Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 77(4): 937-948, 2017 02 15.
Article in English | MEDLINE | ID: mdl-27899380

ABSTRACT

To sustain their proliferation, cancer cells become dependent on one-carbon metabolism to support purine and thymidylate synthesis. Indeed, one of the most highly upregulated enzymes during neoplastic transformation is MTHFD2, a mitochondrial methylenetetrahydrofolate dehydrogenase and cyclohydrolase involved in one-carbon metabolism. Because MTHFD2 is expressed normally only during embryonic development, it offers a disease-selective therapeutic target for eradicating cancer cells while sparing healthy cells. Here we report the synthesis and preclinical characterization of the first inhibitor of human MTHFD2. We also disclose the first crystal structure of MTHFD2 in complex with a substrate-based inhibitor and the enzyme cofactors NAD+ and inorganic phosphate. Our work provides a rationale for continued development of a structural framework for the generation of potent and selective MTHFD2 inhibitors for cancer treatment. Cancer Res; 77(4); 937-48. ©2017 AACR.


Subject(s)
Enzyme Inhibitors/chemistry , Methenyltetrahydrofolate Cyclohydrolase/chemistry , Methylenetetrahydrofolate Dehydrogenase (NADP)/chemistry , Mitochondria/enzymology , Binding Sites , Crystallization , Folic Acid/analogs & derivatives , Folic Acid/metabolism , Humans , Leucovorin/analogs & derivatives , Leucovorin/metabolism , Methenyltetrahydrofolate Cyclohydrolase/antagonists & inhibitors , Methylenetetrahydrofolate Dehydrogenase (NADP)/antagonists & inhibitors , Minor Histocompatibility Antigens , NAD/metabolism , Protein Multimerization
2.
PLoS One ; 7(4): e35973, 2012.
Article in English | MEDLINE | ID: mdl-22558288

ABSTRACT

The bifunctional enzyme methylenetetrahydrofolate dehydrogenase - cyclohydrolase (FolD) is identified as a potential drug target in Gram-negative bacteria, in particular the troublesome Pseudomonas aeruginosa. In order to provide a comprehensive and realistic assessment of the potential of this target for drug discovery we generated a highly efficient recombinant protein production system and purification protocol, characterized the enzyme, carried out screening of two commercial compound libraries by differential scanning fluorimetry, developed a high-throughput enzyme assay and prosecuted a screening campaign against almost 80,000 compounds. The crystal structure of P. aeruginosa FolD was determined at 2.2 Å resolution and provided a template for an assessment of druggability and for modelling of ligand complexes as well as for comparisons with the human enzyme. New FolD inhibitors were identified and characterized but the weak levels of enzyme inhibition suggest that these compounds are not optimal starting points for future development. Furthermore, the close similarity of the bacterial and human enzyme structures suggest that selective inhibition might be difficult to attain. In conclusion, although the preliminary biological data indicates that FolD represents a valuable target for the development of new antibacterial drugs, indeed spurred us to investigate it, our screening results and structural data suggest that this would be a difficult enzyme to target with respect to developing the appropriate lead molecules required to underpin a serious drug discovery effort.


Subject(s)
Anti-Bacterial Agents/pharmacology , Methenyltetrahydrofolate Cyclohydrolase/antagonists & inhibitors , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/enzymology , Biocatalysis/drug effects , Biological Assay , Catalytic Domain , Crystallography, X-Ray , Drug Evaluation, Preclinical , Humans , Ligands , Methenyltetrahydrofolate Cyclohydrolase/chemistry , Methenyltetrahydrofolate Cyclohydrolase/metabolism , Microbial Sensitivity Tests , Protein Structure, Secondary , Reproducibility of Results , Structural Homology, Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...