Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 18.616
Filter
1.
Cell Biochem Funct ; 42(5): e4093, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38978319

ABSTRACT

The main objective of the study is to evaluate the antioxidant, anticancer, and antimicrobial activities of Anchusa officinalis L. in vitro and in silico. The dried aerial parts of A. officinalis L. were extracted with methanol. Total phenolic and flavonoid content was analyzed. Antioxidant and antimicrobial effects were tested against both gram-positive and gram-negative bacteria. Gas chromatography-mass spectrometry analysis revealed the presence of 10 phytochemical compounds, and cyclobutane (26.07%) was identified as the major photochemical compound. The methanol extract exhibited the maximum amount of total phenolic content (118.24 ± 4.42 mg QE/g dry weight of the dry extract) (R2 = 0.994) and the total flavonoid content was 94 ± 2.34 mg QE/g dry weight of the dry extract (R2 = 0.999). The IC50 value for 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid was 107.12 ± 3.42 µg/mL, and it was high for 1,1-diphenyl-2-picryl hydrazyl (123.94 ± 2.31 µg/mL). The IC50 value was 72.49 ± 3.14 against HepG2 cell lines, and a decreased value was obtained (102.54 ± 4.17 g/mL) against MCF-7 cell lines. The methanol extract increased the expression of caspase mRNA and Bax mRNA levels when compared to the control experiment (p < .05). The conclusions, A. officinalis L. aerial parts extract exhibited antibacterial, antifungal, and antioxidant activities.


Subject(s)
Antioxidants , Methanol , Plant Components, Aerial , Plant Extracts , Plant Extracts/pharmacology , Plant Extracts/chemistry , Humans , Plant Components, Aerial/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Methanol/chemistry , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , MCF-7 Cells , Computer Simulation , Flavonoids/pharmacology , Flavonoids/chemistry , Phenols/pharmacology , Phenols/chemistry , Apoptosis/drug effects
2.
J Sep Sci ; 47(13): e2400234, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39005007

ABSTRACT

In this study, we employed a combination approach for the preparative separation of constituents from Ginkgo biloba L. leaves. It involved multi-stage solvent extractions utilizing two-phase multi-solvent systems and countercurrent chromatography (CCC) separations using three different solvent systems. The n-heptane/ethyl acetate/water (1:1:2, v/v) and n-heptane/ethyl acetate/methanol/water (HepEMWat, 7:3:7:3, v/v) solvent systems were screened out as extraction systems. The polarities of the upper and lower phases in the multi-solvent systems were adjustable, enabling the effectively segmented separation of complex constituents in G. biloba L. The segmented products were subsequently directly utilized as samples and separated using CCC with the solvent systems acetate/n-butanol/water (4:1:5, v/v), HepEMWat (5:5:5:5, v/v), and HepEMWat (9:1:9:1, v/v), respectively. As a result, a total of 11 compounds were successfully isolated and identified from a 2 g methanol extract of G. biloba L through two-stage extraction and three CCC separation processes; among them, nine compounds exhibited high-performance liquid chromatography purity exceeding 85%.


Subject(s)
Countercurrent Distribution , Ginkgo biloba , Plant Extracts , Plant Leaves , Solvents , Ginkgo biloba/chemistry , Solvents/chemistry , Plant Leaves/chemistry , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Chromatography, High Pressure Liquid , Water/chemistry , Methanol/chemistry , Acetates/chemistry , Ginkgo Extract
3.
Environ Sci Pollut Res Int ; 31(32): 44608-44648, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961021

ABSTRACT

The urgent need to address global carbon emissions and promote sustainable energy solutions has led to a growing interest in carbon dioxide (CO2) conversion technologies. Among these, the transformation of CO2 into methanol (MeOH) has gained prominence as an effective mitigation strategy. This review paper provides a comprehensive exploration of recent advances and applications in the direct utilization of CO2 for the synthesis of MeOH, encompassing various aspects from catalysts to market analysis, environmental impact, and future prospects. We begin by introducing the current state of CO2 mitigation strategies, highlighting the significance of carbon recycling through MeOH production. The paper delves into the chemistry and technology behind the conversion of CO2 into MeOH, encompassing key themes such as feedstock selection, material and energy supply, and the various conversion processes, including chemical, electrochemical, photochemical, and photoelectrochemical pathways. An in-depth analysis of heterogeneous and homogeneous catalysts for MeOH synthesis is provided, shedding light on the advantages and drawbacks of each. Furthermore, we explore diverse routes for CO2 hydrogenation into MeOH, emphasizing the technological advances and production processes associated with this sustainable transformation. As MeOH holds a pivotal role in a wide range of chemical applications and emerges as a promising transportation fuel, the paper explores its various chemical uses, transportation, storage, and distribution, as well as the evolving MeOH market. The environmental and energy implications of CO2 conversion to MeOH are discussed, including a thermodynamic analysis of the process and cost and energy evaluations for large-scale catalytic hydrogenation.


Subject(s)
Carbon Dioxide , Methanol , Methanol/chemistry , Catalysis
4.
Nat Commun ; 15(1): 5969, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013920

ABSTRACT

The proficiency of phyllosphere microbiomes in efficiently utilizing plant-provided nutrients is pivotal for their successful colonization of plants. The methylotrophic capabilities of Methylobacterium/Methylorubrum play a crucial role in this process. However, the precise mechanisms facilitating efficient colonization remain elusive. In the present study, we investigate the significance of methanol assimilation in shaping the success of mutualistic relationships between methylotrophs and plants. A set of strains originating from Methylorubrum extorquens AM1 are subjected to evolutionary pressures to thrive under low methanol conditions. A mutation in the phosphoribosylpyrophosphate synthetase gene is identified, which converts it into a metabolic valve. This valve redirects limited C1-carbon resources towards the synthesis of biomass by up-regulating a non-essential phosphoketolase pathway. These newly acquired bacterial traits demonstrate superior colonization capabilities, even at low abundance, leading to increased growth of inoculated plants. This function is prevalent in Methylobacterium/Methylorubrum strains. In summary, our findings offer insights that could guide the selection of Methylobacterium/Methylorubrum strains for advantageous agricultural applications.


Subject(s)
Methanol , Methylobacterium , Methylobacterium/metabolism , Methylobacterium/genetics , Methylobacterium/enzymology , Methylobacterium/growth & development , Methanol/metabolism , Symbiosis , Mutation , Aldehyde-Lyases/metabolism , Aldehyde-Lyases/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Plant Leaves/microbiology , Plant Leaves/growth & development , Methylobacterium extorquens/genetics , Methylobacterium extorquens/metabolism , Methylobacterium extorquens/growth & development , Methylobacterium extorquens/enzymology , Plant Development , Microbiota/genetics , Biomass
5.
Clin Lab ; 70(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38965940

ABSTRACT

BACKGROUND: Alcohol poisoning is a significant global problem that has become an epidemic. The determination of the alcohol type is hereby essential as it may affect the course of the treatment; however, there is no routine laboratory diagnostic method for alcohol types other than for ethanol. In this study, we aimed to define a simple method for alcohol type differentiation by utilizing a combination of breathalyzer and spectrophotometrically measured serum ethanol results. METHODS: A breathalyzer and spectrophotometry were used to measure four different types of alcohol: ethanol, isopropanol, methanol, and ethylene glycol. To conduct serum alcohol analysis, four serum pools were created, each containing a different type of alcohol. The pools were analyzed using the spectrophotometric method with an enzymatic ethanol test kit. An experiment was conducted to measure the different types of alcohol using impreg-nated cotton and a balloon, simulating a breathalyzer test. An algorithm was created based on the measurements. RESULTS: Based on the results, the substance consumed could be methanol or isopropanol if the breathalyzer test indicates a positive reading and if the blood ethanol measurement is negative. If both the breathalyzer and the blood measurements are negative, the substance in question may be ethylene glycol. CONCLUSIONS: This simple method may determine methanol or isopropanol intake. This straightforward and innovative approach could assist healthcare professionals in different fields with diagnosing alcohol intoxication and, more precisely, help reducing related morbidity and mortality.


Subject(s)
2-Propanol , Breath Tests , Ethanol , Ethylene Glycol , Methanol , Humans , Ethanol/blood , Methanol/chemistry , Breath Tests/methods , Ethylene Glycol/blood , Ethylene Glycol/poisoning , Spectrophotometry/methods , Alcoholic Intoxication/diagnosis , Alcoholic Intoxication/blood , Blood Alcohol Content , Algorithms
6.
J Mass Spectrom ; 59(8): e5070, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38989742

ABSTRACT

Recently, our group has shown that fentanyl and many of its analogues form prototropic isomers ("protomers") during electrospray ionization. These different protomers can be resolved using ion mobility spectrometry and annotated using mobility-aligned tandem mass spectrometry fragmentation. However, their formation and the extent to which experimental variables contribute to their relative ratio remain poorly understood. In the present study, we systematically investigated the effects of mixtures of common chromatographic solvents (water, methanol, and acetonitrile) and pH on the ratio of previously observed protomers for 23 fentanyl analogues. Interestingly, these ratios (N-piperidine protonation vs. secondary amine/O = protonation) decreased significantly for many analogues (e.g., despropionyl ortho-, meta-, and para-methyl fentanyl), increased significantly for others (e.g., cis-isofentanyl), and remained relatively constant for the others as solvent conditions changed from 100% organic solvent (methanol or acetonitrile) to 100% water. Interestingly, pH also had significant effects on this ratio, causing the change in ratio to switch in many cases. Lastly, increasing conditions to pH ≥ 4.0 also prompted the appearance of new mobility peaks for ortho- and para-methyl acetyl fentanyl, where all previous studies had only showed one single distribution. Because these ratios have promise to be used qualitatively for identification of these (and emerging) fentanyl analogues, understanding how various conditions (i.e., mobile phase selection and/or chromatographic gradient) affect their ratios is critically important to the development of advanced ion mobility and mass spectrometry methodologies to identify fentanyl analogues.


Subject(s)
Fentanyl , Ion Mobility Spectrometry , Solvents , Fentanyl/analogs & derivatives , Fentanyl/chemistry , Fentanyl/analysis , Solvents/chemistry , Ion Mobility Spectrometry/methods , Hydrogen-Ion Concentration , Spectrometry, Mass, Electrospray Ionization/methods , Isomerism , Methanol/chemistry , Acetonitriles/chemistry , Tandem Mass Spectrometry/methods , Water/chemistry
7.
Sci Rep ; 14(1): 15751, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977750

ABSTRACT

The need for intubation in methanol-poisoned patients, if not predicted in time, can lead to irreparable complications and even death. Artificial intelligence (AI) techniques like machine learning (ML) and deep learning (DL) greatly aid in accurately predicting intubation needs for methanol-poisoned patients. So, our study aims to assess Explainable Artificial Intelligence (XAI) for predicting intubation necessity in methanol-poisoned patients, comparing deep learning and machine learning models. This study analyzed a dataset of 897 patient records from Loghman Hakim Hospital in Tehran, Iran, encompassing cases of methanol poisoning, including those requiring intubation (202 cases) and those not requiring it (695 cases). Eight established ML (SVM, XGB, DT, RF) and DL (DNN, FNN, LSTM, CNN) models were used. Techniques such as tenfold cross-validation and hyperparameter tuning were applied to prevent overfitting. The study also focused on interpretability through SHAP and LIME methods. Model performance was evaluated based on accuracy, specificity, sensitivity, F1-score, and ROC curve metrics. Among DL models, LSTM showed superior performance in accuracy (94.0%), sensitivity (99.0%), specificity (94.0%), and F1-score (97.0%). CNN led in ROC with 78.0%. For ML models, RF excelled in accuracy (97.0%) and specificity (100%), followed by XGB with sensitivity (99.37%), F1-score (98.27%), and ROC (96.08%). Overall, RF and XGB outperformed other models, with accuracy (97.0%) and specificity (100%) for RF, and sensitivity (99.37%), F1-score (98.27%), and ROC (96.08%) for XGB. ML models surpassed DL models across all metrics, with accuracies from 93.0% to 97.0% for DL and 93.0% to 99.0% for ML. Sensitivities ranged from 98.0% to 99.37% for DL and 93.0% to 99.0% for ML. DL models achieved specificities from 78.0% to 94.0%, while ML models ranged from 93.0% to 100%. F1-scores for DL were between 93.0% and 97.0%, and for ML between 96.0% and 98.27%. DL models scored ROC between 68.0% and 78.0%, while ML models ranged from 84.0% to 96.08%. Key features for predicting intubation necessity include GCS at admission, ICU admission, age, longer folic acid therapy duration, elevated BUN and AST levels, VBG_HCO3 at initial record, and hemodialysis presence. This study as the showcases XAI's effectiveness in predicting intubation necessity in methanol-poisoned patients. ML models, particularly RF and XGB, outperform DL counterparts, underscoring their potential for clinical decision-making.


Subject(s)
Artificial Intelligence , Machine Learning , Methanol , Humans , Methanol/poisoning , Male , Female , Deep Learning , Intubation, Intratracheal/methods , Iran , Adult , Middle Aged , ROC Curve
8.
Microb Cell Fact ; 23(1): 198, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39014373

ABSTRACT

BACKGROUND: Komagataella phaffii, a type of methanotrophic yeast, can use methanol, a favorable non-sugar substrate in eco-friendly bio-manufacturing. The dissimilation pathway in K. phaffii leads to the loss of carbon atoms in the form of CO2. However, the ΔFLD strain, engineered to lack formaldehyde dehydrogenase-an essential enzyme in the dissimilation pathway-displayed growth defects when exposed to a methanol-containing medium. RESULTS: Inhibiting the dissimilation pathway triggers an excessive accumulation of formaldehyde and a decline in the intracellular NAD+/NADH ratio. Here, we designed dual-enzyme complex with the alcohol oxidase1/dihydroxyacetone synthase1 (Aox1/Das1), enhancing the regeneration of the formaldehyde receptor xylulose-5-phosphate (Xu5P). This strategy mitigated the harmful effects of formaldehyde accumulation and associated toxicity to cells. Concurrently, we elevated the NAD+/NADH ratio by overexpressing isocitrate dehydrogenase in the TCA cycle, promoting intracellular redox homeostasis. The OD600 of the optimized combination of the above strategies, strain DF02-1, was 4.28 times higher than that of the control strain DF00 (ΔFLD, HIS4+) under 1% methanol. Subsequently, the heterologous expression of methanol oxidase Mox from Hansenula polymorpha in strain DF02-1 resulted in the recombinant strain DF02-4, which displayed a growth at an OD600 4.08 times higher than that the control strain DF00 in medium containing 3% methanol. CONCLUSIONS: The reduction of formaldehyde accumulation, the increase of NAD+/NADH ratio, and the enhancement of methanol oxidation effectively improved the efficient utilization of a high methanol concentration by strain ΔFLD strain lacking formaldehyde dehydrogenase. The modification strategies implemented in this study collectively serve as a foundational framework for advancing the efficient utilization of methanol in K. phaffii.


Subject(s)
Metabolic Engineering , Methanol , Saccharomycetales , Methanol/metabolism , Saccharomycetales/metabolism , Saccharomycetales/genetics , Metabolic Engineering/methods , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Formaldehyde/metabolism , Aldehyde Oxidoreductases/metabolism , Aldehyde Oxidoreductases/genetics , NAD/metabolism
9.
Mymensingh Med J ; 33(3): 649-655, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38944702

ABSTRACT

Antibiotics' usefulness is threatened by multi-drugs resistance in harmful microorganisms because of abuse and regulatory problems. Emerging microbes, resistance mechanisms and antimicrobial drugs all require extensive investigation. Evaluation of the in vitro antibacterial activity of Methanolic extracts isolated from Black pepper seeds (Piper nigrum L.) against two infection causing pathogens, Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa. From July 2022 and June 2023, this experimental study was conducted at the Mymensingh Medical College's Department of Pharmacology and Therapeutics in conjunction with the Department of Microbiology. The solvents Methanol and 10.0% Di-Methyl Sulfoxide (DMSO) were used to make the extract. Using the disc diffusion and broth dilution methods, the antibacterial activity of methanolic extract of black pepper seeds (MBPE) was evaluated at various doses. Using the broth dilution procedure, the conventional antibiotic Ciprofloxacin was utilized, and the outcome was contrasted with that of Methanol extracts. Methanolic extract of black pepper seeds (MBPE) at seven distinct concentrations (100, 80, 60, 40, 20, 10 and 5mg/ml) were utilized, then later in chosen concentrations as needed to confirm the extracts' more precise margin of antimicrobial sensitivity. At 80mg/ml and above doses of the MBPE, it had an inhibitory impact against the aforementioned microorganisms. For Staphylococcus aureus and Pseudomonas aeruginosa the MIC were 60 and 70mg/ml in MBPE respectively. As of the MIC of Ciprofloxacin was 1µg/ml against Staphylococcus aureus and 1.5µg/ml for Pseudomonas aeruginosa. In comparison to MICs of MBPE for the test organisms, the MIC of Ciprofloxacin was the lowest. This study clearly shows that Staphylococcus aureus and Pseudomonas aeruginosa are sensitive to the methanolic extract of black pepper seeds' antibacterial properties.


Subject(s)
Anti-Bacterial Agents , Methanol , Microbial Sensitivity Tests , Piper nigrum , Plant Extracts , Pseudomonas aeruginosa , Seeds , Staphylococcus aureus , Piper nigrum/chemistry , Pseudomonas aeruginosa/drug effects , Plant Extracts/pharmacology , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology
10.
J Agric Food Chem ; 72(26): 14821-14829, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38897918

ABSTRACT

d-Allulose, a C-3 epimer of d-fructose, has great market potential in food, healthcare, and medicine due to its excellent biochemical and physiological properties. Microbial fermentation for d-allulose production is being developed, which contributes to cost savings and environmental protection. A novel metabolic pathway for the biosynthesis of d-allulose from a d-xylose-methanol mixture has shown potential for industrial application. In this study, an artificial antisense RNA (asRNA) was introduced into engineered Escherichia coli to diminish the flow of pentose phosphate (PP) pathway, while the UDP-glucose-4-epimerase (GalE) was knocked out to prevent the synthesis of byproducts. As a result, the d-allulose yield on d-xylose was increased by 35.1%. Then, we designed a d-xylose-sensitive translation control system to regulate the expression of the formaldehyde detoxification operon (FrmRAB), achieving self-inductive detoxification by cells. Finally, fed-batch fermentation was carried out to improve the productivity of the cell factory. The d-allulose titer reached 98.6 mM, with a yield of 0.615 mM/mM on d-xylose and a productivity of 0.969 mM/h.


Subject(s)
Escherichia coli , Fermentation , Methanol , RNA, Antisense , Xylose , Escherichia coli/genetics , Escherichia coli/metabolism , Xylose/metabolism , RNA, Antisense/genetics , RNA, Antisense/metabolism , Methanol/metabolism , Metabolic Engineering , Fructose/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism
11.
J Proteomics ; 304: 105229, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38880355

ABSTRACT

Mass-tolerant open search methods allow the high-throughput analysis of modified peptides by mass spectrometry. These techniques have paved the way to unbiased analysis of post-translational modifications in biological contexts, as well as of chemical modifications produced during the manipulation of protein samples. In this work, we have analyzed in-depth a wide variety of samples of different biological origin, including cells, extracellular vesicles, secretomes, centrosomes and tissue preparations, using Comet-ReCom, a recently improved version of the open search engine Comet-PTM. Our results demonstrate that glutamic acid residues undergo intensive methyl esterification when protein digestion is performed using in-gel techniques, but not using gel-free approaches. This effect was highly specific to Glu and was not found for other methylable residues such as Asp.


Subject(s)
Glutamic Acid , Methanol , Methanol/chemistry , Methylation , Humans , Glutamic Acid/metabolism , Protein Processing, Post-Translational , Proteomics/methods , Animals
12.
J Ethnopharmacol ; 333: 118413, 2024 Oct 28.
Article in English | MEDLINE | ID: mdl-38824975

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Novel drugs are needed to address the issue of malarial infection resistance; natural items can be a different source of these medications. Albizia malacophylla (A. Rich.) Walp. (Leguminosae) is listed as one of the antimalarial medicinal plants in Ethiopian folk medicine. However, there are no reports regarding the biological activity or phytochemistry of the plant. AIM OF THE STUDY: Thus, this study aimed to evaluate the A. malacophylla crude extract and solvent fractions' in vivo antimalarial activity utilizing 4-day suppressive, preventative, and curative tests in mice infected with P. berghei. MATERIALS AND METHODS: The parasite Plasmodium berghei, which causes rodent malaria, was used to infect healthy male Swiss Albino mice, weighing 23-28 g and aged 6-8 weeks. Solvent fractions such as methanol, water, and chloroform were given in addition to an 80% methanolic extract at 100, 200, and 400 mg/kg doses. A Conventional test such as parasitemia, survival time, body weight, temperature, and packed cell capacity were employed to ascertain factors such as the suppressive, curative, and preventive tests. RESULTS: Every test substance dramatically reduced the number of parasites in every experiment. Crude extract (with the highest percentage suppression of 67.78%) performs better antimalarial effect than the methanol fraction, which is the most efficient solvent fraction with a percentage suppression of 55.74%. With a suppression value of 64.83% parasitemia level, the therapeutic effects of 80% methanolic crude extract were greater than its curative and preventative effects in a four-day suppressive test. The survival period (17 days) was longer with the hydroalcoholic crude extract dose of 400 mg/kg than with other doses of the materials under investigation. CONCLUSIONS: The results of this investigation validate the antimalarial characteristics of A. malacophylla leaf extract. The crude extract prevented weight loss, a decline in temperature, and a reduction in PCV. The results demonstrate that the plant has a promising antimalarial effect against P. berghei, hence supporting the traditional use of the plant. Therefore, it could serve as a foundation for the development of new antimalarial drugs.


Subject(s)
Albizzia , Malaria , Plant Extracts , Plasmodium berghei , Albizzia/chemistry , Plant Leaves/chemistry , Methanol/chemistry , Solvents/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Malaria/drug therapy , Malaria/prevention & control , Disease Models, Animal , Animals , Mice , Male , Body Temperature/drug effects , Weight Loss/drug effects
13.
BMC Plant Biol ; 24(1): 523, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38853237

ABSTRACT

Allelopathy is a biological process in which one organism releases biochemicals that affect the growth and development of other organisms. The current investigation sought to determine the allelopathic effect of Rumex acetosella on white clover (Trifolium repens) growth and development by using its shoot extract (lower IC50 value) as a foliar treatment. Here, different concentrations (25, 50, 100, and 200 g/L) of shoot extract from Rumex acetosella were used as treatments. With increasing concentrations of shoot extract, the plant growth parameters, chlorophyll and total protein content of Trifolium repens decreased. On the other hand, ROS, such as O2.- and H2O2, and antioxidant enzymes, including SOD, CAT, and POD, increased with increasing shoot extract concentration. A phytohormonal study indicated that increased treatment concentrations increased ABA and SA levels while JA levels were reduced. For the identification of allelochemicals, liquid‒liquid extraction, thin-layer chromatography, and open-column chromatography were conducted using R. acetosella shoot extracts, followed by a seed bioassay on the separated layer. A lower IC50 value was obtained through GC/MS analysis. gammaSitosterol was identified as the most abundant component. The shoot extract of Rumex acetosella has strong allelochemical properties that may significantly impede the growth and development of Trifolium repens. This approach could help to understand the competitive abilities of this weed species and in further research provide an alternate weed management strategy.


Subject(s)
Allelopathy , Antioxidants , Plant Extracts , Plant Growth Regulators , Rumex , Trifolium , Trifolium/growth & development , Trifolium/metabolism , Trifolium/drug effects , Plant Extracts/pharmacology , Antioxidants/metabolism , Rumex/growth & development , Rumex/metabolism , Rumex/drug effects , Rumex/chemistry , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Methanol , Plant Weeds/drug effects , Plant Weeds/growth & development , Pheromones/pharmacology , Pheromones/metabolism , Plant Shoots/growth & development , Plant Shoots/drug effects , Plant Shoots/metabolism , Plant Shoots/chemistry
14.
Molecules ; 29(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38893577

ABSTRACT

Daucus capillifolius Gilli is a rare annual wild herb grown in Libya. It belongs to the Apiaceae family, which is one of the largest flowering plant families. Plants of this family are outstanding sources of various secondary metabolites with various biological activities. A UPLC-ESI-MS/MS analysis of different extracts of in vivo and in vitro tissues of Daucus capillifolius together with the fruit extract of the cultivated plant in both ionization modes was carried out for the first time in the current study. Our results reveal the tentative identification of eighty-seven compounds in the tested extracts, including thirty-two phenolic acids and their derivatives; thirty-seven flavonoid glycosides and aglycones of apigenin, luteolin, diosmetin, myricetin and quercetin, containing glucose, rhamnose, pentose and/or glucuronic acid molecules; seven anthocyanins; six tannins; three acetylenic compounds; and three nitrogenous compounds. The tentative identification of the above compounds was based on the comparison of their retention times and ESI-MS/MS fragmentation patterns with those previously reported in the literature. For this Apiaceae plant, our results confirm the presence of a wide array of secondary metabolites with reported biological activities. This study is among the first ones to shed light on the phytoconstituents of this rare plant.


Subject(s)
Plant Extracts , Secondary Metabolism , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Plant Extracts/chemistry , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Flavonoids/chemistry , Flavonoids/analysis , Methanol/chemistry , Apiaceae/chemistry , Fruit/chemistry
15.
Microb Cell Fact ; 23(1): 177, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879507

ABSTRACT

BACKGROUND: Heme-incorporating peroxygenases are responsible for electron transport in a multitude of organisms. Yet their application in biocatalysis is hindered due to their challenging recombinant production. Previous studies suggest Komagataella phaffi to be a suitable production host for heme-containing enzymes. In addition, co-expression of helper proteins has been shown to aid protein folding in yeast. In order to facilitate recombinant protein expression for an unspecific peroxygenase (AnoUPO), we aimed to apply a bi-directionalized expression strategy with Komagataella phaffii. RESULTS: In initial screenings, co-expression of protein disulfide isomerase was found to aid the correct folding of the expressed unspecific peroxygenase in K. phaffi. A multitude of different bi-directionalized promoter combinations was screened. The clone with the most promising promoter combination was scaled up to bioreactor cultivations and compared to a mono-directional construct (expressing only the peroxygenase). The strains were screened for the target enzyme productivity in a dynamic matter, investigating both derepression and mixed feeding (methanol-glycerol) for induction. Set-points from bioreactor screenings, resulting in the highest peroxygenase productivity, for derepressed and methanol-based induction were chosen to conduct dedicated peroxygenase production runs and were analyzed with RT-qPCR. Results demonstrated that methanol-free cultivation is superior over mixed feeding in regard to cell-specific enzyme productivity. RT-qPCR analysis confirmed that mixed feeding resulted in high stress for the host cells, impeding high productivity. Moreover, the bi-directionalized construct resulted in a much higher specific enzymatic activity over the mono-directional expression system. CONCLUSIONS: In this study, we demonstrate a methanol-free bioreactor production strategy for an unspecific peroxygenase, yet not shown in literature. Hence, bi-directionalized assisted protein expression in K. phaffii, cultivated under derepressed conditions, is indicated to be an effective production strategy for heme-containing oxidoreductases. This very production strategy might be opening up further opportunities for biocatalysis.


Subject(s)
Bioreactors , Mixed Function Oxygenases , Promoter Regions, Genetic , Recombinant Proteins , Saccharomycetales , Saccharomycetales/genetics , Saccharomycetales/metabolism , Saccharomycetales/enzymology , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Methanol/metabolism
16.
J Microorg Control ; 29(2): 55-65, 2024.
Article in English | MEDLINE | ID: mdl-38880617

ABSTRACT

Cupriavidus metallidurans strain PD11 isolated from laboratory waste drainage can use C1 compounds, such as dichloromethane (DCM) and methanol, as a sole carbon and energy source. However, strain CH34 (a type-strain) cannot grow in the medium supplemented with DCM. In the present study, we aimed to unravel the genetic elements underlying the utilization of C1 compounds by strain PD11. The genome subtraction approach indicated that only strain PD11 had several genes highly homologous to those of Herminiimonas arsenicoxydans strain ULPAs1. Moreover, a series of polymerase chain reaction (PCR) to detect the orthologs of H. arsenicoxydans genes and the comparative study of the genomes of three strains revealed that the 87.9 kb DNA fragment corresponding to HEAR1959 to HEAR2054 might be horizontally transferred to strain PD11. The 87.9 kb DNA fragment identified was found to contain three genes whose products were putatively involved in the metabolism of formaldehyde, a common intermediate of DCM and methanol. In addition, reverse transcription PCR analysis showed that all three genes were significantly expressed when strain PD11 was cultivated in the presence of DCM or methanol. These findings suggest that strain PD11 can effectively utilize the C1 compounds because of transfer of the mobile genetic elements from other bacterial species, for instance, from H. arsenicoxydans.


Subject(s)
Cupriavidus , Interspersed Repetitive Sequences , Methanol , Methylene Chloride , Methanol/metabolism , Cupriavidus/genetics , Cupriavidus/metabolism , Cupriavidus/drug effects , Methylene Chloride/metabolism , Interspersed Repetitive Sequences/genetics , Energy Metabolism/drug effects , Energy Metabolism/genetics , Genome, Bacterial/genetics , Gene Transfer, Horizontal
17.
J Mass Spectrom ; 59(7): e5045, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38837562

ABSTRACT

Soybean is scientifically known as Glycine max. It belongs to the Fabaceae family. It consists of a lot of bioactive phytochemicals like saponin, phenolic acid, flavonoid, sphingolipids and phytosterols. It also owns excellent immune-active effects in the physiological system. Soy and its phytochemicals have been found to have pharmacological properties that include anticancer, antioxidant, anti-hypercholesterolaemic, anti-diabetic, oestrogenic, anti-hyperlipidaemic, anti-inflammatory, anti-obesity, anti-hypertensive, anti-mutagenic, immunomodulatory, anti-osteoporotic, antiviral, hepatoprotective, antimicrobial, goitrogenic anti-skin ageing, wound healing, neuroprotective and anti-photoageing activities. Present study has been designed to set standard pharmacognostical extraction method, complexation of compounds, qualitative evaluation through phytochemical screening, identification by TLC, physicochemical properties, solubility profile, total phenolic, flavonoid content as well as analytical evaluation or characterisation like UV and FT-IR of methanolic extract of G. max. The final observations like physicochemical properties such as total ash value, LOD and pH were recorded. Phytochemical screenings show the presence of flavonoid, alkaloid, saponin, carbohydrate, tannins, protein, gums and mucilage, fixed oils and fats. The results were found significant. Further in silico studies proved creatinine and euparin to be potent wound healing agents.


Subject(s)
Flavonoids , Glycine max , Phytochemicals , Plant Extracts , Seeds , Tandem Mass Spectrometry , Wound Healing , Wound Healing/drug effects , Plant Extracts/chemistry , Plant Extracts/pharmacology , Tandem Mass Spectrometry/methods , Seeds/chemistry , Glycine max/chemistry , Phytochemicals/analysis , Phytochemicals/chemistry , Phytochemicals/pharmacology , Flavonoids/analysis , Flavonoids/chemistry , Flavonoids/pharmacology , Methanol/chemistry , Computer Simulation , Phenols/analysis , Phenols/chemistry , Phenols/pharmacology , Animals
18.
Exp Oncol ; 46(1): 22-29, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38852056

ABSTRACT

BACKGROUND: Molecules and cytokines can be targeted in cancer therapy. Transforming growth factor-beta (TGF-ß) is a cytokine that acts on protein kinase receptors in the plasma membrane. The signaling pathway of TGF-ß can trigger the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) pathway, a signal transduction pathway important in cancer growth and development. However, this PI3K/AKT cascade can be inhibited by phosphatase and tensin homolog (PTEN) tumor suppressor genes. AIM: To determine the inhibitory effect of Holothuria scabra methanol extract (HSE) on breast cancer growth through the TGF-ß/PI3K pathways and PTEN tumor suppressor gene on a breast cancer (BC) mice model. MATERIALS AND METHODS: Female C57BL6 mice were subcutaneously injected with carcinogen DMBA 1 mg/kg body weight (BW) and fed a high-fat diet (HFD). Mice were randomly divided into five groups (n = 6): negative control (NC) administered with a standard diet, positive control (PC) administered with DMBA and HFD, and three treatment groups (T1, T2, and T3) treated with HSE doses of 0.33, 0.66, and 0.99 g/kg BW for 12 weeks. TGF-ß concentration in the blood serum of mice was assessed by ELISA and the PIK3CA and PTEN gene expression by qRT-PCR. RESULTS: The treatment with HSE resulted in a significant decrease in TGF-ß concentrations in the blood sera of treatment groups T1 (35.31 ± 17.33), T2 (43.31 ± 17.42), and T3 (48.67 ± 20.94) pg/mL compared to the PC group (162.09 ± 11.60) pg/mL (p < 0.001). However, only HSE at a dose of 0.99 g/kg BW decreased the PIK3CA gene expression (p = 0.026), and at a dose of 0.66 g/kg BW increased the PTEN expression up to 4.93-fold. CONCLUSION: HSE is capable of inhibiting the TGF-ß/PIK3CA pathway and increasing the PTEN gene expression.


Subject(s)
PTEN Phosphohydrolase , Phosphatidylinositol 3-Kinases , Plant Extracts , Signal Transduction , Transforming Growth Factor beta , Animals , PTEN Phosphohydrolase/metabolism , Female , Transforming Growth Factor beta/metabolism , Mice , Signal Transduction/drug effects , Plant Extracts/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Holothuria/chemistry , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Methanol/chemistry , Disease Models, Animal , Mice, Inbred C57BL , Humans , Cell Proliferation/drug effects
19.
Anal Methods ; 16(24): 3859-3866, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38847307

ABSTRACT

Methanol is a toxic alcohol contained in alcoholic beverages as a natural byproduct of fermentation or added intentionally to counterfeits to increase profit. To ensure consumer safety, many countries and the EU have established strict legislation limits for methanol content. Methanol concentration is mostly detected by laboratory instrumentation since mobile devices for routine on-site testing of beverages in distilleries, at border stations or even at home are not available. Here, we validated a handheld methanol detector for beverage analysis in an ISO 5725 interlaboratory trial: a total of 119 measurements were performed by 17 independent participants (distilleries, universities, authorities, and competence centers) from six countries on samples with relevant methanol concentrations (0.1, 1.5 vol%). The detector was based on a microporous separation filter and a nanostructured gas sensor allowing on-site measurement of methanol down to 0.01 vol% (in the liquid) within only 2 min by laymen. The detector showed excellent repeatability (<5.4%), reproducibility (<9.5%) and small bias (<0.012 vol%). Additional measurements on various methanol-spiked alcoholic beverages (whisky, rum, gin, vodka, tequila, port, sherry, liqueur) indicated that the detector is not interfered by environmental temperature and spirit composition, featuring excellent linearity (R2 > 0.99) down to methanol concentrations of 0.01 vol%. This device has been recently commercialized (Alivion Spark M-20) with comparable accuracy to the gold-standard gas chromatography and can be readily applied for final product inspection, intake control of raw materials or to identify toxic counterfeit products.


Subject(s)
Alcoholic Beverages , Methanol , Methanol/analysis , Alcoholic Beverages/analysis , Reproducibility of Results , Food Analysis/instrumentation , Food Analysis/methods , Laboratories/standards
20.
Appl Microbiol Biotechnol ; 108(1): 372, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874789

ABSTRACT

Methanol is a promising feedstock for the bio-based economy as it can be derived from organic waste streams or produced electrochemically from CO2. Acetate production from CO2 in microbial electrosynthesis (MES) has been widely studied, while more valuable compounds such as butyrate are currently attracting attention. In this study, methanol was used as a co-substrate with CO2 to enhance butyrate production in MES. Feeding with CO2 and methanol resulted in the highest butyrate production rates and titres of 0.36 ± 0.01 g L-1 d-1 and 8.6 ± 0.2 g L-1, respectively, outperforming reactors with only CO2 feeding (0.20 ± 0.03 g L-1 d-1 and 5.2 ± 0.1 g L-1, respectively). Methanol acted as electron donor and as carbon source, both of which contributed ca. 50% of the carbon in the products. Eubacterium was the dominant genus with 52.6 ± 2.5% relative abundance. Thus, we demonstrate attractive route for the use of the C1 substrates, CO2 and methanol, to produce mainly butyrate. KEY POINTS: • Butyrate was the main product from methanol and CO2 in MES • Methanol acted as both carbon and electron source in MES • Eubacterium dominating microbial culture was enriched in MES.


Subject(s)
Butyrates , Carbon Dioxide , Methanol , Methanol/metabolism , Carbon Dioxide/metabolism , Butyrates/metabolism , Bioreactors/microbiology , Carbon/metabolism , Acetates/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...