Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anaerobe ; 72: 102470, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34743984

ABSTRACT

The aetiology of appendicular abscess is predominantly microbial with aerobic and anaerobic bacteria from gut flora. In this study, by using specific laboratory tools, we co-detected Methanobrevibacter oralis and Methanobrevibacter smithii among a mixture of enterobacteria including Escherichia coli, Enterococcus faecium and Enterococcus avium in four unrelated cases of postoperative appendiceal abscesses. These unprecedented observations raise a question on the role of methanogens in peri-appendicular abscesses, supporting antibiotics as an alternative therapeutic option for appendicitis, including antibiotics active against methanogens such as metronidazole or fusidic acid.


Subject(s)
Abscess/diagnosis , Abscess/microbiology , Appendicitis/complications , Methanobrevibacter/classification , Abscess/drug therapy , Adolescent , Adult , Anti-Bacterial Agents/therapeutic use , Appendicitis/diagnosis , Appendicitis/drug therapy , Blood Culture , Disease Management , Disease Susceptibility , Female , Humans , Male , Methanobrevibacter/genetics , Methanobrevibacter/isolation & purification , Methanobrevibacter/ultrastructure , Middle Aged , Molecular Typing , RNA, Ribosomal, 16S/genetics , Tomography, X-Ray Computed , Young Adult
2.
Nat Commun ; 12(1): 3214, 2021 06 04.
Article in English | MEDLINE | ID: mdl-34088904

ABSTRACT

Most archaea divide by binary fission using an FtsZ-based system similar to that of bacteria, but they lack many of the divisome components described in model bacterial organisms. Notably, among the multiple factors that tether FtsZ to the membrane during bacterial cell constriction, archaea only possess SepF-like homologs. Here, we combine structural, cellular, and evolutionary analyses to demonstrate that SepF is the FtsZ anchor in the human-associated archaeon Methanobrevibacter smithii. 3D super-resolution microscopy and quantitative analysis of immunolabeled cells show that SepF transiently co-localizes with FtsZ at the septum and possibly primes the future division plane. M. smithii SepF binds to membranes and to FtsZ, inducing filament bundling. High-resolution crystal structures of archaeal SepF alone and in complex with the FtsZ C-terminal domain (FtsZCTD) reveal that SepF forms a dimer with a homodimerization interface driving a binding mode that is different from that previously reported in bacteria. Phylogenetic analyses of SepF and FtsZ from bacteria and archaea indicate that the two proteins may date back to the Last Universal Common Ancestor (LUCA), and we speculate that the archaeal mode of SepF/FtsZ interaction might reflect an ancestral feature. Our results provide insights into the mechanisms of archaeal cell division and pave the way for a better understanding of the processes underlying the divide between the two prokaryotic domains.


Subject(s)
Archaeal Proteins/metabolism , Cell Division/physiology , Methanobrevibacter/metabolism , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Cycle , Cell Division/genetics , Conserved Sequence , Crystallography, X-Ray , Evolution, Molecular , Methanobrevibacter/genetics , Methanobrevibacter/ultrastructure , Microscopy, Electron, Transmission , Models, Molecular , Phylogeny , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Quaternary , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/ultrastructure
3.
Proc Natl Acad Sci U S A ; 104(25): 10643-8, 2007 Jun 19.
Article in English | MEDLINE | ID: mdl-17563350

ABSTRACT

The human gut is home to trillions of microbes, thousands of bacterial phylotypes, as well as hydrogen-consuming methanogenic archaea. Studies in gnotobiotic mice indicate that Methanobrevibacter smithii, the dominant archaeon in the human gut ecosystem, affects the specificity and efficiency of bacterial digestion of dietary polysaccharides, thereby influencing host calorie harvest and adiposity. Metagenomic studies of the gut microbial communities of genetically obese mice and their lean littermates have shown that the former contain an enhanced representation of genes involved in polysaccharide degradation, possess more archaea, and exhibit a greater capacity to promote adiposity when transplanted into germ-free recipients. These findings have led to the hypothesis that M. smithii may be a therapeutic target for reducing energy harvest in obese humans. To explore this possibility, we have sequenced its 1,853,160-bp genome and compared it to other human gut-associated M. smithii strains and other Archaea. We have also examined M. smithii's transcriptome and metabolome in gnotobiotic mice that do or do not harbor Bacteroides thetaiotaomicron, a prominent saccharolytic bacterial member of our gut microbiota. Our results indicate that M. smithii is well equipped to persist in the distal intestine through (i) production of surface glycans resembling those found in the gut mucosa, (ii) regulated expression of adhesin-like proteins, (iii) consumption of a variety of fermentation products produced by saccharolytic bacteria, and (iv) effective competition for nitrogenous nutrient pools. These findings provide a framework for designing strategies to change the representation and/or properties of M. smithii in the human gut microbiota.


Subject(s)
Adaptation, Physiological , Genome, Bacterial , Intestines/microbiology , Methanobrevibacter/genetics , Methanobrevibacter/metabolism , Animals , Bacteroides/metabolism , Fermentation , Genomics , Germ-Free Life , Humans , Intestines/physiology , Male , Methanobrevibacter/ultrastructure , Mice , Models, Biological , Molecular Sequence Data
SELECTION OF CITATIONS
SEARCH DETAIL
...