Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.260
Filter
1.
Mol Biol Rep ; 51(1): 665, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38777940

ABSTRACT

BACKGROUND: Staphylococcus aureus (S. aureus) associated with COVID-19 has not been well documented. This cross-sectional study evaluated the association between nasal S. aureus carriage and COVID-19. METHODS AND RESULTS: Nasopharyngeal samples were collected from 391 participants presenting for COVID-19 test in Lagos, Nigeria, and S. aureus was isolated from the samples. Antimicrobial susceptibility test was done by disc diffusion method. All S. aureus isolates were screened for the presence of mecA, panton-valentine leucocidin (PVL) and toxic shock syndrome toxin (TSST) virulence genes by polymerase chain reaction. Staphylococcal protein A (spa) typing was conducted for all the isolates. Participants with COVID-19 had double the prevalence of S. aureus (42.86%) compared to those who tested negative (20.54%). A significant association was seen between S. aureus nasal carriage and COVID-19 (p = 0.004). Antimicrobial sensitivity results showed resistance to oxacillin (100%), cefoxitin (53%), and vancomycin (98.7%). However, only 41% of the isolates harbored the mecA gene, with SCCmecV being the most common SCCmec type. There was no association between the carriage of virulence genes and COVID-19. A total of 23 Spa types were detected, with t13249 and t095 being the two most common spa types. CONCLUSION: This study examined the association between nasal S. aureus carriage and SARS-COV-2 infection. Further research is required to fully explore the implications of S. aureus co-infection with COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Staphylococcal Infections , Staphylococcus aureus , Humans , COVID-19/microbiology , COVID-19/epidemiology , COVID-19/virology , Staphylococcal Infections/epidemiology , Staphylococcal Infections/microbiology , Cross-Sectional Studies , Male , Female , Staphylococcus aureus/genetics , Staphylococcus aureus/drug effects , Staphylococcus aureus/pathogenicity , Staphylococcus aureus/isolation & purification , Adult , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Middle Aged , Bacterial Toxins/genetics , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Methicillin-Resistant Staphylococcus aureus/drug effects , Comorbidity , Bacterial Proteins/genetics , Virulence/genetics , Nigeria/epidemiology , Drug Resistance, Multiple, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Carrier State/epidemiology , Carrier State/microbiology , Microbial Sensitivity Tests , Penicillin-Binding Proteins/genetics , Leukocidins/genetics , Exotoxins/genetics , Virulence Factors/genetics , Young Adult
2.
Antimicrob Resist Infect Control ; 13(1): 54, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38769515

ABSTRACT

BACKGROUND: Currently, different guidelines recommend using different methods to determine whether deduplication is necessary when determining the detection rates of multidrug-resistant organisms (MDROs). However, few studies have investigated the effect of deduplication on MDRO monitoring data. In this study, we aimed to investigate the influence of deduplication on the detection rates of MDROs in different specimens to assess its impact on infection surveillance outcomes. METHODS: Samples were collected from hospitalized patients admitted between January 2022 and December 2022; four types of specimens were collected from key monitored MDROs, including sputum samples, urine samples, blood samples, and bronchoalveolar lavage fluid (BALF) samples. In this study, we compared and analysed the detection rates of carbapenem-resistant Klebsiella pneumoniae (CRKP), carbapenem-resistant Escherichia coli (CRECO), carbapenem-resistant Acinetobacter baumannii (CRAB), carbapenem-resistant Pseudomonas aeruginosa (CRPA), and methicillin-resistant Staphylococcus aureus (MRSA) under two conditions: with and without deduplication. RESULTS: When all specimens were included, the detection rates of CRKP, CRAB, CRPA, and MRSA without deduplication (33.52%, 77.24%, 44.56%, and 56.58%, respectively) were significantly greater than those with deduplication (24.78%, 66.25%, 36.24%, and 50.83%, respectively) (all P < 0.05). The detection rates in sputum samples were significantly different between samples without duplication (28.39%, 76.19%, 46.95%, and 70.43%) and those with deduplication (19.99%, 63.00%, 38.05%, and 64.50%) (all P < 0.05). When deduplication was not performed, the rate of detection of CRKP in urine samples reached 30.05%, surpassing the rate observed with deduplication (21.56%) (P < 0.05). In BALF specimens, the detection rates of CRKP and CRPA without deduplication (39.78% and 53.23%, respectively) were greater than those with deduplication (31.62% and 42.20%, respectively) (P < 0.05). In blood samples, deduplication did not have a significant impact on the detection rates of MDROs. CONCLUSION: Deduplication had a significant effect on the detection rates of MDROs in sputum, urine, and BALF samples. Based on these data, we call for the Infection Prevention and Control Organization to align its analysis rules with those of the Bacterial Resistance Surveillance Organization when monitoring MDRO detection rates.


Subject(s)
Cross Infection , Drug Resistance, Multiple, Bacterial , Klebsiella pneumoniae , Sputum , Humans , Cross Infection/microbiology , Cross Infection/epidemiology , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/drug effects , Sputum/microbiology , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Methicillin-Resistant Staphylococcus aureus/genetics , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/isolation & purification , Acinetobacter baumannii/genetics , Anti-Bacterial Agents/pharmacology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/isolation & purification , Pseudomonas aeruginosa/genetics , Bronchoalveolar Lavage Fluid/microbiology , Carbapenems/pharmacology , Escherichia coli/isolation & purification , Escherichia coli/drug effects , Escherichia coli/genetics , Epidemiological Monitoring , Hospitals
3.
Mol Biol Rep ; 51(1): 686, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796602

ABSTRACT

OBJECTIVE: This research study was undertaken to investigate antimicrobial resistance patterns and the prevalence of hospital-acquired infections (HAIs). The study focuses on common microorganisms responsible for HAIs and explores emerging challenges posed by antimicrobial drug-resistant isolates. METHODS: A comprehensive analysis of 123 patients with HAIs, hospitalized in surgical department and intensive care unit (ICU) at Imam Khomeini Hospital, Ilam, Iran, was conducted over a six-month period. Pathogenic bacterial isolates, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Staphylococcus aureus (VRSA), were isolated and subjected to antibiotic susceptibility testing. RESULTS: The study findings revealed a significant prevalence of multidrug-resistant (MDR) isolates, of which 73.3% were MRSA. Notably, 6.7% of S. aureus isolates exhibited resistance to vancomycin, indicating the emergence of VRSA. Respiratory infections were identified as the most prevalent HAI, constituting 34.67% of cases, often arising from extended ICU stays and invasive surgical procedures. Furthermore, patients aged 60 and above, particularly those associated with MDR, exhibited higher vulnerability to HAI. CONCLUSIONS: This research sheds light on the intricate interplay between drug resistance and HAI, highlighting the imperative role of rational antibiotic use and infection control in addressing this critical healthcare challenge.


Subject(s)
Anti-Bacterial Agents , Cross Infection , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Staphylococcal Infections , Humans , Iran/epidemiology , Cross Infection/microbiology , Cross Infection/epidemiology , Male , Staphylococcal Infections/epidemiology , Staphylococcal Infections/microbiology , Female , Middle Aged , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Adult , Anti-Bacterial Agents/pharmacology , Aged , Drug Resistance, Multiple, Bacterial/genetics , Intensive Care Units , Staphylococcus aureus/genetics , Staphylococcus aureus/isolation & purification , Staphylococcus aureus/drug effects , Staphylococcus aureus/pathogenicity , Vancomycin-Resistant Staphylococcus aureus/genetics , Adolescent , Prevalence
4.
Genes (Basel) ; 15(5)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38790161

ABSTRACT

This cross-sectional study investigates the methicillin-resistant Staphylococcus aureus (MRSA): its prevalence, antimicrobial resistance, and molecular characteristics in healthy swine populations in central Portugal. A total of 213 samples were collected from pigs on twelve farms, and MRSA prevalence was assessed using selective agar plates and confirmed via molecular methods. Antimicrobial susceptibility testing and whole genome sequencing (WGS) were performed to characterize resistance profiles and genetic determinants. Among the 107 MRSA-positive samples (83.1% prevalence), fattening pigs and breeding sows exhibited notably high carriage rates. The genome of 20 isolates revealed the predominance of the ST398 clonal complex, with diverse spa types identified. Antimicrobial susceptibility testing demonstrated resistance to multiple antimicrobial agents, including penicillin, cefoxitin, and tetracycline. WGS analysis identified a diverse array of resistance genes, highlighting the genetic basis of antimicrobial resistance. Moreover, virulence gene profiling revealed the presence of genes associated with pathogenicity. These findings underscore the significant prevalence of MRSA in swine populations and emphasize the need for enhanced surveillance and control measures to mitigate zoonotic transmission risks. Implementation of prudent antimicrobial use practices and targeted intervention strategies is essential to reducing MRSA prevalence and safeguarding public health. Continued research efforts are warranted to elucidate transmission dynamics and virulence potential, ultimately ensuring food safety and public health protection.


Subject(s)
Anti-Bacterial Agents , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Swine Diseases , Animals , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Swine , Staphylococcal Infections/veterinary , Staphylococcal Infections/microbiology , Staphylococcal Infections/epidemiology , Staphylococcal Infections/drug therapy , Cross-Sectional Studies , Swine Diseases/microbiology , Swine Diseases/epidemiology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Portugal/epidemiology , Whole Genome Sequencing , Virulence Factors/genetics , Prevalence , Drug Resistance, Multiple, Bacterial/genetics
5.
FEMS Microbiol Ecol ; 100(6)2024 May 14.
Article in English | MEDLINE | ID: mdl-38806244

ABSTRACT

Coagulase-negative Staphylococcus (CoNS) species inhibiting Staphylococcus aureus has been described in the skin of atopic dermatitis (AD) patients. This study evaluated whether Staphylococcus spp. from the skin and nares of AD and non-AD children produced antimicrobial substances (AMS). AMS production was screened by an overlay method and tested against NaOH, proteases and 30 indicator strains. Clonality was assessed by pulsed-field gel electrophoresis. Proteinaceous AMS-producers were investigated for autoimmunity by the overlay method and presence of bacteriocin genes by polymerase chain reaction. Two AMS-producers had their genome screened for AMS genes. A methicillin-resistant S. aureus (MRSA) produced proteinaceous AMS that inhibited 51.7% of the staphylococcal indicator strains, and it was active against 60% of the colonies selected from the AD child where it was isolated. On the other hand, 57 (8.8%) CoNS from the nares and skin of AD and non-AD children, most of them S. epidermidis (45.6%), reduced the growth of S. aureus and other CoNS species. Bacteriocin-related genes were detected in the genomes of AMS-producers. AMS production by CoNS inhibited S. aureus and other skin microbiota species from children with AD. Furthermore, an MRSA colonizing a child with AD produced AMS, reinforcing its contribution to dysbiosis and disease severity.


Subject(s)
Coagulase , Dermatitis, Atopic , Methicillin-Resistant Staphylococcus aureus , Microbiota , Skin , Staphylococcus , Dermatitis, Atopic/microbiology , Humans , Methicillin-Resistant Staphylococcus aureus/genetics , Skin/microbiology , Child , Coagulase/genetics , Coagulase/metabolism , Staphylococcus/genetics , Bacteriocins/genetics , Anti-Bacterial Agents/pharmacology , Child, Preschool , Microbial Sensitivity Tests
6.
Int J Mol Sci ; 25(9)2024 May 04.
Article in English | MEDLINE | ID: mdl-38732240

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) infection has rapidly spread through various routes. A genomic analysis of clinical MRSA samples revealed an unknown protein, Sav2152, predicted to be a haloacid dehalogenase (HAD)-like hydrolase, making it a potential candidate for a novel drug target. In this study, we determined the crystal structure of Sav2152, which consists of a C2-type cap domain and a core domain. The core domain contains four motifs involved in phosphatase activity that depend on the presence of Mg2+ ions. Specifically, residues D10, D12, and D233, which closely correspond to key residues in structurally homolog proteins, are responsible for binding to the metal ion and are known to play critical roles in phosphatase activity. Our findings indicate that the Mg2+ ion known to stabilize local regions surrounding it, however, paradoxically, destabilizes the local region. Through mutant screening, we identified D10 and D12 as crucial residues for metal binding and maintaining structural stability via various uncharacterized intra-protein interactions, respectively. Substituting D10 with Ala effectively prevents the interaction with Mg2+ ions. The mutation of D12 disrupts important structural associations mediated by D12, leading to a decrease in the stability of Sav2152 and an enhancement in binding affinity to Mg2+ ions. Additionally, our study revealed that D237 can replace D12 and retain phosphatase activity. In summary, our work uncovers the novel role of metal ions in HAD-like phosphatase activity.


Subject(s)
Bacterial Proteins , Hydrolases , Magnesium , Phosphoric Monoester Hydrolases , Magnesium/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Phosphoric Monoester Hydrolases/metabolism , Phosphoric Monoester Hydrolases/chemistry , Phosphoric Monoester Hydrolases/genetics , Hydrolases/metabolism , Hydrolases/chemistry , Hydrolases/genetics , Models, Molecular , Methicillin-Resistant Staphylococcus aureus/enzymology , Methicillin-Resistant Staphylococcus aureus/genetics , Staphylococcus aureus/enzymology , Crystallography, X-Ray , Protein Binding
7.
mSphere ; 9(5): e0012624, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38695568

ABSTRACT

Biofilm formation is an important virulence factor for methicillin-resistant Staphylococcus aureus (MRSA). The extracellular matrix of MRSA biofilms contains significant amounts of double-stranded DNA that hold the biofilm together. MRSA cells secrete micrococcal nuclease (Nuc1), which degrades double-stranded DNA. In this study, we used standard methodologies to investigate the role of Nuc1 in MRSA biofilm formation and dispersal. We quantified biofilm formation and extracellular DNA (eDNA) levels in broth and agar cultures. In some experiments, cultures were supplemented with sub-MIC amoxicillin to induce biofilm formation. Biofilm erosion was quantitated by culturing biofilms on rods and enumerating detached colony-forming units (CFUs), and biofilm sloughing was investigated by perfusing biofilms cultured in glass tubes with fresh broth and measuring the sizes of the detached cell aggregates. We found that an MRSA nuc1- mutant strain produced significantly more biofilm and more eDNA than a wild-type strain, both in the absence and presence of sub-MIC amoxicillin. nuc1- mutant biofilms grown on rods detached significantly less than wild-type biofilms. Detachment was restored by exogenous DNase or complementing the nuc1- mutant. In the sloughing assay, nuc1- mutant biofilms released cell aggregates that were significantly larger than those released by wild-type biofilms. Our results suggest that Nuc1 modulates biofilm formation, biofilm detachment, and the sizes of detached cell aggregates. These processes may play a role in the spread and subsequent survival of MRSA biofilms during biofilm-related infections.IMPORTANCEInfections caused by antibiotic-resistant bacteria known as methicillin-resistant Staphylococcus aureus (MRSA) are a significant problem in hospitals. MRSA forms adherent biofilms on implanted medical devices such as catheters and breathing tubes. Bacteria can detach from biofilms on these devices and spread to other parts of the body such as the blood or lungs, where they can cause life-threatening infections. In this article, researchers show that MRSA secretes an enzyme known as thermonuclease that causes bacteria to detach from the biofilm. This is important because understanding the mechanism by which MRSA detaches from biofilms could lead to the development of procedures to mitigate the problem.


Subject(s)
Biofilms , Methicillin-Resistant Staphylococcus aureus , Micrococcal Nuclease , Biofilms/growth & development , Biofilms/drug effects , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/physiology , Micrococcal Nuclease/genetics , Micrococcal Nuclease/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA, Bacterial/genetics , Virulence Factors/genetics , Microbial Sensitivity Tests , Amoxicillin/pharmacology
8.
PLoS Genet ; 20(5): e1011229, 2024 May.
Article in English | MEDLINE | ID: mdl-38696518

ABSTRACT

Staphylococcus aureus (S. aureus) is an opportunistic pathogen causing diseases ranging from mild skin infections to life threatening conditions, including endocarditis, pneumonia, and sepsis. To identify host genes modulating this host-pathogen interaction, we infected 25 Collaborative Cross (CC) mouse strains with methicillin-resistant S. aureus (MRSA) and monitored disease progression for seven days using a surgically implanted telemetry system. CC strains varied widely in their response to intravenous MRSA infection. We identified eight 'susceptible' CC strains with high bacterial load, tissue damage, and reduced survival. Among the surviving strains, six with minimal colonization were classified as 'resistant', while the remaining six tolerated higher organ colonization ('tolerant'). The kidney was the most heavily colonized organ, but liver, spleen and lung colonization were better correlated with reduced survival. Resistant strains had higher pre-infection circulating neutrophils and lower post-infection tissue damage compared to susceptible and tolerant strains. We identified four CC strains with sexual dimorphism: all females survived the study period while all males met our euthanasia criteria earlier. In these CC strains, males had more baseline circulating monocytes and red blood cells. We identified several CC strains that may be useful as new models for endocarditis, myocarditis, pneumonia, and resistance to MRSA infection. Quantitative Trait Locus (QTL) analysis identified two significant loci, on Chromosomes 18 and 3, involved in early susceptibility and late survival after infection. We prioritized Npc1 and Ifi44l genes as the strongest candidates influencing survival using variant analysis and mRNA expression data from kidneys within these intervals.


Subject(s)
Collaborative Cross Mice , Methicillin-Resistant Staphylococcus aureus , Phenotype , Staphylococcal Infections , Animals , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Staphylococcal Infections/genetics , Staphylococcal Infections/microbiology , Mice , Female , Male , Collaborative Cross Mice/genetics , Host-Pathogen Interactions/genetics , Quantitative Trait Loci , Disease Models, Animal
9.
Microb Genom ; 10(5)2024 May.
Article in English | MEDLINE | ID: mdl-38739116

ABSTRACT

Staphylococcus aureus asymptomatically colonises 30 % of humans but can also cause a range of diseases, which can be fatal. In 2017 S. aureus was associated with 20 000 deaths in the USA alone. Dividing S. aureus isolates into smaller sub-groups can reveal the emergence of distinct sub-populations with varying potential to cause infections. Despite multiple molecular typing methods categorising such sub-groups, they do not take full advantage of S. aureus genome sequences when describing the fundamental population structure of the species. In this study, we developed Staphylococcus aureus Lineage Typing (SaLTy), which rapidly divides the species into 61 phylogenetically congruent lineages. Alleles of three core genes were identified that uniquely define the 61 lineages and were used for SaLTy typing. SaLTy was validated on 5000 genomes and 99.12 % (4956/5000) of isolates were assigned the correct lineage. We compared SaLTy lineages to previously calculated clonal complexes (CCs) from BIGSdb (n=21 173). SALTy improves on CCs by grouping isolates congruently with phylogenetic structure. SaLTy lineages were further used to describe the carriage of Staphylococcal chromosomal cassette containing mecA (SCCmec) which is carried by methicillin-resistant S. aureus (MRSA). Most lineages had isolates lacking SCCmec and the four largest lineages varied in SCCmec over time. Classifying isolates into SaLTy lineages, which were further SCCmec typed, allowed SaLTy to describe high-level MRSA epidemiology. We provide SaLTy as a simple typing method that defines phylogenetic lineages (https://github.com/LanLab/SaLTy). SaLTy is highly accurate and can quickly analyse large amounts of S. aureus genome data. SaLTy will aid the characterisation of S. aureus populations and ongoing surveillance of sub-groups that threaten human health.


Subject(s)
Phylogeny , Staphylococcal Infections , Staphylococcus aureus , Staphylococcus aureus/genetics , Staphylococcus aureus/classification , Staphylococcus aureus/isolation & purification , Humans , Staphylococcal Infections/microbiology , Genome, Bacterial , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/classification , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Alleles
10.
BMC Microbiol ; 24(1): 127, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627609

ABSTRACT

BACKGROUND: In Ethiopia, milk production and handling practices often lack proper hygiene measures, leading to the potential contamination of milk and milk products with Staphylococcus aureus (S. aureus), including methicillin-resistant strains, posing significant public health concerns. This study aimed to investigate the occurrence, antimicrobial susceptibility profiles and presence of resistance genes in S. aureus strains isolated from milk and milk products. METHODS: A cross-sectional study was conducted in the Arsi highlands, Oromia, Ethiopia from March 2022 to February 2023. A total of 503 milk and milk product samples were collected, comprising 259 raw milk, 219 cottage cheese, and 25 traditional yogurt samples. S. aureus isolation and coagulase-positive staphylococci enumeration were performed using Baird-Parker agar supplemented with tellurite and egg yolk. S. aureus was further characterized based on colony morphology, Gram stain, mannitol fermentation, catalase test, and coagulase test. Phenotypic antimicrobial resistance was assessed using the Kirby-Bauer disc diffusion method, while the polymerase chain reaction (PCR) was employed for confirming the presence of S. aureus and detecting antimicrobial resistance genes. RESULTS: S. aureus was detected in 24.9% of the milk and milk products, with the highest occurrence in raw milk (40.9%), followed by yogurt (20%), and cottage cheese (6.4%). The geometric mean for coagulase-positive staphylococci counts in raw milk, yogurt, and cottage cheese was 4.6, 3.8, and 3.2 log10 CFU/mL, respectively. Antimicrobial resistance analysis revealed high levels of resistance to ampicillin (89.7%) and penicillin G (87.2%), with 71.8% of the isolates demonstrating multidrug resistance. Of the 16 S. aureus isolates analyzed using PCR, all were found to carry the nuc gene, with the mecA and blaZ genes detected in 50% of these isolates each. CONCLUSION: This study revealed the widespread distribution of S. aureus in milk and milk products in the Arsi highlands of Ethiopia. The isolates displayed high resistance to ampicillin and penicillin, with a concerning level of multidrug resistance. The detection of the mecA and blaZ genes in selected isolates is of particular concern, highlighting a potential public health hazard and posing a challenge to effective antimicrobial treatment. These findings highlight the urgent need to enhance hygiene standards in milk and milk product handling and promote the rational use of antimicrobial drugs. Provision of adequate training for all individuals involved in the dairy sector can help minimize contamination. These measures are crucial in addressing the threats posed by S. aureus, including methicillin-resistant strains, and ensuring the safety of milk and its products for consumers.


Subject(s)
Anti-Infective Agents , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Animals , Staphylococcus aureus , Milk , Anti-Bacterial Agents/pharmacology , Methicillin-Resistant Staphylococcus aureus/genetics , Coagulase/genetics , Ethiopia , Cross-Sectional Studies , Staphylococcal Infections/epidemiology , Staphylococcus , Anti-Infective Agents/pharmacology , Ampicillin/pharmacology , Microbial Sensitivity Tests
11.
Emerg Microbes Infect ; 13(1): 2341972, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38597192

ABSTRACT

Staphylococcus aureus (S. aureus) is a notorious pathogen that cause metastatic or complicated infections. Hypervirulent ST398 clonotype strains, remarkably increased in recent years, dominated Community-associated S. aureus (CA-SA) infections in the past decade in China. Small RNAs like RNAIII have been demonstrated to play important roles in regulating the virulence of S. aureus, however, the regulatory roles played by many of these sRNAs in the ST398 clonotype strains are still unclear. Through transcriptome screening and combined with knockout phenotype analysis, we have identified a highly transcribed sRNA, RSaX28, in the ST398 clonotype strains. Sequence analysis revealed that RSaX28 is highly conserved in the most epidemic clonotypes of S. aureus, but its high transcription level is particularly prominent in the ST398 clonotype strains. Characterization of RSaX28 through RACE and Northern blot revealed its length to be 533nt. RSaX28 is capable of promoting the hemolytic ability, reducing biofilm formation capacity, and enhancing virulence of S. aureus in the in vivo murine infection model. Through IntaRNA prediction and EMSA validation, we found that RSaX28 can specifically interact with RNAIII, promoting its stability and positively regulating the translation of downstream alpha-toxin while inhibiting the translation of Sbi, thereby regulating the virulence and biofilm formation capacity of the ST398 clonotype strains. RSaX28 is an important virulence regulatory factor in the ST398 clonotype S. aureus and represents a potential important target for future treatment and immune intervention against S. aureus infections.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Mice , Animals , Staphylococcus aureus/genetics , Virulence/genetics , RNA, Bacterial/genetics , Staphylococcal Infections/epidemiology , Virulence Factors/genetics , Methicillin-Resistant Staphylococcus aureus/genetics
12.
BMC Infect Dis ; 24(1): 374, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575909

ABSTRACT

BACKGROUND: The emergence of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) has increased the incidence of community-onset MRSA infection. Respiratory tract infections caused by MRSA has been noted for their severity; however, repeated relapses that require extended antibiotic therapy are rare. CASE PRESENTATION: We report a case of relapsing bronchopneumonia caused by CA-MRSA in a 56-year-old man. The patient responded to antibiotics, but repeatedly relapsed after stopping treatment. MRSA was consistently isolated from airway specimens during each relapse. Extended oral antibiotic treatment with trimethoprim/sulfamethoxazole (TMP/SMX) for 6 months achieved infection control. Whole-genome sequencing of the isolated strain revealed that the causative agent was sequence type (ST)1/staphylococcal cassette chromosome mec (SCCmec) type IVa, a clone that is rapidly increasing in Japan. DISCUSSION AND CONCLUSIONS: This patient had an unusual course of MRSA bronchopneumonia with repeated relapses. Although the choice of antibiotics for long-term use in MRSA respiratory tract infections has not been well established, TMP/SMX was effective and well tolerated for long-term therapy in this case. The clinical course of infections related to the rapid emerging clone, ST1/SCCmec type IVa warrants further attention.


Subject(s)
Bronchopneumonia , Community-Acquired Infections , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Male , Humans , Middle Aged , Methicillin-Resistant Staphylococcus aureus/genetics , Trimethoprim, Sulfamethoxazole Drug Combination/therapeutic use , Bronchopneumonia/diagnosis , Bronchopneumonia/drug therapy , Staphylococcal Infections/diagnosis , Staphylococcal Infections/drug therapy , Staphylococcal Infections/epidemiology , Anti-Bacterial Agents/therapeutic use , Recurrence , Community-Acquired Infections/diagnosis , Community-Acquired Infections/drug therapy , Community-Acquired Infections/epidemiology
13.
Eur J Med Res ; 29(1): 246, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649897

ABSTRACT

BACKGROUND: Staphylococcus aureus is a notorious multidrug resistant pathogen prevalent in healthcare facilities worldwide. Unveiling the mechanisms underlying biofilm formation, quorum sensing and antibiotic resistance can help in developing more effective therapy for S. aureus infection. There is a scarcity of literature addressing the genetic profiles and correlations of biofilm-associated genes, quorum sensing, and antibiotic resistance among S. aureus isolates from Malaysia. METHODS: Biofilm and slime production of 68 methicillin-susceptible S. aureus (MSSA) and 54 methicillin-resistant (MRSA) isolates were determined using a a plate-based crystal violet assay and Congo Red agar method, respectively. The minimum inhibitory concentration values against 14 antibiotics were determined using VITEK® AST-GP67 cards and interpreted according to CLSI-M100 guidelines. Genetic profiling of 11 S. aureus biofilm-associated genes and agr/sar quorum sensing genes was performed using single or multiplex polymerase chain reaction (PCR) assays. RESULTS: In this study, 75.9% (n = 41) of MRSA and 83.8% (n = 57) of MSSA isolates showed strong biofilm-forming capabilities. Intermediate slime production was detected in approximately 70% of the isolates. Compared to MSSA, significantly higher resistance of clindamycin, erythromycin, and fluoroquinolones was noted among the MRSA isolates. The presence of intracellular adhesion A (icaA) gene was detected in all S. aureus isolates. All MSSA isolates harbored the laminin-binding protein (eno) gene, while all MRSA isolates harbored intracellular adhesion D (icaD), clumping factors A and B (clfA and clfB) genes. The presence of agrI and elastin-binding protein (ebpS) genes was significantly associated with biofilm production in MSSA and MRSA isolates, respectively. In addition, agrI gene was also significantly correlated with oxacillin, cefoxitin, and fluoroquinolone resistance. CONCLUSIONS: The high prevalence of biofilm and slime production among MSSA and MRSA isolates correlates well with the detection of a high prevalence of biofilm-associated genes and agr quorum sensing system. A significant association of agrI gene was found with cefoxitin, oxacillin, and fluoroquinolone resistance. A more focused approach targeting biofilm-associated and quorum sensing genes is important in developing new surveillance and treatment strategies against S. aureus biofilm infection.


Subject(s)
Anti-Bacterial Agents , Biofilms , Hospitals, Teaching , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Quorum Sensing , Staphylococcus aureus , Biofilms/drug effects , Biofilms/growth & development , Quorum Sensing/genetics , Quorum Sensing/drug effects , Malaysia , Humans , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus/genetics , Staphylococcus aureus/drug effects , Staphylococcus aureus/isolation & purification , Staphylococcal Infections/microbiology , Staphylococcal Infections/drug therapy , Bacterial Proteins/genetics
14.
Cell Rep ; 43(4): 114053, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38578824

ABSTRACT

In the search for much-needed new antibacterial chemical matter, a myriad of compounds have been reported in academic and pharmaceutical screening endeavors. Only a small fraction of these, however, are characterized with respect to mechanism of action (MOA). Here, we describe a pipeline that categorizes transcriptional responses to antibiotics and provides hypotheses for MOA. 3D-printed imaging hardware PFIboxes) profiles responses of Escherichia coli promoter-GFP fusions to more than 100 antibiotics. Notably, metergoline, a semi-synthetic ergot alkaloid, mimics a DNA replication inhibitor. In vitro supercoiling assays confirm this prediction, and a potent analog thereof (MLEB-1934) inhibits growth at 0.25 µg/mL and is highly active against quinolone-resistant strains of methicillin-resistant Staphylococcus aureus. Spontaneous suppressor mutants map to a seldom explored allosteric binding pocket, suggesting a mechanism distinct from DNA gyrase inhibitors used in the clinic. In all, the work highlights the potential of this platform to rapidly assess MOA of new antibacterial compounds.


Subject(s)
Anti-Bacterial Agents , DNA Gyrase , Escherichia coli , Topoisomerase II Inhibitors , Topoisomerase II Inhibitors/pharmacology , DNA Gyrase/metabolism , DNA Gyrase/genetics , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/metabolism , Transcription, Genetic/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/genetics , Microbial Sensitivity Tests
15.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 1-7, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38678634

ABSTRACT

 Methicillin-resistant Staphylococcus aureus (MRSA) is one of the main causes of community- and hospital-acquired infections. The expression of virulence genes in S. aureus is arranged by regulators like the accessory gene regulator (agr). The present study aims to estimate phenotypic characteristics of S. aureus and investigate the occurrence of agr genes with their correlation to biofilm formation. In this study, 34 MRSA strains out of 100 S. aureus isolates were recovered in a variety of clinical samples. Phenotypic characterization and ability of biofilm formation were assessed. About 8(24%) of isolates were biofilm producers. The percentages of biofilm production among isolates were 3(37.5%), 2(25%), 3(37.5%) as strong, moderate, and weak, respectively. Furthermore, the resistance rates for all antibiotics were higher in biofilm producers and 76% of the isolates were staphyloxanthin producers, around 82% of the strains showed resistance to H2O2. Hemolytic activity was detected in 74% of the total isolates. The activity of the protease enzyme was 68%. The lipase enzyme was active in 79% of the tested S. aureus isolates. The majority of isolates were established to be agrI 84%, followed by agrII 53%, agrIII 32%, and 30% of the isolates have agr IV. Our study indicated that the majority of MRSA isolates were non-biofilm producers and the agr I is the most dominant type. Thus, agr I is not correlated with biofilm production.


Subject(s)
Bacterial Proteins , Biofilms , Methicillin-Resistant Staphylococcus aureus , Xanthophylls , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms/growth & development , Biofilms/drug effects , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Lipase/genetics , Lipase/metabolism , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Methicillin-Resistant Staphylococcus aureus/physiology , Microbial Sensitivity Tests , Polymorphism, Genetic , Staphylococcal Infections/microbiology , Trans-Activators/genetics , Trans-Activators/metabolism , Humans
16.
Diagn Microbiol Infect Dis ; 109(3): 116294, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38678689

ABSTRACT

Cystic fibrosis (CF) is a progressive and inherited disease that affects approximately 70000 individuals all over the world annually. A mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene serves as its defining feature. Bacterial infections have a significant impact on the occurrence and development of CF. In this manuscript, we discuss the role and virulence factors of Staphylococcus aureus as an important human pathogen with the ability to induce respiratory tract infections. Recent studies have reported S. aureus as the first isolated bacteria in CF patients. Methicillin-resistant Staphylococcus aureus (MRSA) pathogens are approximately resistant to all ß-lactams. CF patients are colonized by MRSA expressing various virulence factors including toxins, and Staphylococcal Cassette Chromosome mec (SCCmec) types, and have the potential for biofilm formation. Therefore, variations in clinical outcomes will be manifested. SCCmec type II has been reported in CF patients more than in other SCCmec types from different countries. The small-colony variants (SCVs) as specific morphologic subtypes of S. aureus with slow growth and unusual properties can also contribute to persistent and difficult-to-treat infections in CF patients. The pathophysiology of SCVs is complicated and not fully understood. Patients with cystic fibrosis should be aware of the intrinsic risk factors for complex S. aureus infections, including recurring infections, physiological issues, or coinfection with P. aeruginosa.


Subject(s)
Cystic Fibrosis , Staphylococcal Infections , Staphylococcus aureus , Virulence Factors , Cystic Fibrosis/microbiology , Cystic Fibrosis/complications , Humans , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity , Virulence Factors/genetics , Respiratory Tract Infections/microbiology , Biofilms/growth & development , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Microbial Interactions , Cystic Fibrosis Transmembrane Conductance Regulator/genetics
17.
Microb Pathog ; 191: 106640, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38614437

ABSTRACT

BACKGROUND: Staphylococcus aureus is one of the most prevalent pathogens in bovine mastitis, which leads to substantial financial losses for the dairy industry. RESULTS: In this study, S. aureus (n = 72) was isolated from 18 dairy farms in 15 provinces across China in 2021. The identification of these isolates at the species level was achieved by employing 16S rRNA sequencing. An isothermal amplification method for auxiliary detection of S. aureus was established, which can be employed not only for laboratory detection but also for point-of-care testing (POCT). Molecular characteristics of S. aureus mastitis in Chinese dairy cows were determined through MLST and spa typing. Finally, methicillin-resistant Staphylococcus aureus (MRSA) and MRSA resistance genes were detected using MIC and PCR amplification techniques. 72 isolates were identified as 12 sequence types (STs) and 7 clonal complexes (CC). ST1/CC1 was the dominant prevalent accounting for 33.3 % of the total, and exhibiting a wide distribution range. In terms of spa types, t114 was the dominant type, accounting for 31.9 % of the total, followed by t529 as the second major type. Four S. aureus strains were classified as MRSA according to their levels of oxacillin resistance (MIC ≥4 µg/mL). Among these four MRSA strains, one of them was found to be mecA positive. However, the presence of drug-resistance genes mecA and mecC was not detected in the remaining three MRSA strains, indicating the possible existence of new resistance genes. CONCLUSIONS: Our study investigated the prevalence of S. aureus mastitis in dairy cows in China, while also examined the molecular characteristics and MRSA strains. This information will help with the clinical monitoring, prevention, and control of S. aureus mastitis in dairy cattle.


Subject(s)
Anti-Bacterial Agents , Mastitis, Bovine , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Multilocus Sequence Typing , RNA, Ribosomal, 16S , Staphylococcal Infections , Staphylococcus aureus , Animals , Cattle , Mastitis, Bovine/microbiology , Mastitis, Bovine/epidemiology , China/epidemiology , Staphylococcal Infections/veterinary , Staphylococcal Infections/microbiology , Staphylococcal Infections/epidemiology , Female , Staphylococcus aureus/genetics , Staphylococcus aureus/drug effects , Staphylococcus aureus/isolation & purification , Staphylococcus aureus/classification , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Methicillin-Resistant Staphylococcus aureus/drug effects , RNA, Ribosomal, 16S/genetics , Anti-Bacterial Agents/pharmacology , Dairying
18.
Front Cell Infect Microbiol ; 14: 1367016, 2024.
Article in English | MEDLINE | ID: mdl-38681224

ABSTRACT

Introduction: Staphylococcus aureus, is a pathogen commonly encountered in both community and hospital settings. Patients receiving hemodialysis treatment face an elevated risk of vascular access infections (VAIs) particularly Staphylococcus aureus, infection. This heightened risk is attributed to the characteristics of Staphylococcus aureus, , enabling it to adhere to suitable surfaces and form biofilms, thereby rendering it resistant to external interventions and complicating treatment efforts. Methods: Therefore this study utilized PCR and microtiter dish biofilm formation assay to determine the difference in the virulence genes and biofilm formation among in our study collected of 103 Staphylococcus aureus, isolates from hemodialysis patients utilizing arteriovenous grafts (AVGs), tunneled cuffed catheters (TCCs), and arteriovenous fistulas (AVFs) during November 2013 to December 2021. Results: Our findings revealed that both MRSA and MSSA isolates exhibited strong biofilm production capabilities. Additionally, we confirmed the presence of agr types and virulence genes through PCR analysis. The majority of the collected isolates were identified as agr type I. However, agr type II isolates displayed a higher average number of virulence genes, with MRSA isolates exhibiting a variety of virulence genes. Notably, combinations of biofilm-associated genes, such as eno-clfA-clfB-fib-icaA-icaD and eno-clfA-clfB-fib-fnbB-icaA-icaD, were prevalent among Staphylococcus aureus, isolates obtained from vascular access infections. Discussion: These insights contribute to a better understanding of the molecular characteristics associated with Staphylococcus aureus, infections in hemodialysis patients and provided more targeted and effective treatment approaches.


Subject(s)
Bacterial Proteins , Biofilms , Renal Dialysis , Staphylococcal Infections , Staphylococcus aureus , Trans-Activators , Virulence Factors , Female , Humans , Male , Middle Aged , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms/growth & development , Catheter-Related Infections/microbiology , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Renal Dialysis/adverse effects , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity , Trans-Activators/genetics , Virulence Factors/genetics
19.
Microb Genom ; 10(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38630616

ABSTRACT

Genomic epidemiology enhances the ability to detect and refute methicillin-resistant Staphylococcus aureus (MRSA) outbreaks in healthcare settings, but its routine introduction requires further evidence of benefits for patients and resource utilization. We performed a 12 month prospective study at Cambridge University Hospitals NHS Foundation Trust in the UK to capture its impact on hospital infection prevention and control (IPC) decisions. MRSA-positive samples were identified via the hospital microbiology laboratory between November 2018 and November 2019. We included samples from in-patients, clinic out-patients, people reviewed in the Emergency Department and healthcare workers screened by Occupational Health. We sequenced the first MRSA isolate from 823 consecutive individuals, defined their pairwise genetic relatedness, and sought epidemiological links in the hospital and community. Genomic analysis of 823 MRSA isolates identified 72 genetic clusters of two or more isolates containing 339/823 (41 %) of the cases. Epidemiological links were identified between two or more cases for 190 (23 %) individuals in 34/72 clusters. Weekly genomic epidemiology updates were shared with the IPC team, culminating in 49 face-to-face meetings and 21 written communications. Seventeen clusters were identified that were consistent with hospital MRSA transmission, discussion of which led to additional IPC actions in 14 of these. Two outbreaks were also identified where transmission had occurred in the community prior to hospital presentation; these were escalated to relevant IPC teams. We identified 38 instances where two or more in-patients shared a ward location on overlapping dates but carried unrelated MRSA isolates (pseudo-outbreaks); research data led to de-escalation of investigations in six of these. Our findings provide further support for the routine use of genomic epidemiology to enhance and target IPC resources.


Subject(s)
Cross Infection , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Methicillin-Resistant Staphylococcus aureus/genetics , Cross Infection/microbiology , Staphylococcal Infections/microbiology , Prospective Studies , Genomics
20.
Cell Rep ; 43(4): 114082, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38583155

ABSTRACT

Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are alarmingly common, and treatment is confined to last-line antibiotics. Vancomycin is the treatment of choice for MRSA bacteremia, and treatment failure is often associated with vancomycin-intermediate S. aureus isolates. The regulatory 3' UTR of the vigR mRNA contributes to vancomycin tolerance and upregulates the autolysin IsaA. Using MS2-affinity purification coupled with RNA sequencing, we find that the vigR 3' UTR also regulates dapE, a succinyl-diaminopimelate desuccinylase required for lysine and peptidoglycan synthesis, suggesting a broader role in controlling cell wall metabolism and vancomycin tolerance. Deletion of the 3' UTR increased virulence, while the isaA mutant is completely attenuated in a wax moth larvae model. Sequence and structural analyses of vigR indicated that the 3' UTR has expanded through the acquisition of Staphylococcus aureus repeat insertions that contribute sequence for the isaA interaction seed and may functionalize the 3' UTR.


Subject(s)
3' Untranslated Regions , Staphylococcal Infections , Staphylococcus aureus , Animals , 3' Untranslated Regions/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Sequence , Gene Expression Regulation, Bacterial , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Methicillin-Resistant Staphylococcus aureus/drug effects , Moths/microbiology , Staphylococcal Infections/microbiology , Staphylococcal Infections/drug therapy , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity , Staphylococcus aureus/drug effects , Vancomycin/pharmacology , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...