Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Carcinogenesis ; 32(3): 427-33, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21156972

ABSTRACT

The causal metabolic pathways underlying associations between folate and risk for colorectal cancer (CRC) have yet to be established. Folate-mediated one-carbon metabolism is required for the de novo synthesis of purines, thymidylate and methionine. Methionine is converted to S-adenosylmethionine (AdoMet), the major one-carbon donor for cellular methylation reactions. Impairments in folate metabolism can modify DNA synthesis, genomic stability and gene expression, characteristics associated with tumorigenesis. The Mthfd1 gene product, C1-tetrahydrofolate synthase, is a trifunctional enzyme that generates one-carbon substituted tetrahydrofolate cofactors for one-carbon metabolism. In this study, we use Mthfd1(gt/+) mice, which demonstrate a 50% reduction in C1-tetrahydrofolate synthase, to determine its influence on tumor development in two mouse models of intestinal cancer, crosses between Mthfd1(gt/+) and Apc(min)(/+) mice and azoxymethane (AOM)-induced colon cancer in Mthfd1(gt/+) mice. Mthfd1 hemizygosity did not affect colon tumor incidence, number or load in Apc(min/+) mice. However, Mthfd1 deficiency increased tumor incidence 2.5-fold, tumor number 3.5-fold and tumor load 2-fold in AOM-treated mice. DNA uracil content in the colon was lower in Mthfd1(gt/+) mice, indicating that thymidylate biosynthesis capacity does not play a significant role in AOM-induced colon tumorigenesis. Mthfd1 deficiency-modified cellular methylation potential, as indicated by the AdoMet: S-adenosylhomocysteine ratio and gene expression profiles, suggesting that changes in the transcriptome and/or decreased de novo purine biosynthesis and associated mutability cause cellular transformation in the AOM CRC model. This study emphasizes the impact and complexity of gene-nutrient interactions with respect to the relationships among folate metabolism and colon cancer initiation and progression.


Subject(s)
Aminohydrolases/physiology , Colonic Neoplasms/genetics , DNA, Neoplasm/metabolism , Formate-Tetrahydrofolate Ligase/physiology , Methenyltetrahydrofolate Cyclohydrolase/physiology , Methylenetetrahydrofolate Dehydrogenase (NADP)/physiology , Multienzyme Complexes/physiology , Multifunctional Enzymes/physiology , S-Adenosylhomocysteine/metabolism , S-Adenosylmethionine/metabolism , Aminohydrolases/genetics , Animals , Apoptosis , Azoxymethane/toxicity , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Blotting, Western , Carcinogens/toxicity , Cell Proliferation , Colonic Neoplasms/chemically induced , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Disease Models, Animal , Female , Formate-Tetrahydrofolate Ligase/genetics , Gene Expression Profiling , Immunoenzyme Techniques , Male , Methenyltetrahydrofolate Cyclohydrolase/genetics , Methylenetetrahydrofolate Dehydrogenase (NADP)/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Multienzyme Complexes/genetics , Multifunctional Enzymes/genetics , Oligonucleotide Array Sequence Analysis , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Uracil/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...