Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 168
Filter
Add more filters










Publication year range
1.
High Alt Med Biol ; 24(1): 7-18, 2023 03.
Article in English | MEDLINE | ID: mdl-36802203

ABSTRACT

Doherty, Connor J., Jou-Chung Chang, Benjamin P. Thompson, Erik R. Swenson, Glen E. Foster, and Paolo B. Dominelli. The impact of acetazolamide and methazolamide on exercise performance in normoxia and hypoxia. High Alt Med Biol. 24:7-18, 2023.-Carbonic anhydrase (CA) inhibitors are commonly prescribed for acute mountain sickness (AMS). In this review, we sought to examine how two CA inhibitors, acetazolamide (AZ) and methazolamide (MZ), affect exercise performance in normoxia and hypoxia. First, we briefly describe the role of CA inhibition in facilitating the increase in ventilation and arterial oxygenation in preventing and treating AMS. Next, we detail how AZ affects exercise performance in normoxia and hypoxia and this is followed by a discussion on MZ. We emphasize that the overarching focus of the review is how the two drugs potentially affect exercise performance, rather than their ability to prevent/treat AMS per se, their interrelationship will be discussed. Overall, we suggest that AZ hinders exercise performance in normoxia, but may be beneficial in hypoxia. Based upon head-to-head studies of AZ and MZ in humans on diaphragmatic and locomotor strength in normoxia, MZ may be a better CA inhibitor when exercise performance is crucial at high altitude.


Subject(s)
Acetazolamide , Altitude Sickness , Humans , Acetazolamide/pharmacology , Acetazolamide/therapeutic use , Methazolamide/pharmacology , Methazolamide/therapeutic use , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase Inhibitors/therapeutic use , Hypoxia/drug therapy , Altitude Sickness/drug therapy , Altitude Sickness/prevention & control , Acute Disease
2.
Cell Metab ; 34(3): 424-440.e7, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35150639

ABSTRACT

Coronavirus disease 2019 (COVID-19) represents a systemic disease that may cause severe metabolic complications in multiple tissues including liver, kidney, and cardiovascular system. However, the underlying mechanisms and optimal treatment remain elusive. Our study shows that impairment of ACE2 pathway is a key factor linking virus infection to its secondary metabolic sequelae. By using structure-based high-throughput virtual screening and connectivity map database, followed with experimental validations, we identify imatinib, methazolamide, and harpagoside as direct enzymatic activators of ACE2. Imatinib and methazolamide remarkably improve metabolic perturbations in vivo in an ACE2-dependent manner under the insulin-resistant state and SARS-CoV-2-infected state. Moreover, viral entry is directly inhibited by these three compounds due to allosteric inhibition of ACE2 binding to spike protein on SARS-CoV-2. Taken together, our study shows that enzymatic activation of ACE2 via imatinib, methazolamide, or harpagoside may be a conceptually new strategy to treat metabolic sequelae of COVID-19.


Subject(s)
COVID-19 Drug Treatment , Imatinib Mesylate/therapeutic use , Metabolic Diseases/drug therapy , Methazolamide/therapeutic use , SARS-CoV-2/drug effects , Angiotensin-Converting Enzyme 2/drug effects , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/complications , COVID-19/metabolism , COVID-19/virology , Cells, Cultured , Chlorocebus aethiops , Down-Regulation/drug effects , HEK293 Cells , Human Umbilical Vein Endothelial Cells , Humans , Imatinib Mesylate/pharmacology , Male , Metabolic Diseases/metabolism , Metabolic Diseases/virology , Methazolamide/pharmacology , Mice , Mice, Inbred C57BL , Mice, Obese , Mice, Transgenic , SARS-CoV-2/physiology , Vero Cells , Virus Internalization/drug effects
3.
Biochim Biophys Acta Gen Subj ; 1866(5): 130098, 2022 05.
Article in English | MEDLINE | ID: mdl-35104623

ABSTRACT

Our objective was to examine the effects of N-methylacetazolamide (NMA), a non­carbonic anhydrase inhibitor, on ischemia-reperfusion injury. Isolated rat hearts were assigned to the following groups: 1) Non-ischemic control (NIC):110 min of perfusion and 2) Ischemic control (IC): 30 min of global ischemia and 60 min of reperfusion (R). Both groups were repeated in presence of NMA (5 µM), administered during the first 10 min of R. Infarct size (IS) was measured by TTC staining. Developed pressure (LVDP) and end-diastolic pressure (LVEDP) of the left ventricle were used to assess systolic and diastolic function, respectively. The content of P-Akt, P-PKCε, P-Drp1 and calcineurin Aß were measured. In cardiomyocytes the L-type Ca2+ current (ICaL) was recorded with the whole-cell configuration of patch-clamp technique. The addition of NMA to non-ischemic hearts decreased 15% the contractility. In ischemic hearts (IC group), NMA decreased IS (22 ± 2% vs 32 ± 2%, p < 0.05) and improved the post-ischemic recovery of myocardial function. At the end of R, LVDP was 54 ± 7% vs 18 ± 3% and LVEDP was 23 ± 8 vs. 55 ± 7 mmHg ¨p < 0.05¨. The level of P-Akt, P-PKCε and P-Drp1 increased and the expression of calcineurin Aß decreased in NMA treated hearts. Peak ICaL density recorded at 0 mV was smaller in myocytes treated with NMA than in non-treated cells (-1.91 ± 0.15 pA/pF vs -2.32 ± 0.17 pA/pF, p < 0.05). These data suggest that NMA protects the myocardium against ischemia-reperfusion injury through an attenuation of mitochondrial fission by calcineurin/Akt/PKCε-dependent pathways associated to the decrease of ICaL current.


Subject(s)
Calcium Channel Blockers , Cardiotonic Agents , Methazolamide , Myocardial Reperfusion Injury , Animals , Calcineurin , Calcium Channel Blockers/pharmacology , Calcium Channels, L-Type/metabolism , Cardiotonic Agents/pharmacology , Methazolamide/pharmacology , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats
4.
Diabetes ; 71(4): 795-811, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35043173

ABSTRACT

Methazolamide (MTZ), a carbonic anhydrase inhibitor, has been shown to inhibit cardiomyocyte hypertrophy and exert a hypoglycemic effect in patients with type 2 diabetes and diabetic db/db mice. However, whether MTZ has a cardioprotective effect in the setting of diabetic cardiomyopathy is not clear. We investigated the effects of MTZ in a mouse model of streptozotocin-induced type 1 diabetes mellitus (T1DM). Diabetic mice received MTZ by intragastric gavage (10, 25, or 50 mg/kg, daily for 16 weeks). In the diabetic group, MTZ significantly reduced both random and fasting blood glucose levels and improved glucose tolerance in a dose-dependent manner. MTZ ameliorated T1DM-induced changes in cardiac morphology and dysfunction. Mechanistic analysis revealed that MTZ blunted T1DM-induced enhanced expression of ß-catenin. Similar results were observed in neonatal rat cardiomyocytes (NRCMs) and adult mouse cardiomyocytes treated with high glucose or Wnt3a (a ß-catenin activator). There was no significant change in ß-catenin mRNA levels in cardiac tissues or NRCMs. MTZ-mediated ß-catenin downregulation was recovered by MG132, a proteasome inhibitor. Immunoprecipitation and immunofluorescence analyses showed augmentation of AXIN1-ß-catenin interaction by MTZ in T1DM hearts and in NRCMs treated with Wnt3a; thus, MTZ may potentiate AXIN1-ß-catenin linkage to increase ß-catenin degradation. Overall, MTZ may alleviate cardiac hypertrophy by mediating AXIN1-ß-catenin interaction to promote degradation and inhibition of ß-catenin activity. These findings may help inform novel therapeutic strategy to prevent heart failure in patients with diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Diabetic Cardiomyopathies , Animals , Axin Protein/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/prevention & control , Glucose/metabolism , Humans , Methazolamide/metabolism , Methazolamide/pharmacology , Methazolamide/therapeutic use , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Rats , beta Catenin/metabolism
5.
Exp Physiol ; 106(1): 117-125, 2021 01.
Article in English | MEDLINE | ID: mdl-32363610

ABSTRACT

NEW FINDINGS: What is the central question of this study? Does the combination of methazolamide and theophylline reduce symptoms of acute mountain sickness (AMS) and improve aerobic performance in acute hypobaric hypoxia? What is the main finding and its importance? The oral combination of methazolamide (100 BID) and theophylline (300 BID) improved arterial oxygen saturation but did not reduce symptoms of AMS and impaired aerobic performance. We do not recommend this combination of drugs for prophylaxis against the acute negative effects of hypobaric hypoxia. ABSTRACT: A limited number of small studies have suggested that methazolamide and theophylline can independently reduce symptoms of acute mountain sickness (AMS) and, if taken together, can improve aerobic exercise performance in normobaric hypoxia. We performed a randomized, double-blind, placebo-controlled, cross-over study to determine if the combination of oral methazolamide and theophylline could provide prophylaxis against AMS and improve aerobic performance in hypobaric hypoxia (∼4875 m). Volunteers with histories of AMS were screened at low altitude (1650 m) and started combined methazolamide (100 mg BID) and theophylline (300 mg BID) treatment, or placebo, 72 h prior to decompression. Baseline AMS (Lake Louise Questionnaire), blood (haemoglobin, haematocrit), cognitive function, ventilatory and pulse oximetry ( SpO2 ) measures were assessed at low altitude and repeated between 4 and 10 h of exposure to hypobaric hypoxia (PB  = 425 mmHg). Aerobic exercise performance was assessed during a 12.5 km cycling time trial (TT) after 4 h of hypobaric hypoxia. Subjects repeated all experimental procedures after a 3-week washout period. Differences between drug and placebo trials were evaluated using repeated measures ANOVA (α = 0.05). The drugs improved resting SpO2 by ∼4% (P < 0.01), but did not affect the incidence or severity of AMS or cognitive function scores relative to placebo. Subjects' performance on the 12.5 km TT was ∼3% worse when taking the drugs (P < 0.01). The combination of methazolamide and theophylline in the prescribed dosages is not recommended for use at high altitude as it appears to have no measurable effect on AMS and can impair aerobic performance.


Subject(s)
Altitude Sickness/drug therapy , Exercise/physiology , Methazolamide/pharmacology , Theophylline/pharmacology , Acute Disease , Adult , Altitude , Altitude Sickness/physiopathology , Cross-Over Studies , Double-Blind Method , Humans , Hypoxia/physiopathology , Male , Oxygen Saturation/drug effects
6.
Anal Chem ; 92(14): 9997-10006, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32551584

ABSTRACT

In-cell NMR can investigate protein conformational changes at atomic resolution, such as those changes induced by drug binding or chemical modifications, directly in living human cells, and therefore has great potential in the context of drug development as it can provide an early assessment of drug potency. NMR bioreactors can greatly improve the cell sample stability over time and, more importantly, allow for recording in-cell NMR data in real time to monitor the evolution of intracellular processes, thus providing unique insights into the kinetics of drug-target interactions. However, current implementations are limited by low cell viability at >24 h times, the reduced sensitivity compared to "static" experiments and the lack of protocols for automated and quantitative analysis of large amounts of data. Here, we report an improved bioreactor design which maintains human cells alive and metabolically active for up to 72 h, and a semiautomated workflow for quantitative analysis of real-time in-cell NMR data relying on Multivariate Curve Resolution. We apply this setup to monitor protein-ligand interactions and protein oxidation in real time. High-quality concentration profiles can be obtained from noisy 1D and 2D NMR data with high temporal resolution, allowing further analysis by fitting with kinetic models. This unique approach can therefore be applied to investigate complex kinetic behaviors of macromolecules in a cellular setting, and could be extended in principle to any real-time NMR application in live cells.


Subject(s)
Acetazolamide/pharmacology , Carbonic Anhydrase II/antagonists & inhibitors , Carbonic Anhydrase Inhibitors/pharmacology , Methazolamide/pharmacology , Nuclear Magnetic Resonance, Biomolecular , Acetazolamide/chemistry , Binding Sites , Carbonic Anhydrase II/chemistry , Carbonic Anhydrase II/metabolism , Carbonic Anhydrase Inhibitors/chemistry , Cells, Cultured , HEK293 Cells , Humans , Ligands , Methazolamide/chemistry , Oxidation-Reduction , Time Factors
7.
Eur J Pharm Sci ; 148: 105326, 2020 May 30.
Article in English | MEDLINE | ID: mdl-32251722

ABSTRACT

As a carbonic anhydrase inhibitor and a methylated lipophilic analogue of acetazolamide, Methazolamide has higher lipid solubility, less plasma protein binding and renal excretion, and fewer side effects, compared to acetazolamide. Methazolamide can increase systemic metabolic acidosis and sequentially improve ventilation and oxygenation level. The increased oxygenation level leads to reduced reactive oxygen species (ROS) production, relived cerebral edema, mitigated hypoxic pulmonary vasoconstriction, abrogated hypoxic fatigue, and decreased excessive erythrocytosis. In addition to the effect as a carbonic anhydrase inhibitor, methazolamide directly activates the transcription factor anti-oxidative nuclear factor-related factor 2 (Nrf2) and inhibits interleukin-1ß (IL-1ß) release. These pharmacological functions of methazolamide are beneficial for the prevention and treatment of high-altitude illnesses. Besides, methazolamide causes less fatigue side effects than acetazolamide does. It is also worth noting that several studies suggested that a lower dose of methazolamide has similar prophylaxis and treatment efficacy in acute mountain sickness (AMS) to a higher dose of acetazolamide. Given methazolamide's advantages over acetazolamide, methazolamide may thus represent an alternative for acetazolamide when taken for high-altitude illnesses prophylaxis and treatment. However, more in-depth clinical trials are needed to fully evaluate this efficacy of methazolamide.


Subject(s)
Altitude Sickness/drug therapy , Methazolamide/pharmacology , Methazolamide/therapeutic use , Acetazolamide/pharmacology , Acetazolamide/therapeutic use , Altitude Sickness/prevention & control , Humans , Hypoxia , Methazolamide/adverse effects , Oxidative Stress/drug effects , Oxygen , Polycythemia , Vasoconstriction/drug effects
8.
Exp Physiol ; 105(2): 293-301, 2020 02.
Article in English | MEDLINE | ID: mdl-31595565

ABSTRACT

NEW FINDINGS: What is the central question of this study? Acetazolamide and methazolamide both reduce hypoxic pulmonary vasoconstriction equally, but methazolamide does not impair skeletal muscle function. The effect of methazolamide on respiratory control in humans is not yet known. What is the main finding and its importance? Similar to acetazolamide after chronic oral administration, methazolamide causes a metabolic acidosis and shifts the ventilatory CO2 response curve leftwards without reducing O2 sensitivity. The change in ventilation over the change in log PO2 provides a more accurate measure of hypoxic sensitivity than the change in ventilation over the change in arterial oxyhaemoglobin saturation. ABSTRACT: Acetazolamide is used to prevent/treat acute mountain sickness and both central and obstructive sleep apnoea. Methazolamide, like acetazolamide, reduces hypoxic pulmonary vasoconstriction, but has fewer side-effects, including less impairment of skeletal muscle function. Given that the effects of methazolamide on respiratory control in humans are unknown, we compared the effects of oral methazolamide and acetazolamide on ventilatory control and determined the ventilation-log  PO2 relationship in humans. In a double-blind, placebo-controlled, randomized cross-over design, we studied the effects of acetazolamide (250 mg three times daily), methazolamide (100 mg twice daily) and placebo in 14 young male subjects who were exposed to 7 min of normoxic hypercapnia and to three levels of eucapnia and hypercapnic hypoxia. With placebo, methazolamide and acetazolamide, the CO2 sensitivities were 2.39 ± 1.29, 3.27 ± 1.82 and 2.62 ± 1.79 l min-1  mmHg-1 (n.s.) and estimated apnoeic thresholds 32 ± 3, 28 ± 3 and 26 ± 3 mmHg, respectively (P < 0.001, placebo versus methazolamide and acetazolamide). The relationship between ventilation ( V̇I ) and log  PO2 (using arterialized venous PO2 in hypoxia) was linear, and neither agent influenced the relationship between hypoxic sensitivity ( ΔV̇I/ΔlogPO2 ) and arterial [H+ ]. Using ΔV̇I/ΔlogPO2 rather than Δ V̇I /Δ arterial oxyhaemoglobin saturation enables a more accurate estimation of oxygenation and ventilatory control in metabolic acidosis/alkalosis when right- or leftward shifts of the oxyhaemoglobin saturation curve occur. Given that acetazolamide and methazolamide have similar effects on ventilatory control, methazolamide might be preferred for indications requiring the use of a carbonic anhydrase inhibitor, avoiding some of the negative side-effects of acetazolamide.


Subject(s)
Acetazolamide/pharmacology , Carbonic Anhydrase Inhibitors/pharmacology , Methazolamide/pharmacology , Pulmonary Ventilation/drug effects , Pulmonary Ventilation/physiology , Respiration/drug effects , Adult , Cross-Over Studies , Double-Blind Method , Humans , Male , Young Adult
9.
Aging Cell ; 17(4): e12787, 2018 08.
Article in English | MEDLINE | ID: mdl-29873184

ABSTRACT

Mounting evidence suggests that mitochondrial dysfunction plays a causal role in the etiology and progression of Alzheimer's disease (AD). We recently showed that the carbonic anhydrase inhibitor (CAI) methazolamide (MTZ) prevents amyloid ß (Aß)-mediated onset of apoptosis in the mouse brain. In this study, we used MTZ and, for the first time, the analog CAI acetazolamide (ATZ) in neuronal and cerebral vascular cells challenged with Aß, to clarify their protective effects and mitochondrial molecular mechanism of action. The CAIs selectively inhibited mitochondrial dysfunction pathways induced by Aß, without affecting metabolic function. ATZ was effective at concentrations 10 times lower than MTZ. Both MTZ and ATZ prevented mitochondrial membrane depolarization and H2 O2 generation, with no effects on intracellular pH or ATP production. Importantly, the drugs did not primarily affect calcium homeostasis. This work suggests a new role for carbonic anhydrases (CAs) in the Aß-induced mitochondrial toxicity associated with AD and cerebral amyloid angiopathy (CAA), and paves the way to AD clinical trials for CAIs, FDA-approved drugs with a well-known profile of brain delivery.


Subject(s)
Acetazolamide/pharmacology , Amyloid beta-Peptides/antagonists & inhibitors , Carbonic Anhydrase Inhibitors/pharmacology , Endothelium, Vascular/drug effects , Methazolamide/pharmacology , Mitochondria/drug effects , Amyloid beta-Peptides/chemical synthesis , Amyloid beta-Peptides/metabolism , Dose-Response Relationship, Drug , Endothelium, Vascular/metabolism , Humans , Mitochondria/metabolism , Tumor Cells, Cultured
10.
J Appl Physiol (1985) ; 125(3): 770-779, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29792554

ABSTRACT

Acetazolamide, a carbonic anhydrase (CA) inhibitor used clinically and to prevent acute mountain sickness, worsens skeletal muscle fatigue in animals and humans. In animals, methazolamide, a methylated analog of acetazolamide and an equally potent CA inhibitor, reportedly exacerbates fatigue less than acetazolamide. Accordingly, we sought to determine, in humans, if methazolamide would attenuate diaphragm and dorsiflexor fatigue compared with acetazolamide. Healthy men (dorsiflexor: n = 12; diaphragm: n = 7) performed fatiguing exercise on three occasions, after ingesting acetazolamide (250 mg three times a day) and then in random order, methazolamide (100 mg twice a day) or placebo for 48 h. For both muscles, subjects exercised at a fixed intensity until exhaustion on acetazolamide, with subsequent iso-time and -workload trials. Diaphragm exercise was performed using a threshold-loading device, while dorsiflexor exercise was isometric. Neuromuscular function was determined pre- and postexercise by potentiated transdiaphragmatic twitch pressure and dorsiflexor torque in response to stimulation of the phrenic and fibular nerve, respectively. Diaphragm contractility 3-10 min postexercise was impaired more for acetazolamide than methazolamide or placebo (82 ± 10, 87 ± 9, and 91 ± 8% of pre-exercise value; P < 0.05). Similarly, dorsiflexor fatigue was greater for acetazolamide than methazolamide (mean twitch torque of 61 ± 11 vs. 57 ± 13% of baseline, P < 0.05). In normoxia, methazolamide leads to less neuromuscular fatigue than acetazolamide, indicating a possible benefit for clinical use or in the prophylaxis of acute mountain sickness. NEW & NOTEWORTHY Acetazolamide, a carbonic anhydrase inhibitor, may worsen diaphragm and locomotor muscle fatigue after exercise; whereas, in animals, methazolamide does not impair diaphragm function. Compared with both methazolamide and the placebo, acetazolamide significantly compromised dorsiflexor function at rest and after exhaustive exercise. Similarly, diaphragm function was most compromised on acetazolamide followed by methazolamide and placebo. Methazolamide may be preferable over acetazolamide for clinical use and altitude illness prophylaxis to avoid skeletal muscle dysfunction.


Subject(s)
Acetazolamide/pharmacology , Carbonic Anhydrase Inhibitors/pharmacology , Methazolamide/pharmacology , Muscle Fatigue/drug effects , Respiratory Muscles/drug effects , Adult , Diaphragm/drug effects , Electric Stimulation , Electromyography , Exercise , Healthy Volunteers , Humans , Male , Muscle Contraction , Young Adult
11.
Sci Rep ; 6: 35055, 2016 10 12.
Article in English | MEDLINE | ID: mdl-27731352

ABSTRACT

Subarachnoid hemorrhage (SAH) results in significant nerve dysfunction, such as hemiplegia, mood disorders, cognitive and memory impairment. Currently, no clear measures can reduce brain nerve damage. The study of brain nerve protection after SAH is of great significance. We aim to evaluate the protective effects and the possible mechanism of methazolamide in C57BL/6J SAH animal model in vivo and in blood-induced primary cortical neuron (PCNs) cellular model of SAH in vitro. We demonstrate that methazolamide accelerates the recovery of neurological damage, effectively relieves cerebral edema, and improves cognitive function in SAH mice as well as offers neuroprotection in blood- or hemoglobin-treated PCNs and partially restores normal neuronal morphology. In addition, western blot analyses show obviously decreased expression of active caspase-3 in methazolamide-treated SAH mice comparing with vehicle-treated SAH animals. Furthermore, methazolamide effectively inhibits ROS production in PCNs induced by blood exposure or hemoglobin insult. However, methazolamide has no protective effects in morality, fluctuation of cerebral blood flow, SAH grade, and cerebral vasospasm of SAH mice. Given methazolamide, a potent carbonic anhydrase inhibitor, can penetrate the blood-brain barrier and has been used in clinic in the treatment of ocular conditions, it provides potential as a novel therapy for SAH.


Subject(s)
Brain Edema/drug therapy , Cognition Disorders/drug therapy , Methazolamide/administration & dosage , Neurons/cytology , Subarachnoid Hemorrhage/complications , Animals , Apoptosis/drug effects , Blood-Brain Barrier/drug effects , Brain Edema/etiology , Brain Edema/metabolism , Caspase 3/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cognition Disorders/etiology , Cognition Disorders/metabolism , Disease Models, Animal , Gene Expression Regulation/drug effects , Male , Methazolamide/pharmacology , Mice , Mice, Inbred C57BL , Neurons/drug effects , Reactive Oxygen Species/metabolism , Subarachnoid Hemorrhage/metabolism , Vasospasm, Intracranial
12.
J Exp Med ; 213(9): 1663-73, 2016 08 22.
Article in English | MEDLINE | ID: mdl-27526715

ABSTRACT

Type 2 cytokine responses are necessary for the development of protective immunity to helminth parasites but also cause the inflammation associated with allergies and asthma. Recent studies have found that peripheral hematopoietic progenitor cells contribute to type 2 cytokine-mediated inflammation through their enhanced ability to develop into mast cells. In this study, we show that carbonic anhydrase (Car) enzymes are up-regulated in type 2-associated progenitor cells and demonstrate that Car enzyme inhibition is sufficient to prevent mouse mast cell responses and inflammation after Trichinella spiralis infection or the induction of food allergy-like disease. Further, we used CRISPR/Cas9 technology and illustrate that genetically editing Car1 is sufficient to selectively reduce mast cell development. Finally, we demonstrate that Car enzymes can be targeted to prevent human mast cell development. Collectively, these experiments identify a previously unrecognized role for Car enzymes in regulating mast cell lineage commitment and suggest that Car enzyme inhibitors may possess therapeutic potential that can be used to treat mast cell-mediated inflammation.


Subject(s)
Carbonic Anhydrases/physiology , Inflammation/etiology , Mast Cells/physiology , Animals , Carbonic Anhydrase Inhibitors/pharmacology , Immunoglobulin E/blood , Mastocytosis/prevention & control , Methazolamide/pharmacology , Mice , Mice, Inbred C57BL
13.
J Physiol Sci ; 66(6): 477-490, 2016 Nov.
Article in English | MEDLINE | ID: mdl-26969473

ABSTRACT

Intracellular pH (pHi) regulation fundamentally participates in maintaining HCO3- release from HCO3--secreting epithelia. We used parotid intralobular ducts loaded with BCECF to investigate the contributions of a carbonic anhydrase (CA), anion channels and a Na+-H+ exchanger (NHE) to pHi regulation for HCO3- secretion by cAMP and Ca2+ signals. Resting pHi was dispersed between 7.4 and 7.9. Forskolin consistently decreased pHi showing the dominance of pHi-lowering activities, but carbachol gathered pHi around 7.6. CA inhibition suppressed the forskolin-induced decrease in pHi, while it allowed carbachol to consistently increase pHi by revealing that carbachol prominently activated NHE via Ca2+-calmodulin. Under NHE inhibition, forskolin and carbachol induced the remarkable decreases in pHi, which were slowed predominantly by CA inhibition and by CA or anion channel inhibition, respectively. Our results suggest that forskolin and carbachol primarily activate the pHi-lowering CA and pHi-raising NHE, respectively, to regulate pHi for HCO3- secretion.


Subject(s)
Carbachol/pharmacology , Colforsin/pharmacology , Parotid Gland/cytology , Parotid Gland/metabolism , Animals , Bicarbonates/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/antagonists & inhibitors , Egtazic Acid/analogs & derivatives , Epithelial Cells/metabolism , Fluoresceins , Hydrogen-Ion Concentration , Methazolamide/pharmacology , Rats
14.
Bioorg Med Chem Lett ; 26(7): 1821-6, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26920803

ABSTRACT

The genome of the newly identified bacterium Enterobacter sp. B13 encodes for a ß-class carbonic anhydrases (CAs, EC 4.2.1.1), EspCA. This enzyme was recently cloned, and characterized kinetically by this group (J. Enzyme Inhib. Med. Chem. 2016, 31). Here we report an inhibition study with sulfonamides and sulfamates of this enzyme. The best EspCA inhibitors were some sulfanylated sulfonamides with elongated molecules, metanilamide, 4-aminoalkyl-benzenesulfonamides, acetazolamide, and deacetylated methazolamide (KIs in the range of 58.7-96.5nM). Clinically used agents such as methazolamide, ethoxzolamide, dorzolamide, brinzolamide, benzolamide, zonisamide, sulthiame, sulpiride, topiramate and valdecoxib were slightly less effective inhibitors (KIs in the range of 103-138nM). Saccharin, celecoxib, dichlorophenamide and many simple benzenesulfonamides were even less effective as EspCA inhibitors, with KIs in the range of 384-938nM. Identification of effective inhibitors of this bacterial enzyme may lead to pharmacological tools useful for understanding the physiological role(s) of the ß-class CAs in bacterial pathogenicity/virulence.


Subject(s)
Carbonic Anhydrase I/antagonists & inhibitors , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrase Inhibitors/pharmacology , Enterobacter/enzymology , Enterobacteriaceae Infections/drug therapy , Sulfonamides/chemistry , Sulfonamides/pharmacology , Acetazolamide/chemistry , Acetazolamide/pharmacology , Carbonic Anhydrase I/metabolism , Enterobacter/drug effects , Enterobacteriaceae Infections/microbiology , Humans , Methazolamide/analogs & derivatives , Methazolamide/pharmacology , Structure-Activity Relationship , Benzenesulfonamides
15.
Insect Biochem Mol Biol ; 65: 100-6, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26365738

ABSTRACT

Silk is a protein of interest to both biological and industrial sciences. The silkworm, Bombyx mori, forms this protein into strong threads starting from soluble silk proteins using a number of biochemical and physical cues to allow the transition from liquid to fibrous silk. A pH gradient has been measured along the gland, but the methodology employed was not able to precisely determine the pH at specific regions of interest in the silk gland. Furthermore, the physiological mechanisms responsible for the generation of this pH gradient are unknown. In this study, concentric ion selective microelectrodes were used to determine the luminal pH of B. mori silk glands. A gradient from pH 8.2 to 7.2 was measured in the posterior silk gland, with a pH 7 throughout the middle silk gland, and a gradient from pH 6.8 to 6.2 in the beginning of the anterior silk gland where silk processing into fibers occurs. The small diameter of the most anterior region of the anterior silk gland prevented microelectrode access in this region. Using a histochemical method, the presence of active carbonic anhydrase was identified in the funnel and anterior silk gland of fifth instar larvae. The observed pH gradient collapsed upon addition of the carbonic anhydrase inhibitor methazolamide, confirming an essential role for this enzyme in pH regulation in the B. mori silk gland. Plastic embedding of whole silk glands allowed clear visualization of the morphology, including the identification of four distinct epithelial cell types in the gland and allowed correlations between silk gland morphology and silk stages of assembly related to the pH gradient. B. mori silk glands have four different epithelial cell types, one of which produces carbonic anhydrase. Carbonic anhydrase is necessary for the mechanism that generates an intraluminal pH gradient, which likely regulates the assembly of silk proteins and then the formation of fibers from soluble silk proteins. These new insights into native silk formation may lead to a more efficient production of artificial or regenerated silkworm silk fibers.


Subject(s)
Bombyx/enzymology , Carbonic Anhydrases/metabolism , Exocrine Glands/enzymology , Animals , Carbonic Anhydrase Inhibitors/pharmacology , Exocrine Glands/cytology , Hydrogen-Ion Concentration , Larva/enzymology , Methazolamide/pharmacology , Proton-Motive Force , Silk/biosynthesis
16.
PLoS One ; 10(5): e0127149, 2015.
Article in English | MEDLINE | ID: mdl-26010545

ABSTRACT

Periplasmic α-carbonic anhydrase of Helicobacter pylori (HpαCA), an oncogenic bacterium in the human stomach, is essential for its acclimation to low pH. It catalyses the conversion of carbon dioxide to bicarbonate using Zn(II) as the cofactor. In H. pylori, Neisseria spp., Brucella suis and Streptococcus pneumoniae this enzyme is the target for sulfonamide antibacterial agents. We present structural analysis correlated with inhibition data, on the complexes of HpαCA with two pharmacological inhibitors of human carbonic anhydrases, acetazolamide and methazolamide. This analysis reveals that two sulfonamide oxygen atoms of the inhibitors are positioned proximal to the putative location of the oxygens of the CO2 substrate in the Michaelis complex, whilst the zinc-coordinating sulfonamide nitrogen occupies the position of the catalytic water molecule. The structures are consistent with acetazolamide acting as site-directed, nanomolar inhibitors of the enzyme by mimicking its reaction transition state. Additionally, inhibitor binding provides insights into the channel for substrate entry and product exit. This analysis has implications for the structure-based design of inhibitors of bacterial carbonic anhydrases.


Subject(s)
Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrases/metabolism , Helicobacter pylori/drug effects , Helicobacter pylori/metabolism , Sulfonamides/pharmacology , Acetazolamide/pharmacology , Amino Acid Sequence , Anti-Bacterial Agents/pharmacology , Helicobacter Infections/drug therapy , Helicobacter Infections/microbiology , Humans , Methazolamide/pharmacology , Molecular Sequence Data , Periplasm/drug effects , Periplasm/metabolism , Sequence Alignment
17.
J Drug Target ; 22(9): 849-58, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25045926

ABSTRACT

The aims of this study were to design and characterize methazolamide (MTZ)-loaded solid lipid nanoparticles (SLN) with and without modification of low molecular weight chitosan (CS) and compare their potentials for ocular drug delivery. Low molecular weight CS was obtained via a modified chemical oxidative degradation method. SLN with CS (CS-SLN-MTZ) and without CS (SLN-MTZ) were prepared according to a modified emulsion-solvent evaporation method. SLN-MTZ and CS-SLN-MTZ were 199.4 ± 2.8 nm and 252.8 ± 4.0 nm in particle size, -21.3 ± 1.9 mV and +31.3 ± 1.7 mV in zeta potential, respectively. Physical stability studies demonstrated that CS-SLN-MTZ remained stable for at least 4 months at 4 °C, while SLN-MTZ no more than 2 months. A prolonged in vitro release profile of MTZ from CS-SLN-MTZ was obtained compared with SLN-MTZ. Furthermore, CS-SLN-MTZ presented a better permeation property in excised rabbit cornea. In vivo studies indicated that the intraocular pressure lowering effect of CS-SLN-MTZ (245.75 ± 18.31 mmHg × h) was significantly better than both SLN-MTZ (126.74 ± 17.73 mmHg × h) and commercial product Brinzolamide Eye Drops AZOPT® (171.17 ± 16.45 mmHg × h). The maximum percentage decrease in IOP of CS-SLN-MTZ (42.78 ± 7.71%) was higher than SLN-MTZ (27.82 ± 4.15%) and was comparable to AZOPT (38.06 ± 1.25%). CS-SLN-MTZ showed no sign of ocular irritancy according to the Draize method and the histological examination.


Subject(s)
Glaucoma/drug therapy , Methazolamide/administration & dosage , Methazolamide/pharmacology , Animals , Chitosan/chemistry , Cornea/metabolism , Double-Blind Method , Drug Carriers , Drug Stability , Female , Hydrogen-Ion Concentration , Lipids/chemistry , Male , Molecular Weight , Nanoparticles/chemistry , Particle Size , Rabbits
18.
J Liposome Res ; 24(3): 171-81, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24611687

ABSTRACT

The purpose of the present study was to optimize methazolamide (MTZ)-loaded solid lipid nanoparticles (SLNs) which were used as topical eye drops by evaluating the relationship between design factors and experimental data. A three factor, three-level Box-Behnken design (BBD) was used for the optimization procedure, choosing the amount of GMS, the amount of phospholipid, the concentration of surfactant as the independent variables. The chosen dependent variables were entrapment efficiency, dosage loading, and particle size. The generated polynomial equations and response surface plots were used to relate the dependent and independent variables. The optimal nanoparticles were formulated with 100 mg GMS, 150 mg phospholipid, and 1% Tween80 and PEG 400 (1:1, w/v). A new formulation was prepared according to these levels. The observed responses were close to the predicted values of the optimized formulation. The particle size was 197.8 ± 4.9 nm. The polydispersity index of particle size was 0.239 ± 0.01 and the zeta potential was 32.7 ± 2.6 mV. The entrapment efficiency and dosage loading were about 68.39% and 2.49%, respectively. Fourier transform infrared spectroscopy (FT-IR) study indicated that the drug was entrapped in nanoparticles. The optimized formulation showed a sustained release followed the Peppas model. MTZ-SLNs showed significant prolonged decreasing intraocular pressure effect comparing with MTZ solution in vivo pharmacodynamics studies. The results of acute eye irritation study indicated that MTZ-SLNs and AZOPT both had no eye irritation. Furthermore, the MTZ-SLNs were suitable to be stored at low temperature (4 °C).


Subject(s)
Liposomes/chemical synthesis , Methazolamide/administration & dosage , Ophthalmic Solutions/administration & dosage , Administration, Topical , Animals , Drug Delivery Systems/methods , Endophthalmitis/chemically induced , Endophthalmitis/prevention & control , Female , Humans , Intraocular Pressure/drug effects , Liposomes/administration & dosage , Male , Methazolamide/pharmacology , Nanoparticles , Ophthalmic Solutions/chemistry , Particle Size , Polyethylene Glycols/chemistry , Polysorbates/chemistry , Rabbits
19.
Biochem J ; 456(3): 347-60, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24028142

ABSTRACT

Mutations within the Aß (amyloid ß) peptide, especially those clustered at residues 21-23, are linked to early-onset AD (Alzheimer's disease) and primarily associated with cerebral amyloid angiopathy. The Iowa variant, a substitution of an aspartic acid residue for asparagine at position 23 (D23N), associates with widespread vascular amyloid and abundant diffuse pre-amyloid lesions significantly exceeding the incidence of mature plaques. Brain Iowa deposits consist primarily of a mixture of mutated and non-mutated Aß species exhibiting partial aspartate isomerization at positions 1, 7 and 23. The present study analysed the contribution of the post-translational modification and the D23N mutation to the aggregation/fibrillization and cell toxicity properties of Aß providing insight into the elicited cell death mechanisms. The induction of apoptosis by the different Aß species correlated with their oligomerization/fibrillization propensity and ß-sheet content. Although cell toxicity was primarily driven by the D23N mutation, all Aß isoforms tested were capable, albeit at different time frames, of eliciting comparable apoptotic pathways with mitochondrial engagement and cytochrome c release to the cytoplasm in both neuronal and microvascular endothelial cells. Methazolamide, a cytochrome c release inhibitor, exerted a protective effect in both cell types, suggesting that pharmacological targeting of mitochondria may constitute a viable therapeutic avenue.


Subject(s)
Amyloid beta-Peptides/metabolism , Apoptosis , Isoaspartic Acid/metabolism , Mutation, Missense , Protein Aggregation, Pathological/metabolism , Protein Processing, Post-Translational , Amino Acid Substitution , Amyloid beta-Peptides/genetics , Carbonic Anhydrase Inhibitors/pharmacology , Cells, Cultured , Cytochromes c/antagonists & inhibitors , Cytochromes c/genetics , Cytochromes c/metabolism , Cytoplasm/genetics , Cytoplasm/metabolism , Humans , Isoaspartic Acid/genetics , Methazolamide/pharmacology , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/pathology , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/pathology , Protein Structure, Secondary
20.
PLoS One ; 8(7): e69551, 2013.
Article in English | MEDLINE | ID: mdl-23874973

ABSTRACT

Emerging evidences suggest that Ca(2+)activated-K(+)-(BK) channel is involved in the regulation of cell viability. The changes of the cell viability observed under hyperkalemia (15 mEq/L) or hypokalemia (0.55 mEq/L) conditions were investigated in HEK293 cells expressing the hslo subunit (hslo-HEK293) in the presence or absence of BK channel modulators. The BK channel openers(10(-11)-10(-3)M) were: acetazolamide(ACTZ), Dichlorphenamide(DCP), methazolamide(MTZ), bendroflumethiazide(BFT), ethoxzolamide(ETX), hydrochlorthiazide(HCT), quercetin(QUERC), resveratrol(RESV) and NS1619; and the BK channel blockers(2 x 10(-7)M-5 x 10(-3)M) were: tetraethylammonium(TEA), iberiotoxin(IbTx) and charybdotoxin(ChTX). Experiments on cell viability and channel currents were performed using cell counting kit-8 and patch-clamp techniques, respectively. Hslo whole-cell current was potentiated by BK channel openers with different potency and efficacy in hslo-HEK293. The efficacy ranking of the openers at -60 mV(Vm) was BFT> ACTZ >DCP ≥RESV≥ ETX> NS1619> MTZ≥ QUERC; HCT was not effective. Cell viability after 24 h of incubation under hyperkalemia was enhanced by 82+6% and 33+7% in hslo-HEK293 cells and HEK293 cells, respectively. IbTx, ChTX and TEA enhanced cell viability in hslo-HEK293. BK openers prevented the enhancement of the cell viability induced by hyperkalemia or IbTx in hslo-HEK293 showing an efficacy which was comparable with that observed as BK openers. BK channel modulators failed to affect cell currents and viability under hyperkalemia conditions in the absence of hslo subunit. In contrast, under hypokalemia cell viability was reduced by -22+4% and -23+6% in hslo-HEK293 and HEK293 cells, respectively; the BK channel modulators failed to affect this parameter in these cells. In conclusion, BK channel regulates cell viability under hyperkalemia but not hypokalemia conditions. BFT and ACTZ were the most potent drugs either in activating the BK current and in preventing the cell proliferation induced by hyperkalemia. These findings may have relevance in disorders associated with abnormal K(+) ion homeostasis including periodic paralysis and myotonia.


Subject(s)
Cell Survival/drug effects , Potassium Channels, Calcium-Activated/metabolism , Potassium/metabolism , Bendroflumethiazide/pharmacology , Cell Line , Charybdotoxin/pharmacology , Dichlorphenamide/pharmacology , Ethoxzolamide/pharmacology , Humans , Methazolamide/pharmacology , Peptides/pharmacology , Potassium Channels, Calcium-Activated/agonists , Potassium Channels, Calcium-Activated/antagonists & inhibitors , Tetraethylammonium/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...