Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.591
Filter
1.
Chemistry ; 30(28): e202401199, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38695718

ABSTRACT

Invited for the cover of this issue are Tatiyana Serebryanskaya, Mikhail Kinzhalov and co-workers at St. Petersburg State University, the Research Institute for Physical Chemical Problems, Belarusian State University, Togliatti State University and Blokhin National Medical Research Center of Oncology. The image depicts the shield of Pallas Athena with the structure of a palladium carbene complex that protects against triple-negative breast cancer. Read the full text of the article at 10.1002/chem.202400101.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Coordination Complexes , Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Humans , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Female , Cell Line, Tumor , Palladium/chemistry , Methane/analogs & derivatives , Methane/chemistry , Methane/pharmacology
2.
Int J Mol Sci ; 25(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38791590

ABSTRACT

This paper describes the process of producing chemiresistors based on hybrid nanostructures obtained from graphene and conducting polymers. The technology of graphene presumed the following: dispersion and support stabilization based on the chemical vapor deposition technique; transfer of the graphene to the substrate by spin-coating of polymethyl methacrylate; and thermal treatment and electrochemical delamination. For the process at T = 950 °C, a better settlement of the grains was noticed, with the formation of layers predominantly characterized by peaks and not by depressions. The technology for obtaining hybrid nanostructures from graphene and conducting polymers was drop-casting, with solutions of Poly(3-hexylthiophene (P3HT) and Poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-bithiophene] (F8T2). In the case of F8T2, compared to P3HT, a 10 times larger dimension of grain size and about 7 times larger distances between the peak clusters were noticed. To generate chemiresistors from graphene-polymer structures, an ink-jet printer was used, and the metallization was made with commercial copper ink for printed electronics, leading to a structure of a resistor with an active surface of about 1 cm2. Experimental calibration curves were plotted for both sensing structures, for a domain of CH4 of up to 1000 ppm concentration in air. A linearity of the curve for the low concentration of CH4 was noticed for the graphene structure with F8T2, presenting a sensitivity of about 6 times higher compared with the graphene structure with P3HT, which makes the sensing structure of graphene with F8T2 more feasible and reliable for the medical application of irritable bowel syndrome evaluation.


Subject(s)
Graphite , Irritable Bowel Syndrome , Methane , Nanostructures , Polymers , Graphite/chemistry , Nanostructures/chemistry , Polymers/chemistry , Methane/chemistry , Irritable Bowel Syndrome/metabolism , Humans , Breath Tests/methods , Thiophenes/chemistry , Electric Conductivity
3.
Molecules ; 29(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38792198

ABSTRACT

Supercritical water gasification (SCWG) of lignocellulosic biomass is a promising pathway for the production of hydrogen. However, SCWG is a complex thermochemical process, the modeling of which is challenging via conventional methodologies. Therefore, eight machine learning models (linear regression (LR), Gaussian process regression (GPR), artificial neural network (ANN), support vector machine (SVM), decision tree (DT), random forest (RF), extreme gradient boosting (XGB), and categorical boosting regressor (CatBoost)) with particle swarm optimization (PSO) and a genetic algorithm (GA) optimizer were developed and evaluated for prediction of H2, CO, CO2, and CH4 gas yields from SCWG of lignocellulosic biomass. A total of 12 input features of SCWG process conditions (temperature, time, concentration, pressure) and biomass properties (C, H, N, S, VM, moisture, ash, real feed) were utilized for the prediction of gas yields using 166 data points. Among machine learning models, boosting ensemble tree models such as XGB and CatBoost demonstrated the highest power for the prediction of gas yields. PSO-optimized XGB was the best performing model for H2 yield with a test R2 of 0.84 and PSO-optimized CatBoost was best for prediction of yields of CH4, CO, and CO2, with test R2 values of 0.83, 0.94, and 0.92, respectively. The effectiveness of the PSO optimizer in improving the prediction ability of the unoptimized machine learning model was higher compared to the GA optimizer for all gas yields. Feature analysis using Shapley additive explanation (SHAP) based on best performing models showed that (21.93%) temperature, (24.85%) C, (16.93%) ash, and (29.73%) C were the most dominant features for the prediction of H2, CH4, CO, and CO2 gas yields, respectively. Even though temperature was the most dominant feature, the cumulative feature importance of biomass characteristics variables (C, H, N, S, VM, moisture, ash, real feed) as a group was higher than that of the SCWG process condition variables (temperature, time, concentration, pressure) for the prediction of all gas yields. SHAP two-way analysis confirmed the strong interactive behavior of input features on the prediction of gas yields.


Subject(s)
Biomass , Hydrogen , Lignin , Machine Learning , Water , Lignin/chemistry , Water/chemistry , Hydrogen/chemistry , Hydrogen/analysis , Gases/chemistry , Gases/analysis , Algorithms , Neural Networks, Computer , Carbon Dioxide/chemistry , Carbon Dioxide/analysis , Support Vector Machine , Methane/chemistry , Methane/analysis
4.
Environ Sci Pollut Res Int ; 31(24): 35069-35082, 2024 May.
Article in English | MEDLINE | ID: mdl-38714619

ABSTRACT

The increasing concentration of CO2 and CH4 in the environment is a global concern. Tri-reforming of methane (TRM) is a promising route for the conversion of these two greenhouse gases to more valuable synthesis gas with an H2/CO ratio of 1.5-2. In this study, a series of Zr-MOF synthesized via the solvothermal method and impregnation technique was used to synthesize the nickel impregnated on MOF-derived ZrO2 catalyst. The catalyst was characterized by various methods, including N2-porosimetry, X-ray diffraction (XRD), temperature programmed reduction (TPR), CO2-temperature programmed desorption (CO2-TPD), thermo-gravimetric analysis (TGA), chemisorption, field-emission scanning electron microscopy (FE-SEM), and high-resolution transmission electron microscopy (HR-TEM). Characterization results confirmed the formation of the Zr-MOF and nickel metal dispersed on MOF-derived ZrO2. Further, the tri-reforming activity of the catalyst developed was evaluated in a downflow-packed bed reactor. The various catalysts were screened for TRM activity at different temperatures (600-850 °C). Results demonstrated that TRM was highly favorable over the NZ-1000 catalyst due to its desirable physicochemical properties, including nickel metal surface area (2.3 m2/gcat-1), metal dispersion (7.1%), and nickel metal reducibility (45%), respectively. Over the NZ-1000 catalyst, an optimum H2/CO ratio of ~ 1.6-2 was achieved at 750 °C, and it was stable for a longer period of time.


Subject(s)
Methane , Nickel , Zirconium , Methane/chemistry , Catalysis , Nickel/chemistry , Zirconium/chemistry , Metal-Organic Frameworks/chemistry , Carbon Dioxide/chemistry , X-Ray Diffraction
5.
Water Res ; 256: 121609, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38615601

ABSTRACT

Lingering inconsistencies in the global methane (CH4) budget and ambiguity in CH4 sources and sinks triggered efforts to identify new CH4 formation pathways in natural ecosystems. Herein, we reported a novel mechanism of light-induced generation of hydroxyl radicals (•OH) that drove the production of CH4 from aquatic dissolved organic matters (DOMs) under ambient conditions. A total of five DOM samples with different origins were applied to examine their potential in photo-methanification production under aerobic conditions, presenting a wide range of CH4 production rates from 3.57 × 10-3 to 5.90 × 10-2 nmol CH4 mg-C-1 h-1. Experiments of •OH generator and scavenger indicated that the contribution of •OH to photo-methanificaiton among different DOM samples reached about 4∼42 %. In addition, Fourier transform infrared spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry showed that the carbohydrate- and lipid-like substances containing nitrogen-bonded methyl groups, methyl ester, acetyl groups, and ketones, were the potential precursors for light-induced CH4 production. Based on the experimental results and simulated calculations, the contribution of photo-methanification of aquatic DOMs to the diffusive CH4 flux across the water-air interface in a typical eutrophic shallow lake (e.g., Lake Chaohu) ranged from 0.1 % to 18.3 %. This study provides a new perspective on the pathways of CH4 formation in aquatic ecosystems and a deeper understanding on the sources and sinks of global CH4.


Subject(s)
Hydroxyl Radical , Methane , Hydroxyl Radical/chemistry , Methane/chemistry , Aerobiosis
6.
Waste Manag ; 181: 11-19, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38574688

ABSTRACT

Mattresses are a difficult waste to manage in landfills due to their large volume and low density. Pyrolysis treatment could reduce its volume while producing fuel or products valuable for the chemical industry. Pressurized pyrolysis at 400, 450, and 500 °C is carried out in a lab-scale autoclave at initial pressures 4.2, 8.4, and 16.8 bar. Product gas yield increases slightly along with elevated pressure as well as temperature. However, beyond 8.4 bar the initial pressure makes no discernible differences. CO and CO2 are the major gas species followed by CH4. CO contributes the most to the product gas energy content followed by C3 species, C2H6, and H2. Calculated energy content (heating value) is between 2 and 15 MJ·Nm-3. In terms of product gas energy content, low pressure pyrolysis is favorable over high pressure pyrolysis. According to integration areas of chromatographic measurements the liquid phase contains up to 25 % of N-compounds, with benzonitrile being the most abundant, followed by toluene, o-xylene, and ethylbenzene. The solid char maintains constant properties across operating conditions, with carbon and energy contents of approximately 75 wt% and 30 MJ·kg-1, respectively.


Subject(s)
Pyrolysis , Waste Disposal Facilities , Refuse Disposal/methods , Pressure , Waste Management/methods , Methane/analysis , Methane/chemistry , Carbon Dioxide/analysis , Carbon Dioxide/chemistry
7.
Environ Sci Pollut Res Int ; 31(21): 31355-31372, 2024 May.
Article in English | MEDLINE | ID: mdl-38630398

ABSTRACT

Porous solids with highly microporous structures for effective carbon dioxide uptake and separation from mixed gases are highly desirable. Here we present the use of polyethylene glycol (20,000 g/mol) as a soft template for the simple and rapid synthesis of a highly microporous Cu-BTC (denoted as HKUST-1). The polyethylene glycol-templated HKUST-1 obtained at room temperature in 10 min exhibited a very high Brunauer-Emmett-Teller (BET) surface area of 1904 m2/g, pore volume of 0.87 cm3/g, and average micropore size of 0.84 nm. However, conventional HKUST-1 exhibits a BET surface area of 700-1700 m2/g confirming the advantages of using this method. X-ray powder diffraction and electron microscopy analysis confirm the formation of highly crystalline and uniform octahedral particles with sizes ranging from 100 nm to 120 µm. Adsorption isotherms recorded at temperatures between 273 and 353 K and pressures up to 40 bar revealed a more favorable adsorption capacity of HKUST-1 for CO2 vs. CH4 and N2 (708 mg (CO2)/g, 214 mg (CH4)/g and 177 mg (N2)/g at 298 K and 40 bar). The Langmuir, isotherm model, and isosteric heats of adsorption were evaluated. The CO2 interaction at PEG-templated HKUST-1 is physical, exothermic, and spontaneous with DH° = - 6.52 kJ/mol, DS° = - 13.72 J/mol, and DG° = - 2.43 kJ/mol at 298 K at 40 bar. The selectivities in equimolar mixtures were determined as 53 and 24, respectively, for CO2 over N2 and CH4. CO2 adsorption-desorption tests reveal high adsorbent reusability. The cost-effective and quickly prepared PEG-templated HKUST-1 demonstrates high efficacy as a gas adsorbent, particularly in selectively capturing CO2.


Subject(s)
Carbon Dioxide , Methane , Nitrogen , Polyethylene Glycols , Carbon Dioxide/chemistry , Polyethylene Glycols/chemistry , Adsorption , Porosity , Nitrogen/chemistry , Methane/chemistry
8.
ACS Infect Dis ; 10(5): 1753-1766, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38606463

ABSTRACT

The antibacterial activity of silver species is well-established; however, their mechanism of action has not been adequately explored. Furthermore, issues of low-molecular silver compounds with cytotoxicity, stability, and solubility hamper their progress to drug leads. We have investigated silver N-heterocyclic carbene (NHC) halido complexes [(NHC)AgX, X = Cl, Br, and I] as a promising new type of antibacterial silver organometallics. Spectroscopic studies and conductometry established a higher stability for the complexes with iodide ligands, and nephelometry indicated that the complexes could be administered in solutions with physiological chloride levels. The complexes showed a broad spectrum of strong activity against pathogenic Gram-negative bacteria. However, there was no significant activity against Gram-positive strains. Further studies clarified that tryptone and yeast extract, as components of the culture media, were responsible for this lack of activity. The reduction of biofilm formation and a strong inhibition of both glutathione and thioredoxin reductases with IC50 values in the nanomolar range were confirmed for selected compounds. In addition to their improved physicochemical properties, the compounds with iodide ligands did not display cytotoxic effects, unlike the other silver complexes. In summary, silver NHC complexes with iodide secondary ligands represent a useful scaffold for nontoxic silver organometallics with improved physicochemical properties and a distinct mechanism of action that is based on inhibition of thioredoxin and glutathione reductases.


Subject(s)
Anti-Bacterial Agents , Glutathione Reductase , Gram-Negative Bacteria , Microbial Sensitivity Tests , Silver , Thioredoxin-Disulfide Reductase , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Silver/chemistry , Silver/pharmacology , Thioredoxin-Disulfide Reductase/antagonists & inhibitors , Glutathione Reductase/antagonists & inhibitors , Glutathione Reductase/metabolism , Gram-Negative Bacteria/drug effects , Humans , Biofilms/drug effects , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Thioredoxins , Gram-Positive Bacteria/drug effects , Methane/analogs & derivatives , Methane/chemistry , Methane/pharmacology
9.
Chemosphere ; 358: 142166, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685331

ABSTRACT

The growing demand for sustainable and efficient gas separation technologies has prompted the exploration of advanced materials to enhance the gas permeability and selectivity. Polyethersulfone (PES) membranes are widely used in gas separation, gas upgrading, and clean energy production owing to their environmental friendliness and low cost. However, their gas permeability and selectivity can be further improved for commercial application. This study explored the incorporation of 10 wt % of MIL-68(ln)-NH2 into PES membranes using a phase-inversion approach to enhance gas permeability and selectivity. The morphological, structural, and thermal properties of the resulting MOF/PES membrane were characterized using SEM, AFM, BET, XRD, FTIR, and TGA-DTG. Gas permeation experiments were conducted using different gases (CO2, N2, CH4, and H2) under different heating conditions (20-60 °C) to evaluate the gas permeability and selectivity of the MOF/PES membrane. The results showed that the incorporation of MOF into the mixed matrix membrane (MMMs) led to a 9% increase in porosity, 87% reduction in roughness, and 32% decrease in pore size compared to neat PES membranes. Significant changes in the morphology, crystallinity, and thermal stability were observed, with notable improvements of up to 22%. Moreover, the MOF/PES membrane exhibited high gas permeability (CO2 = 124656, N2 = 83650, CH4 = 159298, and H2 = 427075 Barrer) and selectivity (H2/N2 = 5.7, H2/CO2 = 4, CH4/N2 = 2, and CH4/CO2 = 1.7) for flammable gases. The optimal gas separation performance was observed at 20 °C and 60 °C for H2/N2 and H2/CO2 separation, respectively. These findings demonstrate the potential of MOF-based PES membranes for gas separation applications, particularly in H2 purification.


Subject(s)
Hydrogen , Membranes, Artificial , Polymers , Hydrogen/chemistry , Polymers/chemistry , Sulfones/chemistry , Porosity , Permeability , Metal-Organic Frameworks/chemistry , Gases/chemistry , Methane/chemistry
10.
Anal Chem ; 96(18): 7311-7320, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38656817

ABSTRACT

Human herpesvirus type 6A (HHV-6A) can cause a series of immune and neurological diseases, and the establishment of a sensitive biosensor for the rapid detection of HHV-6A is of great significance for public health and safety. Herein, a bis-tridentate iridium complex (BisLT-Ir-NHC) comprising the N-heterocyclic carbene (NHC) ligand as a novel kind of efficient ECL luminophore has been unprecedently reported. Based on its excellent ECL properties, a new sensitive ECL-based sandwich immunosensor to detect the HHV-6A virus was successfully constructed by encapsulating BisLT-Ir-NHC into silica nanoparticles and embellishing ECL sensing interface with MXene@Au-CS. Notably, the immunosensor illustrated in this work not only had a wide linear range of 102 to 107 cps/µL but also showed outstanding recoveries (98.33-105.11%) in real human serum with an RSD of 0.85-3.56%. Undoubtedly, these results demonstrated the significant potential of the bis-tridentate iridium(III) complex containing an NHC ligand in developing ECL-based sensitive analytical methods for virus detection and exploring novel kinds of efficient iridium-based ECL luminophores in the future.


Subject(s)
Coordination Complexes , Electrochemical Techniques , Herpesvirus 6, Human , Iridium , Luminescent Measurements , Methane/analogs & derivatives , Iridium/chemistry , Humans , Immunoassay/methods , Ligands , Coordination Complexes/chemistry , Luminescent Measurements/methods , Electrochemical Techniques/methods , Methane/chemistry , Heterocyclic Compounds/chemistry
11.
Anal Chem ; 96(19): 7566-7576, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38684118

ABSTRACT

Genetically encoding proximal-reactive unnatural amino acids (PrUaas), such as fluorosulfate-l-tyrosine (FSY), into natural proteins of interest (POI) confer the POI with the ability to covalently bind to its interacting proteins (IPs). The PrUaa-incorporated POIs hold promise for blocking undesirable POI-IP interactions. Selecting appropriate PrUaa anchor sites is crucial, but it remains challenging with the current methodology, which heavily relies on crystallography to identify the proximal residues between the POIs and the IPs for the PrUaa anchorage. To address the challenge, here, we propose a footprinting-directed genetically encoded covalent binder (footprinting-GECB) approach. This approach employs carbene footprinting, a structural mass spectrometry (MS) technique that quantifies the extent of labeling of the POI following the addition of its IP, and thus identifies the responsive residues. By genetically encoding PrUaa into these responsive sites, POI variants with covalent bonding ability to its IP can be produced without the need for crystallography. Using the POI-IP model, KRAS/RAF1, we showed that engineering FSY at the footprint-assigned KRAS residue resulted in a KRAS variant that can bind irreversibly to RAF1. Additionally, we inserted FSY at the responsive residue in RAF1 upon footprinting the oncogenic KRASG12D/RAF1, which lacks crystal structure, and generated a covalent binder to KRASG12D. Together, we demonstrated that by adopting carbene footprinting to direct PrUaa anchorage, we can greatly expand the opportunities for designing covalent protein binders for PPIs without relying on crystallography. This holds promise for creating effective PPI inhibitors and supports both fundamental research and biotherapeutics development.


Subject(s)
Methane , Methane/analogs & derivatives , Methane/chemistry , Humans , Protein Footprinting/methods , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/chemistry , Proto-Oncogene Proteins p21(ras)/metabolism , Protein Binding , Mass Spectrometry
12.
J Environ Manage ; 359: 120980, 2024 May.
Article in English | MEDLINE | ID: mdl-38669887

ABSTRACT

Total solids (TS) content may provide a regulatory strategy for optimizing anaerobic digestion enhanced by high-temperature thermal hydrolysis, but the role of TS content is not yet clear. In this study, the effect of TS content on the high-temperature thermal hydrolysis and anaerobic digestion of sludge and its mechanism were investigated. The results showed that increasing the TS content from 2% to 8% increased the sludge solubility and methane production potential, reaching peak values of 26.6% and 336 ± 6 mL/g volatile solids (VS), respectively. With a further increase in TS content to 12%, the strong Maillard reaction increased the aromaticity and structural stability of extracellular polymer substances, decreasing sludge solubility to 18.6%. Furthermore, the decrease in sludge biodegradability and the formation of inhibitory by-products resulted in a reduction in methane production to 272 ± 4 mL/g VS. This article provides a new perspective to understand the role of TS content in the thermal hydrolysis of sludge and a novel approach to regulate the Maillard reaction.


Subject(s)
Methane , Sewage , Sewage/chemistry , Hydrolysis , Anaerobiosis , Methane/chemistry , Methane/metabolism , Biodegradation, Environmental , Waste Disposal, Fluid/methods , Hot Temperature
13.
Chem Pharm Bull (Tokyo) ; 72(3): 313-318, 2024.
Article in English | MEDLINE | ID: mdl-38494725

ABSTRACT

Generating reliable data on functional group compatibility and chemoselectivity is essential for evaluating the practicality of chemical reactions and predicting retrosynthetic routes. In this context, we performed systematic studies using a functional group evaluation kit including 26 kinds of additives to assess the functional group tolerance of carbene-mediated reactions. Our findings revealed that some intermolecular heteroatom-hydrogen insertion reactions proceed faster than intramolecular cyclopropanation reactions. Lewis basic functionalities inhibited rhodium-catalyzed C-H functionalization of indoles. While performing these studies, we observed an unexpected C-H functionalization of a 1-naphthol variant used as an additive.


Subject(s)
Methane/analogs & derivatives , Rhodium , Catalysis , Rhodium/chemistry , Methane/chemistry , Hydrogen/chemistry
14.
Int J Mol Sci ; 25(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38473851

ABSTRACT

N-heterocyclic carbene (NHC) silver(I) and gold(I) complexes have found different applications in various research fields, as in medicinal chemistry for their antiproliferative, anticancer, and antibacterial activity, and in chemistry as innovative and effective catalysts. The possibility of modulating the physicochemical properties, by acting on their ligands and substituents, makes them versatile tools for the development of novel metal-based compounds, mostly as anticancer compounds. As it is known, chemotherapy is commonly adopted for the clinical treatment of different cancers, even though its efficacy is hampered by several factors. Thus, the development of more effective and less toxic drugs is still an urgent need. Herein, we reported the synthesis and characterization of new silver(I) and gold(I) complexes stabilized by caffeine-derived NHC ligands, together with their biological and catalytic activities. Our data highlight the interesting properties of this series as effective catalysts in A3-coupling and hydroamination reactions and as promising anticancer, anti-inflammatory, and antioxidant agents. The ability of these complexes in regulating different pathological aspects, and often co-promoting causes, of cancer makes them ideal leads to be further structurally functionalized and investigated.


Subject(s)
Coordination Complexes , Heterocyclic Compounds , Methane/analogs & derivatives , Neoplasms , Humans , Silver/chemistry , Gold/chemistry , Caffeine , Anti-Bacterial Agents/pharmacology , Methane/chemistry , Heterocyclic Compounds/chemistry , Coordination Complexes/chemistry
15.
Molecules ; 29(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38542906

ABSTRACT

(1) Background: Particulate methane monooxygenase (pMMO) has a strong dependence on the natural electron transfer path and is prone to denaturation, which results in its redox activity centers being unable to transfer electrons with bare electrodes directly and making it challenging to observe an electrochemical response; (2) Methods: Using methanobactin (Mb) as the electron transporter between gold electrodes and pMMO, a bionic interface with high biocompatibility and stability was created. The Mb-AuNPs-modified functionalized gold net electrode as a working electrode, the kinetic behaviors of pMMO bioelectrocatalysis, and the effect of Mb on pMMO were analyzed. The CV tests were performed at different scanning rates to obtain electrochemical kinetics parameters. (3) Results: The values of the electron transfer coefficient (α) and electron transfer rate constant (ks) are relatively large in test environments containing only CH4 or O2. In contrast, in the test environment containing both CH4 and O2, the bioelectrocatalysis of pMMO is a two-electron transfer process with a relatively small α and ks; (4) Conclusions: It was inferred that Mb formed the complex with pMMO. More importantly, Mb not only played a role in electron transfer but also in stabilizing the enzyme structure of pMMO and maintaining a specific redox state. Furthermore, the continuous catalytic oxidation of natural substrate methane was realized.


Subject(s)
Gold , Imidazoles , Metal Nanoparticles , Oligopeptides , Oxygenases , Gold/chemistry , Copper/chemistry , Metal Nanoparticles/chemistry , Oxidation-Reduction , Minerals , Methane/chemistry , Electrodes
16.
Angew Chem Int Ed Engl ; 63(21): e202401189, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38506220

ABSTRACT

This study introduces a novel approach for synthesizing Benzoxazine-centered Polychiral Polyheterocycles (BPCPHCs) via an innovative asymmetric carbene-alkyne metathesis-triggered cascade. Overcoming challenges associated with intricate stereochemistry and multiple chiral centers, the catalytic asymmetric Carbene Alkyne Metathesis-mediated Cascade (CAMC) is employed using dirhodium catalyst/Brønsted acid co-catalysis, ensuring precise stereo control as validated by X-ray crystallography. Systematic substrate scope evaluation establishes exceptional diastereo- and enantioselectivities, creating a unique library of BPCPHCs. Pharmacological exploration identifies twelve BPCPHCs as potent Nav ion channel blockers, notably compound 8 g. In vivo studies demonstrate that intrathecal injection of 8 g effectively reverses mechanical hyperalgesia associated with chemotherapy-induced peripheral neuropathy (CIPN), suggesting a promising therapeutic avenue. Electrophysiological investigations unveil the inhibitory effects of 8 g on Nav1.7 currents. Molecular docking, dynamics simulations and surface plasmon resonance (SPR) assay provide insights into the stable complex formation and favorable binding free energy of 8 g with C5aR1. This research represents a significant advancement in asymmetric CAMC for BPCPHCs and unveils BPCPHC 8 g as a promising, uniquely acting pain blocker, establishing a C5aR1-Nav1.7 connection in the context of CIPN.


Subject(s)
Alkynes , Benzoxazines , Methane , Methane/analogs & derivatives , Methane/chemistry , Methane/pharmacology , Alkynes/chemistry , Benzoxazines/chemistry , Benzoxazines/pharmacology , Benzoxazines/chemical synthesis , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemical synthesis , Humans , Stereoisomerism , Analgesics/chemistry , Analgesics/pharmacology , Analgesics/chemical synthesis , Molecular Structure , Catalysis , Drug Discovery , Animals
17.
Environ Sci Technol ; 58(14): 6170-6180, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38501927

ABSTRACT

As human society has advanced, nuclear energy has provided energy security while also offering low carbon emissions and reduced dependence on fossil fuels, whereas nuclear power plants have produced large amounts of radioactive wastewater, which threatens human health and the sustainability of water resources. Here, we demonstrate a hydrate-based desalination (HBD) technology that uses methane as a hydrate former for freshwater recovery and for the removal of radioactive chemicals from wastewater, specifically from Cs- and Sr-containing wastewater. The complete exclusion of radioactive ions from solid methane hydrates was confirmed by a close examination using phase equilibria, spectroscopic investigations, thermal analyses, and theoretical calculations, enabling simultaneous freshwater recovery and the removal of radioactive chemicals from wastewater by the methane hydrate formation process described in this study. More importantly, the proposed HBD technology is applicable to radioactive wastewater containing Cs+ and Sr2+ across a broad concentration range of low percentages to hundreds of parts per million (ppm) and even subppm levels, with high removal efficiency of radioactive chemicals. This study highlights the potential of environmentally sustainable technologies to address the challenges posed by radioactive wastewater generated by nuclear technology, providing new insights for future research and development efforts.


Subject(s)
Cesium , Wastewater , Humans , Strontium , Fresh Water , Methane/chemistry
18.
Sci Total Environ ; 919: 170856, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38340836

ABSTRACT

Inland alkaline wetlands play a crucial role in maintaining ecological functions. However, these wetlands are becoming more vulnerable to the effects of water level fluctuations caused by global climate change, especially concerning carbon (C) and nitrogen (N) cycling. Here, metagenomics sequencing was used to investigate microorganism diversity, C and N cycling gene abundance at three water level types (D (dry), MF (middle flooded), HF (high flooded)) along an inland alkaline wetland. Our findings reveal that water level was the most important factor in regulating the microbial communities. Distinct shifts in community composition were found along the water level increases, without fundamentally altering their composition. With the increase of water level, the relative abundance of pmoA decreased from 2.5 × 10-5 to 5.1 × 10-6. The C cycling processes shift from predominantly CO2-generated processes under low water levels to CO2 and CH4 co-generated processes under high water levels. The relative abundance of nosZ reached 4.9 × 10-5 in HF, while in D and MF, it is recorded at 4.5 × 10-5 and 3.4 × 10-5, respectively. Water levels accelerate N cycling and generating N2O intermediates. Furthermore, our study highlights the dynamic competition and cooperation between C and N cycling processes. This research provides a comprehensive biological understanding of the influence of varying water levels on soil C and N cycling processes in wetland.


Subject(s)
Nitrogen , Wetlands , Carbon , Carbon Dioxide/analysis , Soil , Methane/analysis , Methane/chemistry , Nitrous Oxide/analysis , Nitrous Oxide/chemistry
19.
J Environ Sci (China) ; 140: 12-23, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38331494

ABSTRACT

The increasing anthropogenic emissions of greenhouse gases (GHG) is encouraging extensive research in CO2 utilisation. Dry reforming of methane (DRM) depicts a viable strategy to convert both CO2 and CH4 into syngas, a worthwhile chemical intermediate. Among the different active phases for DRM, the use of nickel as catalyst is economically favourable, but typically deactivates due to sintering and carbon deposition. The stabilisation of Ni at different loadings in cerium zirconate inorganic complex structures is investigated in this work as strategy to develop robust Ni-based DRM catalysts. XRD and TPR-H2 analyses confirmed the existence of different phases according to the Ni loading in these materials. Besides, superficial Ni is observed as well as the existence of a CeNiO3 perovskite structure. The catalytic activity was tested, proving that 10 wt.% Ni loading is the optimum which maximises conversion. This catalyst was also tested in long-term stability experiments at 600 and 800°C in order to study the potential deactivation issues at two different temperatures. At 600°C, carbon formation is the main cause of catalytic deactivation, whereas a robust stability is shown at 800°C, observing no sintering of the active phase evidencing the success of this strategy rendering a new family of economically appealing CO2 and biogas mixtures upgrading catalysts.


Subject(s)
Cerium , Nickel , Nickel/chemistry , Carbon Dioxide/chemistry , Methane/chemistry , Cerium/chemistry , Carbon
20.
Sci Total Environ ; 921: 171175, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38402967

ABSTRACT

Anaerobic digestion (AD) of sewage sludge reduces organic solids and produces methane, but the complex nature of sludge, especially the difficulty in solubilization, limits AD efficiency. Pretreatments, by destroying sludge structure and promoting disintegration and hydrolysis, are valuable strategies to enhance AD performance. There is a plethora of reviews on sludge pretreatments, however, quantitative comparisons from multiple perspectives across different pretreatments remain scarce. This review categorized various pretreatments into three groups: Physical (ultrasonic, microwave, thermal hydrolysis, electric decomposition, and high pressure homogenization), chemical (acid, alkali, Fenton, calcium peroxide, and ozone), and biological (microaeration, exogenous bacteria, and exogenous hydrolase) pretreatments. The optimal conditions of various pretreatments and their impacts on enhancing AD efficiency were summarized; the effects of different pretreatments on microbial community in the AD system were comprehensively compared. The quantitative comparison based on dissolution degree of COD (DDCOD) indicted that the sludge solubilization performance is in the order of physical, chemical, and biological pretreatments, although with each below 40 % DDCOD. Biological pretreatment, particularly microaeration and exogenous bacteria, excel in AD enhancement. Pretreatments alter microbial ecology, favoring Firmicutes and Methanosaeta (acetotrophic methanogens) over Proteobacteria and Methanobacterium (hydrogenotrophic methanogens). Most pretreatments have unfavorable energy and economic outcomes, with electric decomposition and microaeration being exceptions. On the basis of the overview of the above pretreatments, a full energy and economy assessment for sewage sludge treatment was suggested. Finally, challenges associated with sludge pretreatments and AD were analyzed, and future research directions were proposed. This review may broaden comprehension of sludge pretreatments and AD, and provide an objective basis for the selection of sludge pretreatment technologies.


Subject(s)
Sewage , Ultrasonics , Anaerobiosis , Sewage/microbiology , Methane/chemistry , Hydrolysis , Waste Disposal, Fluid , Bioreactors
SELECTION OF CITATIONS
SEARCH DETAIL
...