Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.725
Filter
1.
Environ Geochem Health ; 46(6): 205, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695945

ABSTRACT

The eastern coastline of Gresik, located in East Java, Indonesia, experienced significant industrialization, leading to the development of numerous diverse sectors. These diverse industrial activities, in addition to other human activities, result in the contamination of sediment across the eastern coast of Gresik with a variety of metals. Metals like arsenic (As), cadmium (Cd), copper (Cu), and zinc (Zn) have exceeded the international standards for sediment quality, potentially causing significant harm to the aquatic ecosystem in this coastal region. The results of the multivariate analysis indicate that the metals found in the sediment are related to a combination of anthropogenic inputs, specifically those originating from industrial effluents in the area under study. Based on the assessment of enrichment factor, contamination factor, geo-accumulation index, degree of contamination, ecological risk index, and pollution load index, it can be concluded that the metals examined displayed different degrees of sediment contamination, ranging from minimal to severely contaminated.


Subject(s)
Environmental Monitoring , Geologic Sediments , Water Pollutants, Chemical , Indonesia , Geologic Sediments/chemistry , Geologic Sediments/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Metals, Heavy/analysis , Risk Assessment , Industrial Development , Metals/analysis
2.
Sci Total Environ ; 935: 173387, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38788945

ABSTRACT

BACKGROUND: Research on metal-associated neurodegeneration has largely focused on single metals. Since metal exposures typically co-occur as combinations of both toxic and essential elements, a mixtures framework is important for identifying risk and protective factors. This study examined associations between toenail levels of an eight-metal mixture and attention and memory in men living in US Gulf states. METHODS: We measured toenail concentrations of toxic (arsenic, chromium, lead, and mercury) and essential (copper, manganese, selenium, and zinc) metals in 413 non-smoking men (23-69 years, 46 % Black) from the Gulf Long-Term Follow-Up (GuLF) Study. Sustained attention and working memory were assessed at the time of toenail sample collection using the continuous performance test (CPT) and digit span test (DST), respectively. Associations between toenail metal concentrations and performance on neurobehavioral tests were characterized using co-pollutant adjusted general linear models and Bayesian Kernel Machine Regression. RESULTS: Adjusting for other metals, one interquartile range (IQR) increase in toenail chromium was associated with a 0.19 (95 % CI: -0.31, -0.07) point reduction in CPT D Prime score (poorer ability to discriminate test signals from noise). One IQR increase in toenail manganese was associated with a 0.20 (95 % CI, -0.41, 0.01) point reduction on the DST Reverse Count (fewer numbers recalled). Attention deficits were greater among Black participants compared to White participants for the same increase in toenail chromium concentrations. No evidence of synergistic interaction between metals or adverse effect of the overall metal mixture was observed for either outcome. CONCLUSIONS: Our findings support existing studies of manganese-related memory deficits and are some of the first to show chromium related attention deficits in adults. Longitudinal study of cognitive decline is needed to verify chromium findings. Research into social and chemical co-exposures is also needed to explain racial differences in metal-associated neurobehavioral deficits observed in this study.


Subject(s)
Nails , Humans , Nails/chemistry , Male , Middle Aged , Adult , Attention/drug effects , Aged , Young Adult , Follow-Up Studies , Environmental Exposure/statistics & numerical data , Memory/drug effects , Metals/analysis , Water Pollutants, Chemical/analysis
3.
Anal Bioanal Chem ; 416(15): 3533-3542, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38691170

ABSTRACT

The utilization of supramolecular deep eutectic solvent eddy-assisted liquid-liquid microextraction utilizing 2-hydroxypropyl ß-cyclodextrin (SUPRADES) has been identified as a successful method for pre-enriching Cu, Zn, and Mn in vegetable oil samples. Determination of each element was conducted by inductively coupled plasma optical emission spectrometry (ICP-OES) after digestion of metal-enriched phases. Various parameters were examined, including the composition of SUPRADES species [2HP-ß-CD: DL-lactic acid], a cyclodextrin mass ratio of 20 wt%, a water bath temperature of 75 °C, an extractor volume of 800 µL, a dispersant volume of 50 µL, and an eddy current time of 5 min. Optimal conditions resulted in extraction rates of 99.6% for Cu, 105.2% for Zn, and 101.5% for Mn. The method exhibits a broad linear range spanning from 10 to 20,000 µg L-1, with determination coefficients exceeding 0.99 for all analytes. Enrichment coefficients of 24, 21, and 35 were observed. Limits of detection ranged from 0.89 to 1.30 µg L-1, while limits of quantification ranged from 3.23 to 4.29 µg L-1. The unique structural characteristics of the method enable the successful determination of trace elements in a variety of edible vegetable oils.


Subject(s)
Plant Oils , Solvents , Trace Elements , Plant Oils/chemistry , Trace Elements/analysis , Solvents/chemistry , Liquid Phase Microextraction/methods , Limit of Detection , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Food Contamination/analysis , Metals/chemistry , Metals/analysis
4.
Mar Pollut Bull ; 203: 116435, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772171

ABSTRACT

The Posidonia oceanica (L.) Delile 1813 banquette provides precious ecosystem services for Mediterranean beach nourishment and protection, representing an important way of energy transfer through marine-coastal habitats. It is surprising to note how it is poorly investigated, especially concerning its double role as potential sink and source of chemicals. In particular, few studies exist about the metal (loid)s occurrence and no data are available on emerging contaminants, such as Rare Earth Elements (REEs). The present research investigated for the first time the concentrations of twenty-eight metal(loid)s and fifteen REEs in a well-structured banquette along the Italian coast (Central Tyrrhenian Sea) showing that (i) metal(loid)s and REEs occur in banquettes, with higher relative concentrations of some metal(loid)s (B, Sr, Mn, Fe, Al, Zn) and REEs (Ce, Y, La, Nd) with no statistically significant seasonal variations; (ii) Posidonia banquettes may represent an interesting biological model for chemicals monitoring.


Subject(s)
Alismatales , Environmental Monitoring , Metals, Rare Earth , Water Pollutants, Chemical , Metals, Rare Earth/analysis , Water Pollutants, Chemical/analysis , Metals/analysis , Italy , Ecosystem
5.
Mar Pollut Bull ; 203: 116483, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38776643

ABSTRACT

Thorough deliberation is necessary to safeguard the tropical urban streams near the shoreline from human interference, as it is becoming a notable environmental danger. Consequently, an in-depth study was carried out on a significant urban waterway located on the southern seashore of Bangladesh, which is positioned in the Bengal delta, renowned as the largest delta in the globe. The current investigation assesses the potential health hazards associated with trace metals (Hg, Cu, As, Pb, Ni, Zn, Cd, Cr, Fe, and Mn) and uses chemometric analysis to determine where they originate. Likewise geochemical methods are used to analyze the levels of trace metal enrichment and pollution in the sediments of the river. Almost all of the elements' mean concentrations were observed to be within the standard limits. The findings not only demonstrate the extent of trace metal contamination but also the health threats that it poses to the public (male, female, and children) by polluting the sediment. For all age groups of people, the hazard index was <1, suggesting there was no non-carcinogenic threat. Regardless of age and sex, exposure occurred in descending order: ingestion > dermal > inhalation. Total carcinogenic risk (TCR) values for males, females, and children were 1.45E-05, 1.56E-05, and 1.34E-04, respectively, recommending that children are at greater vulnerability than adults. The geochemical approach and chemometric analysis corroborate the human-induced impact of trace metal loading in the sediment of the waterway, which is predominantly caused by the oil industry, domestic garbage, and untreated waste discharge.


Subject(s)
Environmental Monitoring , Metals , Water Pollutants, Chemical , Humans , Risk Assessment , Water Pollutants, Chemical/analysis , Bangladesh , Metals/analysis , Female , Male , Geologic Sediments/chemistry , Child , Metals, Heavy/analysis
6.
Mar Pollut Bull ; 203: 116514, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38788275

ABSTRACT

This study investigates potentially toxic elements (PTEs) in the surface sediments of the Abdal River system, a critical water source for Samsun province, Türkiye, due to the presence of the Çakmak Dam. PTE concentrations, measured in mg/kg, show significant variability: Hg (0.03) < Cd (0.26) < As (10.98) < Pb (13.88) < Cu (48.61) < Ni (62.45) < Zn (70.97) < Cr (96.28) < Mn (1015) < Fe (38357). Seasonal variations were observed, in particular increased concentrations of As, Cd and Pb in summer (p < 0.05). Contamination and ecological risk indices (mHQ, EF, Igeo, CF, PLI, Eri, mCd, NPI, PERI, MPI, and TRI) indicate moderate to low levels of contamination, suggesting potential ecological effects. Health risk assessments suggest minimal risks to human health from sediment PTEs. Statistical analyses (PCC, PCA and HCA) improve the understanding of the sediment environment and contamination sources, while the coefficient of variation assists in source identification.


Subject(s)
Environmental Monitoring , Geologic Sediments , Rivers , Water Pollutants, Chemical , Geologic Sediments/chemistry , Rivers/chemistry , Risk Assessment , Water Pollutants, Chemical/analysis , Metals/analysis , Metals, Heavy/analysis
7.
Mar Pollut Bull ; 203: 116425, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705004

ABSTRACT

To investigate the interplay between varying anthropogenic activities and sediment dynamics in an urban river (Turag, Bangladesh), this study involved 37-sediment samples from 11 different sections of the river. Neutron activation analysis and atomic absorption spectrometry were utilized to quantify the concentrations of 14 metal(oid)s (Al, Ti, Co, Fe, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Zn). This study revealed significant toxic metal trends, with Principal coordinate analysis explaining 62.91 % of the variance from upstream to downstream. The largest RSDs for Zn(287 %), Mn(120 %), and Cd(323 %) implies an irregular regional distribution throughout the river. The UNMIX-model and PMF-model were utilized to identify potential sources of metal(oid)s in sediments. ∼63.65-66.7 % of metal(oid)s in sediments originated from anthropogenic sources, while remaining attributed to natural sources in both models. Strikingly, all measured metal(oid)s' concentrations surpassed the threshold effect level, with Zn and Ni exceeding probable effect levels when compared to SQGs.


Subject(s)
Environmental Monitoring , Geologic Sediments , Rivers , Water Pollutants, Chemical , Geologic Sediments/chemistry , Rivers/chemistry , Water Pollutants, Chemical/analysis , Bangladesh , Metals/analysis , Metals, Heavy/analysis
8.
Mar Pollut Bull ; 203: 116445, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38733892

ABSTRACT

The Shandong Peninsula (SP) is the largest peninsula in China hosting rich economic and agricultural activities. In this study, we investigated the behavior of dissolved Mn, Fe, Cu, Zn, Cd, and Pb and their colloidal phases in the coastal and estuarine areas of SP. Pb and Zn had the highest contamination factors of 0.22-10.15 and 0.90-4.41, respectively. The <1 kDa accounted for 23-57 % of the total dissolved phase. Mn, Fe, Cu, Zn, Cd, and Pb were more likely to bind to 100 kDa-0.45 µm colloids (21-57 %). For colloidal Fe and Cu, the adsorption-release behavior had more significant effects on their dynamics. In contrast, the changes in colloidal Mn, Cd, and Pb were mainly controlled by the combined influence of temperature, dissolved oxygen, and microbial activity. However, the 1-3 kDa Zn exhibited a greater pH-dependent dispersion and was significantly positively correlated with it.


Subject(s)
Colloids , Environmental Monitoring , Seawater , Water Pollutants, Chemical , China , Water Pollutants, Chemical/analysis , Colloids/chemistry , Seawater/chemistry , Metals/analysis , Metals, Heavy/analysis , Trace Elements/analysis
9.
Chemosphere ; 359: 142296, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38729440

ABSTRACT

While plant toxicity reduction remains the primary metric for judging the success of metal immobilization in soil, the suitability of microorganisms as universal indicators of its effectiveness in various contaminated soils remains a point of contention. This study assessed the sensitivity of microbial bioindicators in monitoring metal immobilization success in smelter-impacted soils. It compared plants and microorganisms as indicators of the efficiency of natural Fe-Mn nodules from the Gulf of Finland in immobilizing metals in soils contaminated by a Ni/Cu smelter, on the Kola Peninsula, Murmansk region, Russia. Perennial ryegrass (Lolium perenne) was grown on nodule-amended and control soils. Plant responses in the smelter-impacted soils proved to be sensitive and robust indicators of successful metal immobilization. However, microbial responses exhibited a more complex story. Despite the observed reductions in soluble metal concentrations, shoot metal contents in ryegrass, and significant improvements in plant growth, certain microbial bioindicators were unresponsive to metal immobilization success brought about by the addition of Fe-Mn nodules. Among microbial bioindicators studied, community-level physiological profiling, microbial biomass carbon, and basal respiration were sensitive indicators of metal immobilization success, whereas the number of saprotrophic, oligotrophic, and Fe-oxidizing bacteria and fungi, the biomass of bacteria and fungi, and enzymatic activity were less robust indicators. Interestingly, the correlations between different microbial responses measured were weak or even negative. Some microbial responses also exhibited negative correlations with plant biomass. These findings underscore the need for further research on comparative evaluations of plants and microorganisms as reliable indicators of metal immobilization efficacy in polluted environments.


Subject(s)
Lolium , Soil Microbiology , Soil Pollutants , Soil , Soil Pollutants/analysis , Soil Pollutants/metabolism , Lolium/metabolism , Soil/chemistry , Metals/metabolism , Metals/analysis , Bacteria/metabolism , Biodegradation, Environmental , Russia , Fungi/metabolism , Environmental Monitoring/methods , Finland , Biological Monitoring/methods
10.
Chemosphere ; 359: 142245, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38735498

ABSTRACT

This study aimed to evaluate the concentration, distribution, along with the environmental and human health impact of eight heavy metals-Pb, Cr, Cu, Cd, Zn, Mn, Ni, and As-on St. Martin's Island in the northeastern Bay of Bengal, and in doing so to help implement new legislations to protect the island. Focusing on the island's significance as a tourist destination, with seafood being a prominent dietary component, three sample types (sediment, seawater, and crustaceans) were selected for a comprehensive assessment, considering seasonal variations. Concentration of metals was observed to be lower than the established standards in sediment samples, but in seawater samples, Pb, Cr, Cd and Zn were higher than US-EPA values for natural marine water. The metals displayed a decreasing trend of Zn > Ni > Pb > Cu > Mn > As > Cd > Cr in crustacean samples for both seasons. Crustacean samples displayed higher metal concentrations in winter than in monsoon. Pb exceeded the maximum allowable limit for crustaceans with a concentration of about 3 and 4 mg kg-1 in monsoon and winter respectively; being more than 6-8 times the standard for Bangladesh which is only about 0.5 mg kg-1. Health indices displayed that although adults may suffer less from carcinogenic/non-carcinogenic health effects, the risks are far greater for children. For both age groups, As and Ni displayed possibilities of developing cancer. Principal Component Analysis (PCA)shed light on the sources of metals and showed that most of them were from anthropogenic sources. Overall, this study found that the quality of the environment of the island was better in comparison to previous studies made before the pandemic, and so, if the trend continues, it may lead to a better environment for the organisms around the island and help to keep the negative physiological impacts from the consumption of these organisms to a minimal.


Subject(s)
Bays , Environmental Monitoring , Islands , Metals, Heavy , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Metals, Heavy/analysis , Animals , Humans , Bays/chemistry , Seawater/chemistry , Geologic Sediments/chemistry , Anthozoa/chemistry , India , Seasons , Metals/analysis , Seafood/analysis , Crustacea
11.
Environ Monit Assess ; 196(6): 516, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710964

ABSTRACT

Trace metal soil contamination poses significant risks to human health and ecosystems, necessitating thorough investigation and management strategies. Researchers have increasingly utilized advanced techniques like remote sensing (RS), geographic information systems (GIS), geostatistical analysis, and multivariate analysis to address this issue. RS tools play a crucial role in collecting spectral data aiding in the analysis of trace metal distribution in soil. Spectroscopy offers an effective understanding of environmental contamination by analyzing trace metal distribution in soil. The spatial distribution of trace metals in soil has been a key focus of these studies, with factors influencing this distribution identified as soil type, pH levels, organic matter content, land use patterns, and concentrations of trace metals. While progress has been made, further research is needed to fully recognize the potential of integrated geospatial imaging spectroscopy and multivariate statistical analysis for assessing trace metal distribution in soils. Future directions include mapping multivariate results in GIS, identifying specific anthropogenic sources, analyzing temporal trends, and exploring alternative multivariate analysis tools. In conclusion, this review highlights the significance of integrated GIS and multivariate analysis in addressing trace metal contamination in soils, advocating for continued research to enhance assessment and management strategies.


Subject(s)
Environmental Monitoring , Metals , Remote Sensing Technology , Soil Pollutants , Soil , Environmental Monitoring/methods , Soil Pollutants/analysis , Multivariate Analysis , Soil/chemistry , Metals/analysis , Geographic Information Systems , Trace Elements/analysis
12.
Mar Pollut Bull ; 203: 116488, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759467

ABSTRACT

This study examines the levels and patterns of potentially toxic elements (PTEs) in surface sediment of Almus Dam Lake (ADL), a key fish breeding site in Türkiye. PTE concentrations in sediment were ranked: Hg (0.05 ± 0.01) < Cd (0.16 ± 0.01) < Pb (9.34 ± 1.42) < As (18.75 ± 15.65) < Cu (63.30 ± 15.17) < Ni (72.64 ± 20.54) < Zn (86.66 ± 11.95) < Cr (108.35 ± 36.40) < Mn (1008 ± 151) < Fe (53,998 ± 6468), with no significant seasonal or spatial differences. Ecological risk indices (mHQ, EF, Igeo, CF, PLI, Eri, mCd, NPI, PERI, MPI, and TRI) showed low contamination levels. Health risk assessments, including LCR, HQ, and THI, indicated minimal risks to humans from sediment PTEs. Statistical analyses (PCA, HCA, SCC) identified natural, transportation, and anthropogenic PTE sources, with slight impacts from agriculture and fish farming. This research underlines contamination status of ADL and emphasizes the need for targeted management strategies, offering critical insights for environmental safeguarding.


Subject(s)
Environmental Monitoring , Fishes , Geologic Sediments , Water Pollutants, Chemical , Animals , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Risk Assessment , Environmental Monitoring/methods , Metals/analysis , Ecotoxicology , Lakes/chemistry
13.
Mar Pollut Bull ; 203: 116474, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38762936

ABSTRACT

The prevalence of plastics in the oceans has significantly intensified microplastic pollution, contributing to broader marine secondary pollution issues. This paper examines how plastic structure affects the aging characteristics of plastics and the release of metal ions, to better understand this secondary source of marine pollution. This study simulate the photoaging of plastics in natural environments, focusing on aliphatic and aromatic polymers. The results showed that the photodegradation degree was higher for aliphatic than aromatic polymers. All polymers contained thirteen detectable metals, with their release increasing over time due to photoaging, The release dynamics of these metal ions correlated more strongly with the level of polymer degradation rather than with the polymer structure itself, adhering to a second-order kinetic model driven by surface and intraparticle diffusion processes. The results will help control and treat marine plastic pollution.


Subject(s)
Metals , Plastics , Polymers , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Polymers/chemistry , Metals/chemistry , Metals/analysis , Photolysis , Environmental Monitoring
14.
Environ Sci Pollut Res Int ; 31(23): 34309-34323, 2024 May.
Article in English | MEDLINE | ID: mdl-38698097

ABSTRACT

Droughts are becoming more intense and frequent in the Brazilian semiarid because of El Niño and global climate changes. The Jaguaribe River estuary is a semiarid ecosystem that experiences a reduction in freshwater discharges due to droughts and river damming. The decrease in freshwater fluxes has increased metal availability through the water residence time increase in the Jaguaribe River estuary. Then, this study aimed to evaluate the dissolved organic matter quality and its interaction with metals in the Jaguaribe River estuary after a severe drought period. It was performed through carbon analyses, fluorescence spectroscopy, ultrafiltration technique, and determinations of metals by ICP-MS. Optical analysis showed that the dissolved organic carbon (DOC) was preponderantly composed of terrestrial-derived humic compounds, while the low ratio between the particulate organic carbon (POC) and chlorophyll-a indicated that POC was predominantly phytoplankton-derived. DOC and POC presented non-conservative removal during the estuarine mixing. DOM and dissolved elements were mostly distributed within the LMW fraction and presented a low percentage in the colloidal fraction. Li, Rb, Sr, Mo, and U showed conservative behavior, while Cu, Fe, Cr, and V had non-conservative behavior with a significant positive correlation with DOM, suggesting DOM as a relevant driver of metal availability at the Jaguaribe River estuary even during the rainy season.


Subject(s)
Environmental Monitoring , Estuaries , Metals , Water Pollutants, Chemical , Brazil , Metals/analysis , Water Pollutants, Chemical/analysis , Rivers/chemistry , Humic Substances
15.
Environ Int ; 187: 108697, 2024 May.
Article in English | MEDLINE | ID: mdl-38696979

ABSTRACT

Road dust is a demonstrated source of urban air pollution. Given this, the implementation of street sweeping strategies that effectively limit road dust accumulation and resuspension should be a public health priority. Research examining the effectiveness of street sweeping for road dust removal in support of good air quality has been limited to date. To address this, the study aimed to assess the use of a regenerative-air street sweeper to efficiently remove road dust particles and metal(loid)s in size fractions relevant for respiratory exposure in Toronto, Canada. As part of this, the mass amounts, particle size distribution and elemental concentrations of bulk road dust before and after sweeping at five arterial sites were characterized. Sweeping reduced the total mass amount of thoracic-sized (<10 µm) road dust particles by 76 % on average. A shift in the size distribution of remaining particles toward finer fractions was observed in post-sweeping samples, together with an enrichment in many metal(loid)s such as Co, Ti and S. Overall, the mass amounts of metal(loid)s of respiratory health concern like Cu and Zn were greatly reduced with sweeping. Traffic volume and road surface quality were predictors of dust loadings and elemental concentrations. Road surface quality was also found to impact street sweeping efficiencies, with larger mass amounts per unit area collected post-sweeping where street surfaces were distressed. This study demonstrates that street sweeping using advanced technology can be highly effective for road dust removal, highlighting its potential to support air quality improvement efforts. The importance of tailoring sweeping service levels and technologies locally as per the quality of road surface and traffic patterns is emphasized. Continued efforts to mitigate non-exhaust emissions that pose a respiratory health risk at their source is essential.


Subject(s)
Air Pollutants , Dust , Metals , Particle Size , Dust/analysis , Air Pollutants/analysis , Metals/analysis , Air Pollution/prevention & control , Cities , Environmental Monitoring/methods , Humans , Particulate Matter/analysis , Vehicle Emissions/analysis
16.
Sci Total Environ ; 932: 173038, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38719055

ABSTRACT

Despite global concerns about metal(loid)s in atmospheric particulate matter (PM), the presence of metal(loid) resistance genes (MRGs) in PM remains unknown. Therefore, we conducted a comprehensive investigation of the metal(loid)s and associated MRGs in PMs in two seasons (summer and winter) in Xiamen, China. According to the geoaccumulation index (Igeo), most metal(loid)s, except for V and Mn, exhibited enrichment in PM, suggesting potential anthropogenic sources. By employing Positive Matrix Factorization (PMF) model, utilizing a dataset encompassing both total and bioaccessible metal(loid)s, along with backward trajectory simulations, traffic emissions were determined to be the primary potential contributor of metal(loid)s in summer, whereas coal combustion was observed to have a dominant contribution in winter. The major contributor to the carcinogenic risk of metal(loid)s in both summer and winter was predominantly attributed to coal combustion, which serves as the main source of bioaccessible Cr. Bacterial communities within PMs showed lower diversity and network complexity in summer than in winter, with Pseudomonadales being the dominant order. Abundant MRGs, including the As(III) S-adenosylmethionine methyltransferase gene (arsM), Cu(I)-translocating P-type ATPase gene (copA), Zn(II)/Cd(II)/Pb(II)-translocating P-type ATPase gene (zntA), and Zn(II)-translocating P-type ATPase gene (ziaA), were detected within the PMs. Seasonal variations were observed for the metal(loid) concentration, bacterial community structure, and MRG abundance. The bacterial community composition and MRG abundance within PMs were primarily influenced by temperature, rather than metal(loid)s. This research offers novel perspectives on the occurrence of metal(loid)s and MRGs in PMs, thereby contributing to the control of air pollution.


Subject(s)
Air Pollutants , Environmental Monitoring , Particulate Matter , Particulate Matter/analysis , Air Pollutants/analysis , China , Metals/analysis , Seasons , Atmosphere/chemistry
17.
Environ Monit Assess ; 196(6): 539, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733446

ABSTRACT

Primary production is an important driver of marine carbon storage. Besides the major nutrient elements nitrogen, phosphorus, and silicon, primary production also depends on the availability of nutrient-type metals (e.g., Cu, Fe, Mo) and the absence of toxicologically relevant metals (e.g., Ni, Pb). Especially in coastal oceans, carbon storage and export to the open ocean is highly variable and influenced by anthropogenic eutrophication and pollution. To model future changes in coastal carbon storage processes, a solid baseline of nutrient and metal concentrations is crucial. The North Sea is an important shelf sea, influenced by riverine, atmospheric, Baltic Sea, and North Atlantic inputs. We measured the concentrations of dissolved nutrients (NH4+, NO3-, PO43-, and SiO44-) and 26 metals in 337 water samples from various depths within the entire North Sea and Skagerrak. A principal component analysis enabled us to categorize the analytes into three groups according to their predominant behavior: tracers for seawater (e.g., Mo, U, V), recycling (e.g., NO3-, PO43-, SiO44-), and riverine or anthropogenic input (e.g., Ni, Cu, Gd). The results further indicate an increasing P-limitation and increasing anthropogenic gadolinium input into the German Bight.


Subject(s)
Environmental Monitoring , Phosphorus , Seawater , Trace Elements , Water Pollutants, Chemical , North Sea , Trace Elements/analysis , Water Pollutants, Chemical/analysis , Seawater/chemistry , Phosphorus/analysis , Nutrients/analysis , Nitrogen/analysis , Metals/analysis , Eutrophication
18.
Environ Monit Assess ; 196(6): 564, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773003

ABSTRACT

This study investigated the impact of micropollutants on fish health from Segredo hydroelectric reservoir (HRS) along the Iguaçu River, Southern Brazil, contaminated by urban, industrial, and agricultural activities. This is the first comprehensive study assessment in the river after the severe drought in the 2020s in three fish species from different trophic levels Astyanax spp. (water column depth/omnivorous), Hypostomus commersoni (demersal/herbivorous), and Pimelodus maculatus (demersal/omnivorous). Animals, water, and sediment samples were collected from three distinct sites within the reservoir: Floresta (upstream), Iratim (middle), and Station (downstream). The chemical analysis revealed elevated concentrations of metals (Al, Cu, Fe) and the metalloid As in water, or Cu, Zn, and As in sediment, surpassing Brazilian regulatory limits, while the organic pollutants as DDT, PAHs, PCBs, and PBDEs were found under the Brazilian regulatory limits. The metal bioaccumulation was higher in gills with no significant differences among sites. The species Astyanax spp. and H. commersoni displayed variations in hepatosomatic index (HSI) and P. maculatus in the condition factor index (K) between sites, while adverse effects due to micropollutants bioaccumulation were observed by biochemical, genotoxic, and histopathological biomarkers. The principal component analysis and integrated biomarker response highlighted the upstream site Floresta as particularly inhospitable for biota, with distinctions based on trophic level. Consequently, this multifaceted approach, encompassing both fish biomarkers and chemical analyses, furnishes valuable insights into the potential toxic repercussions of micropollutant exposure. These findings offer crucial data for guiding management and conservation endeavors in the Iguaçu River.


Subject(s)
Environmental Monitoring , Rivers , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Brazil , Rivers/chemistry , Biomarkers/metabolism , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/metabolism , Metals/analysis , Characidae , Polychlorinated Biphenyls/analysis , Polychlorinated Biphenyls/metabolism , Geologic Sediments/chemistry , Fishes/metabolism
19.
Environ Monit Assess ; 196(6): 589, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819722

ABSTRACT

The health risks associated with the consumption of staples cultivated in the subsistence food gardens along the Watut River were investigated in Papua New Guinea. Twenty soil samples and twenty-nine samples of staple foods (including banana, taro, sweet potato, and Singapore taro) were collected from the food gardens following a three-day dietary recall survey. The concentration of metals (Cr, Cu, Pb, and Ni) was analyzed in the soil and food samples using Inductively Coupled Plasma Optical Emission Spectrophotometer. The descending order of mean metal concentration in the food garden soils is as follows: Cr > Cu > Ni > Pb. The concentration of Pb in all samples and Cr in 97% of staple foods exceeded the FAO/WHO permissible limits. Approximately 87% of adult consumers of bananas (Musa sp) were found to have estimated Cr and Pb ingestion levels exceeding the permissible daily tolerable intake of metals (0.2 and 0.21 mg day-1, respectively). Hazard index values from the staples analysis indicate that the consumption of bananas (9.40) poses the highest risk of non-carcinogenic effects on adults, followed by taro (7.32), sweet potato (6.13), and Singapore taro (4.30). The consumption of taro is dangerous due to cancer risk associated with the intake of excessive Ni (2.88E-02) and Cr (8.82E-03) in adults and children compared to banana, sweet potato, and Singapore taro. Non-carcinogenic hazards of metal ingestion were found to be pronounced in the younger population, while carcinogenic effects were more serious in adults. Urgent measures must be implemented to protect communities, especially children, from the dangerous effects of heavy metal ingestion through staples in the lower Watut region.


Subject(s)
Food Contamination , Soil Pollutants , Soil , Humans , Soil Pollutants/analysis , Papua New Guinea , Food Contamination/analysis , Soil/chemistry , Risk Assessment , Metals/analysis , Environmental Monitoring , Rivers/chemistry , Adult
20.
Taiwan J Obstet Gynecol ; 63(3): 307-311, 2024 May.
Article in English | MEDLINE | ID: mdl-38802192

ABSTRACT

Trace metals play a vital role in a variety of biological processes, but excessive amounts can be toxic and are receiving increasing attention. Trace metals in the environment are released from natural sources, such as rock weathering, volcanic eruptions, and other human activities, such as industrial emissions, mineral extraction, and vehicle exhaust. Lifestyle, dietary habits and environmental quality are the main sources of human exposure to trace metals, which play an important role in inducing human reproductive infertility. The purpose of this review is to summarize the distribution of various trace metals in oocyte and to identify the trace metals that may cause oocyte used in the design and execution of toxicological studies.


Subject(s)
Oocytes , Trace Elements , Humans , Oocytes/drug effects , Trace Elements/analysis , Trace Elements/adverse effects , Female , Environmental Exposure/adverse effects , Metals, Heavy/analysis , Metals/adverse effects , Metals/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...