Moroccan coast and its resources.


Subject(s)
Acetylcholinesterase , Biomarkers , Catalase , Environmental Monitoring , Glutathione Transferase , Metallothionein , Mytilus , Animals , Morocco , Biomarkers/metabolism , Environmental Monitoring/methods , Acetylcholinesterase/metabolism , Glutathione Transferase/metabolism , Metallothionein/metabolism , Catalase/metabolism , Atlantic Ocean , Water Pollutants, Chemical/analysis
6.
Clin Nutr ; 43(6): 1475-1487, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723301

ABSTRACT

BACKGROUND & AIMS: The past few decades have witnessed a rapid growth in the prevalence of nonalcoholic fatty liver disease (NAFLD). While the ketogenic diet (KD) is considered for managing NAFLD, the safety and efficacy of the KD on NAFLD has been a controversial topic. Here, we aimed to investigate the effect of KD of different durations on metabolic endpoints in mice with NAFLD and explore the underlying mechanisms. METHODS: NAFLD mice were fed with KD for 1, 2, 4 and 6 weeks, respectively. The blood biochemical indexes (blood lipids, AST, ALT and etc.) and liver fat were measured. The LC-MS/MS based proteomic analysis was performed on liver tissues. Metallothionein-2 (MT2) was knocked down with adeno-associated virus (AAV) or small interfering RNA (siRNA) in NAFLD mice and AML-12 cells, respectively. H&E, BODIPY and ROS staining were performed to examine lipid deposition and oxidative stress. Furthermore, MT2 protein levels, nucleus/cytoplasm distribution and DNA binding activity of peroxisome proliferators-activated receptors α (PPARα) were evaluated. RESULTS: KD feeding for 2 weeks showed the best improvement on NAFLD phenotype. Proteomic analysis revealed that MT2 was a key candidate for different metabolic endpoints of NAFLD affected by different durations of KD feeding. MT2 knockdown in NAFLD mice blocked the effects of 2 weeks of KD feeding on HFD-induced steatosis. In mouse primary hepatocytes and AML-12 cells, MT2 protein levels were induced by ß-hydroxybutyric acid (ß-OHB). MT2 Knockdown blunted the effects of ß-OHB on alleviating PA-induced lipid deposition. Mechanistically, 2 weeks of KD or ß-OHB treatment reduced oxidative stress and upregulated the protein levels of MT2 in nucleus, which subsequently increased its DNA binding activity and PPARα protein expression. CONCLUSIONS: Collectively, these findings indicated that KD feeding prevented NAFLD in a time dependent manner and MT2 is a potential target contributing to KD improvement on steatosis.


Subject(s)
Diet, Ketogenic , Metallothionein , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease , Oxidative Stress , Up-Regulation , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/prevention & control , Non-alcoholic Fatty Liver Disease/genetics , Metallothionein/genetics , Metallothionein/metabolism , Diet, Ketogenic/methods , Mice , Male , Liver/metabolism , Antioxidants/metabolism , PPAR alpha/metabolism , PPAR alpha/genetics , Disease Models, Animal , Lipid Metabolism , Time Factors
7.
Nanoscale ; 16(20): 9985-9997, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38695726

ABSTRACT

Silver nanoparticles (AgNPs) hold great promise for several different applications, from colorimetric sensors to antimicrobial agents. Despite their widespread incorporation in consumer products, limited understanding of the detrimental effects and cellular antioxidant responses associated with AgNPs at sublethal concentrations persists, raising concerns for human and ecological well-being. To address this gap, we synthesized AgNPs of varying sizes and evaluated their cytotoxicity against human dermal fibroblasts (HDF). Our study revealed that toxicity of AgNPs is a time- and size-dependent process, even at low exposure levels. AgNPs exhibited low short-term cytotoxicity but high long-term impact, particularly for the smallest NPs tested. Raman microspectroscopy was employed for in-time investigations of intracellular molecular variations during the first 24 h of exposure to AgNPs of 35 nm. Subtle protein and lipid degradations were detected, but no discernible damage to the DNA was observed. Signals associated with antioxidant proteins, such as superoxide dismutase (SOD), catalase (CAT) and metallothioneins (MTs), increased over time, reflecting the heightened production of these defense agents. Fluorescence microscopy further confirmed the efficacy of overexpressed antioxidant proteins in mitigating ROS formation during short-term exposure to AgNPs. This work provides valuable insights into the molecular changes and remedial strategies within the cellular environment, utilizing Raman microspectroscopy as an advanced analytical technique. These findings offer a novel perspective on the cytotoxicity mechanism of AgNPs, contributing to the development of safer materials and advice on regulatory guidelines for their biomedical applications.


Subject(s)
Antioxidants , Fibroblasts , Metal Nanoparticles , Silver , Spectrum Analysis, Raman , Superoxide Dismutase , Silver/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/cytology , Superoxide Dismutase/metabolism , Catalase/metabolism , Cell Survival/drug effects , Metallothionein/metabolism , Reactive Oxygen Species/metabolism
8.
Sci Rep ; 14(1): 10124, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698114

ABSTRACT

Despite the high energetic cost of the reduction of sulfate to H2S, required for the synthesis of sulfur-containing amino acids, some wine Saccharomyces cerevisiae strains have been reported to produce excessive amounts of H2S during alcoholic fermentation, which is detrimental to wine quality. Surprisingly, in the presence of sulfite, used as a preservative, wine strains produce more H2S than wild (oak) or wine velum (flor) isolates during fermentation. Since copper resistance caused by the amplification of the sulfur rich protein Cup1p is a specific adaptation trait of wine strains, we analyzed the link between copper resistance mechanism, sulfur metabolism and H2S production. We show that a higher content of copper in the must increases the production of H2S, and that SO2 increases the resistance to copper. Using a set of 51 strains we observed a positive and then negative relation between the number of copies of CUP1 and H2S production during fermentation. This complex pattern could be mimicked using a multicopy plasmid carrying CUP1, confirming the relation between copper resistance and H2S production. The massive use of copper for vine sanitary management has led to the selection of resistant strains at the cost of a metabolic tradeoff: the overproduction of H2S, resulting in a decrease in wine quality.


Subject(s)
Copper , Fermentation , Hydrogen Sulfide , Metallothionein , Odorants , Saccharomyces cerevisiae , Vitis , Wine , Wine/analysis , Copper/metabolism , Vitis/microbiology , Saccharomyces cerevisiae/metabolism , Hydrogen Sulfide/metabolism , Odorants/analysis , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sulfites/pharmacology , Pest Control/methods
9.
Nutrients ; 16(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38794706

ABSTRACT

Cadmium (Cd) is recognized as being linked to several liver diseases. Currently, due to the limited spectrum of drugs available for the treatment of Cd intoxication, developing and designing antidotes with superior detoxification capacity and revealing their underlying mechanisms remains a major challenge. Therefore, we developed the first next-generation probiotic E. coli 1917-pSK18a-MT that delivers metallothionein (MT) to overcome Cd-induced liver injury in C57BL/6 mice by utilizing bacterial surface display technology. The results demonstrate that E. coli 1917-pSK18a-MT could efficiently express MT without altering the growth and probiotic properties of the strain. Moreover, we found that E. coli 1917-pSK18a-MT ameliorated Cd contamination-induced hepatic steatosis, inflammatory cell infiltration, and liver fibrosis by decreasing the expression of aminotransferases along with inflammatory factors. Activation of the Nrf2-Keap1 signaling pathway also further illustrated the hepatoprotective effects of the engineered bacteria. Finally, we showed that E. coli 1917-pSK18a-MT improved the colonic barrier function impaired by Cd induction and ameliorated intestinal flora dysbiosis in Cd-poisoned mice by increasing the relative abundance of the Verrucomicrobiota. These data revealed that the combination of E. coli 1917 and MT both alleviated Cd-induced liver injury to a greater extent and restored the integrity of colonic epithelial tissues and bacterial dysbiosis.


Subject(s)
Cadmium , Chemical and Drug Induced Liver Injury , Escherichia coli , Gastrointestinal Microbiome , Metallothionein , Mice, Inbred C57BL , Probiotics , Animals , Probiotics/pharmacology , Gastrointestinal Microbiome/drug effects , Metallothionein/metabolism , Cadmium/toxicity , Mice , Chemical and Drug Induced Liver Injury/prevention & control , Dysbiosis , Male , Liver/drug effects , Liver/metabolism , Signal Transduction/drug effects
10.
Fish Shellfish Immunol ; 150: 109645, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38777254

ABSTRACT

Metallothioneins (MTs) are cysteine-rich metal-binding proteins whose expression is induced by exposure to essential and non-essential metals, making them potential biological markers for assessing metal pollution in various biomonitoring programs. However, the functional properties of these proteins are yet to be comprehensively characterized in most marine invertebrates. In this study, we identified and characterized an MT homolog from the disk abalone (Haliotis discus discus), referred to as disk abalone MT (AbMT). AbMT exhibited the same primary structural features as MTs from other mollusks containing two ß-domains (ß2ß1-form). AbMT protein demonstrated metal-binding and detoxification abilities against Zn, Cu, and Cd, as evidenced by Escherichia coli growth kinetics, metal tolerance analysis, and UV absorption spectrum. Transcriptional analysis revealed that AbMT was ubiquitously expressed in all analyzed tissues and upregulated in gill tissue following challenge with Vibrio parahaemolyticus, Listeria monocytogenes, and viral hemorrhagic septicemia virus (VHSV). Additionally, overexpression of AbMT suppressed LPS-induced NO production in RAW264.7 macrophages, protected cells against H2O2-induced oxidative stress, and promoted macrophage polarization toward the M1 phase. Conclusively, these findings suggest an important role for AbMT in environmental stress protection and immune regulation in disk abalone.


Subject(s)
Gastropoda , Immunity, Innate , Metallothionein , Novirhabdovirus , Oxidative Stress , Vibrio parahaemolyticus , Animals , Metallothionein/genetics , Metallothionein/immunology , Gastropoda/immunology , Gastropoda/genetics , Gastropoda/microbiology , Oxidative Stress/drug effects , Vibrio parahaemolyticus/physiology , Immunity, Innate/genetics , Novirhabdovirus/physiology , Gene Expression Regulation/immunology , Amino Acid Sequence , Phylogeny , Sequence Alignment/veterinary , Listeria monocytogenes/physiology , Listeria monocytogenes/immunology , Mice , Gene Expression Profiling/veterinary , RAW 264.7 Cells , Metals, Heavy/toxicity , Water Pollutants, Chemical
11.
Environ Toxicol Pharmacol ; 108: 104473, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759846

ABSTRACT

The most recent dam rupture in Brazil released tons of mining tailings into the upper course of the Paraopeba River, affecting this river in an unprecedented way. The present study aimed to evaluate the influence of heavy metals on Prochilodus costatus, an important commercial species in Brazil, four years after the dam colapse. To this end, biomarkers of heavy metals, oxidative stress, and environmental stress were analyzed, and histological analyses of target organs were performed. The results demonstrated critical contamination of fish from the Paraopeba River. Increased expression of Metallothioneins - MTs, Heat Shock Protein - HSP70, and inducible nitric oxide synthase - iNOS, as well as greater rates of histological changes in the liver, spleen, and gonads, were observed in P. costatus. These findings demonstrate that, despite past contamination, the metals present in mining tailings have significantly increased the contamination of the Paraopeba River basin.


Subject(s)
Liver , Metallothionein , Metals, Heavy , Nitric Oxide Synthase Type II , Rivers , Water Pollutants, Chemical , Animals , Metallothionein/metabolism , Water Pollutants, Chemical/toxicity , Metals, Heavy/toxicity , Nitric Oxide Synthase Type II/metabolism , Brazil , Liver/drug effects , Liver/metabolism , Spleen/drug effects , Spleen/metabolism , Characiformes/metabolism , Male , Gonads/drug effects , Gonads/metabolism , Heat-Shock Proteins/metabolism , Fish Proteins/metabolism , Female
12.
Biomed Pharmacother ; 174: 116555, 2024 May.
Article in English | MEDLINE | ID: mdl-38593708

ABSTRACT

Calprotectin (CP), a heterodimer of S100A8 and S100A9, is expressed by neutrophils and a number of innate immune cells and is used widely as a marker of inflammation, particularly intestinal inflammation. CP is a ligand for toll-like receptor 4 (TLR4) and the receptor for advanced glycation end products (RAGE). In addition, CP can act as a microbial modulatory agent via a mechanism termed nutritional immunity, depending on metal binding, most notably Zn2+. The effects on the intestinal epithelium are largely unknown. In this study we aimed to characterize the effect of calprotectin on mouse jejunal organoids as a model epithelium, focusing on Zn2+ metabolism and cell proliferation. CP addition upregulated the expression of the Zn2+ absorptive transporter Slc39a4 and of methallothionein Mt1 in a Zn2+-sensitive manner, while downregulating the expression of the Zn2+ exporter Slc30a2 and of methallothionein 2 (Mt2). These effects were greatly attenuated with a CP variant lacking the metal binding capacity. Globally, these observations indicate adaptation to low Zn2+ levels. CP had antiproliferative effects and reduced the expression of proliferative and stemness genes in jejunal organoids, effects that were largely independent of Zn2+ chelation. In addition, CP induced apoptosis modestly and modulated antimicrobial gene expression. CP had no effect on epithelial differentiation. Overall, CP exerts modulatory effects in murine jejunal organoids that are in part related to Zn2+ sequestration and partially reproduced in vivo, supporting the validity of mouse jejunal organoids as a model for mouse epithelium.


Subject(s)
Cell Proliferation , Intestinal Mucosa , Jejunum , Leukocyte L1 Antigen Complex , Organoids , Zinc , Animals , Zinc/metabolism , Organoids/metabolism , Organoids/drug effects , Leukocyte L1 Antigen Complex/metabolism , Jejunum/metabolism , Jejunum/drug effects , Cell Proliferation/drug effects , Mice , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Mice, Inbred C57BL , Metallothionein/metabolism , Metallothionein/genetics , Inflammation/metabolism , Inflammation/pathology , Biomarkers/metabolism , Male
13.
Talanta ; 274: 125920, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38574532

ABSTRACT

Herby, the interaction of metallothioneins with commonly used Pt-based anticancer drugs - cisplatin, carboplatin, and oxaliplatin - was investigated using the combined power of elemental (i.e. LA-ICP-MS, CE-ICP-MS) and molecular (i.e. MALDI-TOF-MS) analytical techniques providing not only required information about the interaction, but also the benefit of low sample consumption. The amount of Cd and Pt incorporated within the protein was determined for protein monomers and dimer/oligomers formed by non-oxidative dimerization. Moreover, fluorescence spectrometry using Zn2+-selective fluorescent indicator - FluoZin3 - was employed to monitor the ability of Pt drugs to release natively occurring Zn from the protein molecule. The investigation was carried out using two protein isoforms (i.e. MT2, MT3), and significant differences in behaviour of these two isoforms were observed. The main attention was paid to elucidating whether the protein dimerization/oligomerization may be the reason for the potential failure of the anticancer therapy based on these drugs. Based on the results, it was demonstrated that the interaction of MT2 (both monomers and dimers) interacted with Pt drugs significantly less compared to MT3 (both monomers and dimers). Also, a significant difference between monomeric and dimeric forms (both MT2 and MT3) was not observed. This may suggest that dimer formation is not the key factor leading to the inactivation of Pt drugs.


Subject(s)
Metallothionein , Spectrometry, Fluorescence , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Metallothionein/metabolism , Metallothionein/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Spectrometry, Fluorescence/methods , Carboplatin/pharmacology , Oxaliplatin/pharmacology , Cisplatin/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Organoplatinum Compounds/pharmacology , Organoplatinum Compounds/chemistry , Platinum/chemistry , Metallothionein 3 , Cytostatic Agents/pharmacology , Cytostatic Agents/chemistry , Mass Spectrometry/methods , Humans
14.
Acta Neuropathol Commun ; 12(1): 68, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664739

ABSTRACT

Some individuals show a discrepancy between cognition and the amount of neuropathological changes characteristic for Alzheimer's disease (AD). This phenomenon has been referred to as 'resilience'. The molecular and cellular underpinnings of resilience remain poorly understood. To obtain an unbiased understanding of the molecular changes underlying resilience, we investigated global changes in gene expression in the superior frontal gyrus of a cohort of cognitively and pathologically well-defined AD patients, resilient individuals and age-matched controls (n = 11-12 per group). 897 genes were significantly altered between AD and control, 1121 between resilient and control and 6 between resilient and AD. Gene set enrichment analysis (GSEA) revealed that the expression of metallothionein (MT) and of genes related to mitochondrial processes was higher in the resilient donors. Weighted gene co-expression network analysis (WGCNA) identified gene modules related to the unfolded protein response, mitochondrial processes and synaptic signaling to be differentially associated with resilience or dementia. As changes in MT, mitochondria, heat shock proteins and the unfolded protein response (UPR) were the most pronounced changes in the GSEA and/or WGCNA, immunohistochemistry was used to further validate these processes. MT was significantly increased in astrocytes in resilient individuals. A higher proportion of the mitochondrial gene MT-CO1 was detected outside the cell body versus inside the cell body in the resilient compared to the control group and there were higher levels of heat shock protein 70 (HSP70) and X-box-binding protein 1 spliced (XBP1s), two proteins related to heat shock proteins and the UPR, in the AD donors. Finally, we show evidence for putative sex-specific alterations in resilience, including gene expression differences related to autophagy in females compared to males. Taken together, these results show possible mechanisms involving MTs, mitochondrial processes and the UPR by which individuals might maintain cognition despite the presence of AD pathology.


Subject(s)
Alzheimer Disease , Gene Expression Profiling , Metallothionein , Mitochondria , Unfolded Protein Response , Humans , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Metallothionein/genetics , Metallothionein/metabolism , Female , Male , Aged , Unfolded Protein Response/genetics , Unfolded Protein Response/physiology , Mitochondria/metabolism , Mitochondria/genetics , Mitochondria/pathology , Aged, 80 and over , Resilience, Psychological
15.
Metallomics ; 16(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38549424

ABSTRACT

Age/stage sensitivity is considered a significant factor in toxicity assessments. Previous studies investigated cadmium (Cd) toxicosis in Caenorhabditis elegans, and a plethora of metal-responsive genes/proteins have been identified and characterized in fine detail; however, most of these studies neglected age sensitivity and stage-specific response to toxicants at the molecular level. This present study compared the transcriptome response between C. elegans L3 vs L4 larvae exposed to 20 µM Cd to explore the transcriptional hallmarks of stage sensitivity. The results showed that the transcriptome of the L3 stage, despite being exposed to Cd for a shorter period, was more affected than the L4 stage, as demonstrated by differences in transcriptional changes and magnitude of induction. Additionally, T08G5.1, a hitherto uncharacterized gene located upstream of metallothionein (mtl-2), was transcriptionally hyperresponsive to Cd exposure. Deletion of one or both metallothioneins (mtl-1 and/or mtl-2) increased T08G5.1 expression, suggesting that its expression is linked to the loss of metallothionein. The generation of an extrachromosomal transgene (PT08G5.1:: GFP) revealed that T08G5.1 is constitutively expressed in the head neurons and induced in gut cells upon Cd exposure, not unlike mtl-1 and mtl-2. The low abundance of cysteine residues in T08G5.1 suggests, however, that it may not be involved directly in Cd sequestration to limit its toxicity like metallothionein, but might be associated with a parallel pathway, possibly an oxidative stress response.


Subject(s)
Cadmium , Caenorhabditis elegans Proteins , Caenorhabditis elegans , Metallothionein , Transcriptome , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Cadmium/toxicity , Cadmium/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Transcriptome/drug effects , Metallothionein/genetics , Metallothionein/metabolism , Larva/drug effects , Larva/genetics , Larva/metabolism
16.
Cell Stress Chaperones ; 29(2): 312-325, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38490439

ABSTRACT

Type 1 diabetes (T1D) is characterized by lymphocyte infiltration into the pancreatic islets of Langerhans, leading to the destruction of insulin-producing beta cells and uncontrolled hyperglycemia. In the nonobese diabetic (NOD) murine model of T1D, the onset of this infiltration starts several weeks before glucose dysregulation and overt diabetes. Recruitment of immune cells to the islets is mediated by several chemotactic cytokines, including CXCL10, while other cytokines, including SDF-1α, can confer protective effects. Global gene expression studies of the pancreas from prediabetic NOD mice and single-cell sequence analysis of human islets from prediabetic, autoantibody-positive patients showed an increased expression of metallothionein (MT), a small molecular weight, cysteine-rich metal-binding stress response protein. We have shown that beta cells can release MT into the extracellular environment, which can subsequently enhance the chemotactic response of Th1 cells to CXCL10 and interfere with the chemotactic response of Th2 cells to SDF-1α. These effects can be blocked in vitro with a monoclonal anti-MT antibody, clone UC1MT. When administered to NOD mice before the onset of diabetes, UC1MT significantly reduces the development of T1D. Manipulation of extracellular MT may be an important approach to preserving beta cell function and preventing the development of T1D.


Subject(s)
Diabetes Mellitus, Type 1 , Prediabetic State , Humans , Mice , Animals , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/prevention & control , Mice, Inbred NOD , Metallothionein/genetics , Metallothionein/metabolism , Chemokine CXCL12
17.
Metallomics ; 16(4)2024 04 05.
Article in English | MEDLINE | ID: mdl-38503570

ABSTRACT

Metallothioneins (MTs) are cysteine-rich proteins involved in metal homeostasis, heavy metal detoxification, and protection against oxidative stress. Whether the four mammalian MT isoforms exhibit different metal binding properties is not clear. In this paper, the Cu(I) binding properties of the apo MT1A, apo MT2, and apo MT3 are compared and the relative Cu(I) binding affinities are reported. In all three isoforms, Cu4, Cu6, and Cu10 species form cooperatively, and MT1A and MT2 also form a Cu13 species. The Cu(I) binding properties of Zn7-MT1A, Zn7-MT2, and Zn7-MT3 are compared systematically using isotopically pure 63Cu(I) and 68Zn(II). The species formed in each MT isoform were detected through electrospray ionization-mass spectrometry and further characterized using room temperature phosphorescence spectroscopy. The mixed metal Cu, Zn species forming in MT1A, MT2, and MT3 have similar stoichiometries and their emission spectral properties indicate that analogous clusters form in the three isoforms. Three parallel metallation pathways have been proposed through analysis of the detailed Cu, Zn speciation in MT1A, MT2, and MT3. Pathway ① results in Cu5Zn5-MT and Cu9Zn3-MT. Pathway ② involves Cu6Zn4-MT and Cu10Zn2-MT. Pathway ③ includes Cu8Zn4-MT. Speciation analysis indicates that Pathway ② is the preferred pathway for MT2. This is also evident in the phosphorescence spectra with the 750 nm emission from Cu6Zn4-MT being most prominent in MT2. We see no evidence for different MT isoforms being optimized or exhibiting preferences for certain metals. We discuss the probable stoichiometry for MTs in vivo based on the in vitro determined binding constants.


Subject(s)
Metallothionein , Zinc Isotopes , Animals , Humans , Metallothionein/metabolism , Metals/metabolism , Protein Isoforms , Mammals/metabolism
18.
Hum Cell ; 37(3): 675-688, 2024 May.
Article in English | MEDLINE | ID: mdl-38546949

ABSTRACT

Neurogenic intermittent claudication (NIC), a classic symptom of lumbar spinal stenosis (LSS), is associated with neuronal apoptosis. To explore the novel therapeutic target of NIC treatment, we constructed the rat model of NIC by cauda equina compression (CEC) method and collected dorsal root ganglion (DRG) tissues, a region responsible for sensory and motor function, for mRNA sequencing. Bioinformatic analysis of mRNA sequencing indicated that upregulated metallothionein 2A (MT2A), an apoptosis-regulating gene belonging to the metallothionein family, might participate in NIC progression. Activated p38 MAPK mediated motor dysfunction following LSS and it was also found in DRG tissues of rats with NIC. Therefore, we supposed that MT2A might affect NIC progression by regulating p38 MAPK pathway. Then the rat model of NIC was used to explore the exact role of MT2A. Rats at day 7 post-CEC exhibited poorer motor function and had two-fold MT2A expression in DRG tissues compared with rats with sham operation. Co-localization analysis showed that MT2A was highly expressed in neurons, but not in microglia or astrocytes. Subsequently, neurons isolated from DRG tissues of rats were exposed to hypoxia condition (3% O2, 92% N2, 5% CO2) to induce cell damage. Gain of MT2A function in neurons was performed by lentivirus-mediated overexpression. MT2A overexpression inhibited apoptosis by inactivating p38 MAPK in hypoxia-exposed neurons. Our findings indicated that high MT2A expression was related to NIC progression, and MT2A overexpression protected against NIC through inhibiting activated p38 MAPK-mediated neuronal apoptosis in DRG tissues.


Subject(s)
Intermittent Claudication , p38 Mitogen-Activated Protein Kinases , Rats , Animals , Up-Regulation , p38 Mitogen-Activated Protein Kinases/genetics , Apoptosis/genetics , Neurons/metabolism , Metallothionein/genetics , Metallothionein/metabolism , Hypoxia , RNA, Messenger
19.
J Nanobiotechnology ; 22(1): 118, 2024 Mar 17.
Article in English | MEDLINE | ID: mdl-38494495

ABSTRACT

The assessment of AgNPs toxicity in vitro and in vivo models are frequently conflicting and inaccurate. Nevertheless, single cell immunological responses in a heterogenous environment have received little attention. Therefore, in this study, we have performed in-depth analysis which clearly revealed cellular-metal ion association as well as specific immunological response. Our study didn't show significant population differences in PMBC between control and AgNPs group implying no toxicological response. To confirm it further, deep profiling identified differences in subsets and differentially expressed genes (DEGs) of monocytes, B cells and T cells. Notably, monocyte subsets showed significant upregulation of metallothionein (MT) gene expression such as MT1G, MT1X, MT1E, MT1A, and MT1F. On the other hand, downregulation of pro-inflammatory genes such as IL1ß and CCL3 in both CD16 + and CD16- monocyte subsets were observed. This result indicated that AgNPs association with monocyte subsets de-promoted inflammatory responsive genes suggesting no significant toxicity observed in AgNPs treated group. Other cell types such as B cells and T cells also showed negligible differences in their subsets suggesting no toxicity response. Further, AgNPs treated group showed upregulation of cell proliferation, ribosomal synthesis, downregulation of cytokine release, and T cell differentiation inhibition. Overall, our results conclude that treatment of AgNPs to PMBC cells didn't display immunological related cytotoxicity response and thus motivate researchers to use them actively for biomedical applications.


Subject(s)
Metal Nanoparticles , Silver , Silver/pharmacology , Single-Cell Gene Expression Analysis , Metallothionein/genetics , Monocytes/metabolism
20.
Neurosci Lett ; 825: 137708, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38438068

ABSTRACT

Dehydroeffusol, a major phenanthrene in Juncus effusus, protects neurodegeneration induced by intracellular Zn2+ ferried by extracellular amyloid ß1-42 (Aß1-42). Here we focused on adrenaline ß receptor activation and the induction of metallothioneins (MTs), intracellular Zn2+-binding proteins to test the protective mechanism of dehydroeffusol. Isoproterenol, an agonist of adrenergic ß receptors elevated the level of MTs in the dentate granule cell layer 1 day after intracerebroventricular (ICV) injection. When Aß1-42 was injected 1 day after isoproterenol injection, pre-injection of isoproterenol protected Aß1-42 toxicity via reducing the increase in intracellular Zn2+ after ICV injection of Aß1-42. On the basis of the effect of increased MTs by isoproterenol, dehydroeffusol (15 mg/kg body weight) was orally administered to mice once a day for 2 days. On day later, dehydroeffusol elevated the level of MTs and prevented Aß1-42 toxicity via reducing Aß1-42-mediated increase in intracellular Zn2+. In contrast, propranolol, an antagonist of adrenergic ß receptors reduced the level of MTs increased by dehydroeffusol, resulting in invalidating the preventive effect of dehydroeffusol on Aß1-42 toxicity. The present study indicates that blockage of MT synthesis via adrenaline ß receptor activation invalidates dehydroeffusol-mediated prevention of Aß1-42 toxicity. It is likely that MT synthesis via adrenaline ß receptor activation is beneficial to neuroprotection and that oral intake of dehydroeffusol preventively serves against the Aß1-42 toxicity.


Subject(s)
Amyloid beta-Peptides , Metallothionein , Phenanthrenes , Mice , Animals , Amyloid beta-Peptides/toxicity , Amyloid beta-Peptides/metabolism , Epinephrine , Isoproterenol , Receptors, Adrenergic, beta , Peptide Fragments/toxicity , Peptide Fragments/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...