Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.324
Filter
1.
Ann Transplant ; 29: e943281, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38803088

ABSTRACT

BACKGROUND We aimed to assess the effect of dexmedetomidine (Dex) combined with remifentanil on emergence agitation (EA) during awakening from sevoflurane anesthesia for pediatric liver surgery. MATERIAL AND METHODS Sixty children who underwent liver surgery in our hospital were prospectively selected and randomly allocated into group A (placebo+remifentanil+sevoflurane) or group B (Dex+remifentanil+sevoflurane). Mean arterial pressure (MAP) and heart rate (HR) at different time points, agitation score during awakening, behavioral status, pain level, and the incidence of postoperative adverse effects were compared in both groups. RESULTS Children in group B had lower HR and MAP levels immediately after tracheal extubation and 5 min after tracheal extubation than those in group A. The Aono's scores, PAED agitation scores, and CHIPP scores at 15 min and 30 min of admission to the PACU were lower in group B than in group A. The incidence of agitation during postoperative anesthesia awakening was lower in group B in contrast to group A. There was no significant difference in postoperative adverse reactions between group A and group B. CONCLUSIONS In pediatric liver surgery, the use of Dex+remifentanil+sevoflurane anesthesia can reduce the incidence of EA during the awakening period, stabilize hemodynamic levels, and relieve postoperative pain, and has fewer postoperative adverse effects, which warrants clinical application.


Subject(s)
Anesthetics, Inhalation , Dexmedetomidine , Emergence Delirium , Remifentanil , Sevoflurane , Humans , Dexmedetomidine/administration & dosage , Dexmedetomidine/therapeutic use , Remifentanil/administration & dosage , Remifentanil/therapeutic use , Sevoflurane/administration & dosage , Female , Male , Anesthetics, Inhalation/administration & dosage , Anesthetics, Inhalation/adverse effects , Child, Preschool , Emergence Delirium/prevention & control , Emergence Delirium/etiology , Emergence Delirium/epidemiology , Prospective Studies , Hypnotics and Sedatives/administration & dosage , Hypnotics and Sedatives/therapeutic use , Infant , Child , Psychomotor Agitation/prevention & control , Psychomotor Agitation/etiology , Liver/surgery , Anesthesia Recovery Period , Piperidines/administration & dosage , Piperidines/therapeutic use , Piperidines/adverse effects , Double-Blind Method , Drug Therapy, Combination , Methyl Ethers/administration & dosage , Methyl Ethers/adverse effects , Analgesics, Opioid/administration & dosage , Analgesics, Opioid/therapeutic use
2.
Waste Manag ; 183: 21-31, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38714119

ABSTRACT

Poly(vinyl chloride) (PVC) is one of the most widely used plastics. However, a major challenge in recycling PVC is that there is no economical method to separate and remove its toxic phthalate plasticizers. This research made a breakthrough by extracting PVC with liquefied dimethyl ether (DME) and successfully separating the plasticizer components. Nearly all (97.1 %) of the di(2-ethylhexyl) phthalate plasticizer was extracted within 30 min by passing liquefied DME (285 g) through PVC at 25 °C. The compatibility of PVC with organic solvents, including liquefied DME, was derived theoretically from their Hansen solubility parameters (HSP), and actual dissolution experiments were conducted to determine the optimal PVC solvents. A liquefied DME mixture was used to dissolve PVC, and the extract was diluted with ethanol to precipitate the dissolved PVC. We demonstrated that liquefied DME is a promising method for producing high quality recycled products and that the process retains the fundamental properties of plasticizers and PVC without inducing degradation or depolymerization. Because of its low boiling point, DME can be easily separated from the solute after extraction, allowing for efficient reuse of the solvent, extracted plasticizer, and PVC. DME does not require heat and produces little harmful wastewater, which significantly reduces the energy consumption of the plasticizer additive separation process.


Subject(s)
Diethylhexyl Phthalate , Methyl Ethers , Plasticizers , Polyvinyl Chloride , Recycling , Polyvinyl Chloride/chemistry , Diethylhexyl Phthalate/chemistry , Recycling/methods , Methyl Ethers/chemistry , Methyl Ethers/analysis , Solvents/chemistry , Phthalic Acids/chemistry
3.
Braz J Med Biol Res ; 57: e13437, 2024.
Article in English | MEDLINE | ID: mdl-38808889

ABSTRACT

Clinical studies have found that neonatal sevoflurane exposure can increase the risk of cognitive dysfunction. However, recent studies have found that it can exhibit neuroprotective effects in some situations. In this study, we aimed to explore the effects of sevoflurane neonatal exposure in rats. A total of 144 rat pups (72 males and 72 females) were assigned to six groups and separately according to sevoflurane exposure of different times on the seventh day after birth. Blood gas analysis and western blot detection in the hippocampus were conducted after exposure. The Morris water maze test was conducted on the 32nd to 38th days after birth. The expression of PSD95 and synaptophysin in the hippocampus was detected after the Morris water maze test. We found that neonatal exposure to sevoflurane promoted apoptosis in the hippocampus, and Bax and caspase-3 were increased in a dose-dependent manner. The 2-h exposure had the greatest effects on cognitive dysfunction. However, with the extension of exposure time to 6 h, the effects on cognitive function were partly compensated. In addition, sevoflurane exposure decreased synaptogenesis in the hippocampus. However, as the exposure time was extended, the suppression of synaptogenesis was attenuated. In conclusion, neonatal sevoflurane exposure exhibited duration-dependent effects on cognitive function via Bax-caspase-3-dependent apoptosis and bidirectional effects on synaptogenesis in rats.


Subject(s)
Animals, Newborn , Cognition , Hippocampus , Sevoflurane , Sevoflurane/pharmacology , Animals , Female , Male , Hippocampus/drug effects , Hippocampus/metabolism , Rats , Cognition/drug effects , Time Factors , Maze Learning/drug effects , Anesthetics, Inhalation/pharmacology , Anesthetics, Inhalation/adverse effects , Apoptosis/drug effects , Sex Factors , Rats, Sprague-Dawley , Methyl Ethers/pharmacology , Blotting, Western , Blood Gas Analysis , Cognitive Dysfunction/chemically induced
4.
Article in English | MEDLINE | ID: mdl-38640792

ABSTRACT

The aim of this study was to improve analysis of nonpolar lipidomics sample extracts using reversed phase (RP) chromatography. A 4/3/3 (v/v/v) mixture of methanol/methyl tert-butyl ether/chloroform (MeOH/MTBE/CHCl3, MMC) was chosen for sample extraction solvent based on its proven extraction capability for several lipid classes. To avoid carry over, loss of analytes and peak distortion the loops and all capillaries of the presented LC system were flushed and filled up with methanol until the analytical column. The choice of methanol was due to its weak elution strength and being infinitely miscible with MMC and several other nonpolar solvents. This allowed injection of a 100 µl sample that was 20 µl nonpolar extraction solvent diluted fivefold with methanol. All lipids of 25 lipid classes were transferred quantitatively to the column head where the online dilution of methanol was carried out with aqueous eluent for focusing the lipid analytes. The weak elution strength of methanol prevented peak distortions. The consecutive reversed phase elution resulted in remarkably narrow peaks (full width at half maximum was 0.07-0.08 min typically) and enhanced sensitivity (limit of detection usually in sub nM region) because of increased sample injection volume and narrow peaks. Calibration and quality control samples made by diluting commercial lipid standards 200-50000 times confirmed the applicability of this approach both for targeted lipid quantification and for untargeted quantitative comparison of lipids from different sources.


Subject(s)
Lipids , Lipids/chemistry , Limit of Detection , Animals , Methanol/chemistry , Mass Spectrometry/methods , Lipidomics/methods , Reproducibility of Results , Chromatography, Reverse-Phase/methods , Chloroform/chemistry , Methyl Ethers/chemistry , Methyl Ethers/analysis , Chromatography, Liquid/methods , Linear Models , Liquid Chromatography-Mass Spectrometry
5.
Environ Mol Mutagen ; 65(3-4): 137-142, 2024.
Article in English | MEDLINE | ID: mdl-38679908

ABSTRACT

This study compared genetic damage and immunological markers between surgical patients who underwent inhalational anesthesia with isoflurane or sevoflurane. Blood samples were collected from surgical patients (n = 18 in the isoflurane group and n = 17 in the sevoflurane group) at baseline (before the anesthesia procedure) and the day after anesthesia. DNA damage was detected using an alkaline comet assay; proinflammatory interleukin (IL)-6 was detected by flow cytometry, and white blood cells were detected via an automatic hematology analyzer. The characteristics of both groups were similar, and neither of the two anesthetics induced DNA damage. Similarly, mild neutrophilia was observed after anesthesia in both groups. Increased IL-6 levels were observed 1 day after anesthesia regardless of the type of anesthetic, but this increase was greater in the isoflurane group. Our study suggested that isoflurane and sevoflurane administration may contribute to changes in the immune parameters measured, though no genotoxic hazard was identified, in healthy adult patients who undergo low-stress surgery.


Subject(s)
Anesthetics, Inhalation , Biomarkers , Comet Assay , DNA Damage , Interleukin-6 , Isoflurane , Sevoflurane , DNA Damage/drug effects , Humans , Anesthetics, Inhalation/adverse effects , Sevoflurane/adverse effects , Male , Female , Adult , Isoflurane/adverse effects , Middle Aged , Comet Assay/methods , Biomarkers/blood , Interleukin-6/blood , Methyl Ethers/adverse effects , Methyl Ethers/toxicity
6.
J Chromatogr A ; 1725: 464949, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38688054

ABSTRACT

This study introduces an innovative needle trap device (NTD) featuring a molecularly imprinted polymer (MIP) surface-modified Zeolite Y. The developed NTD was integrated with gas chromatography-flame ionization detector (GC-FID) and employed for analysis of fuel ether oxygenates (methyl tert­butyl ether, MTBE, ethyl tert­butyl ether, ETBE, and tert­butyl formate, TBF) in urine samples. To optimize the key experimental variables including extraction temperature, extraction time, salt concentration, and stirring speed, a central composite design-response surface methodology (CCD-RSM) was employed. The optimal values for extraction in the study were found to be 51.2 °C extraction temperature, 46.2 min extraction time, 27 % salt concentration, and 620 rpm stirring speed. Under the optimized conditions, the calibration curves demonstrated excellent linearity within the range of 0.1-100 µg L-1, with correlation coefficients (R2) exceeding 0.99. The limits of detection (LODs) for MTBE, ETBE, and TBF were obtained 0.06, 0.08, and 0.09 µg L-1, respectively. Moreover, the limits of quantification (LOQs) for MTBE, ETBE, and TBF were obtained 0.18, 0.24, and 0.27 µg L-1, respectively. The enrichment factor was also found to be in the range of 98-129.The NTD-GC-FID procedure demonstrated a high extraction efficiency, making it a promising tool for urinary biomonitoring of fuel ether oxygenates with improved sensitivity and selectivity compared to current methods.


Subject(s)
Limit of Detection , Methyl Ethers , Zeolites , Zeolites/chemistry , Humans , Methyl Ethers/urine , Methyl Ethers/chemistry , Molecularly Imprinted Polymers/chemistry , Biological Monitoring/methods , Chromatography, Gas/methods , Ethyl Ethers/urine , Ethyl Ethers/chemistry
7.
BMC Complement Med Ther ; 24(1): 165, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641781

ABSTRACT

In this study we develop novel type of antibacterial chitosan-propolis NPs to improve theantimicrobial activity against various pathogens. To this aim, we primarily extracted propolis with methylal and ethanol as green solvents and its encapsulation with chitosan NPs. The developed propolis loaded chitosan NPs indicated antimicrobial and anti-biofilm properties against various gram positive and negative. FTIR revealed the successful encapsulation of the propolis extract with Ethanol (PE) and Methylal (PM) into the chitosan nano career matrix. HPLC and GC-MASS also confirmed the presence of flavonoids and phenols compounds of propolis extracted with both solvents. In addition, we confirmed the total phenolic and flavonoid compounds in propolis by calorimetric method of Folin-Ciocalteu and aluminum trichloride complex formation assays, respectively. PE-CH and PM-CH were optimized regarding physicochemical properties such as particle size, zeta potential, and poly dispersity index (PDI) index. DLS and SEM micrographs confirmed a spherical morphology in a range of 360-420 nm with Z potential values of 30-48 mV and PDI of 0.105-0.166 for PE-CH and PM-CH, respectively. The encapsulation efficiency was evaluated using colorimetric analysis, with median values ranging from 90 to 92%. The MIC values within the range of 2 to 230 µg/ml and MBC values between 3 to 346 µg/ml against both gram-positive and negative bacteria. While both PE and PM showed a significant reduction in the number of E. coli, S. aureus, and S. epidermidis, the use of PE-CH and PM-CH led to a statistically significant and greater reduction in number of E. coli, S. aureus, and S. epidermidis strains on the biofilm, pre-formed biofilm and planktonic phases. Besides, the DPPH assay showed significant antioxidant activity for these NPs within the range of 36 to 92%. MTT assay for MHFB-1, HFF, L929, MDF, and MCF-7 cells exhibited statistically significant differences in each other that show the IC50 between 60-160 µg/ml for normal cells and 20 for cancer cells. Finally the present study indicated that both PM and PM-CH greater than PE and PE-CH in which contain high flavonoid and phenolic contents with a high antioxidation potential antioxidant properties, which could be beneficial for cell proliferation and antibiotic and anticancer applications.


Subject(s)
Chitosan , Methyl Ethers , Nanoparticles , Propolis , Propolis/pharmacology , Chitosan/chemistry , Escherichia coli , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Solvents , Ethanol , Nanoparticles/chemistry , Flavonoids
8.
Eur J Pharmacol ; 970: 176494, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38484926

ABSTRACT

BACKGROUND: Inhalational anesthetics target the inhibitory extrasynaptic γ-aminobutyric acid type A (GABAA) receptors. Both neuronal and glial GABA mediate tonic inhibition of the extrasynaptic GABAA receptors. However, the role of glial GABA during inhalational anesthesia remains unclear. This study aimed to evaluate whether astrocytic GABA contributes to the action of different inhalational anesthetics. METHODS: Gene knockout of monoamine oxidase B (MAOB) was used to reduce astrocytic GABA levels in mice. The hypnotic and immobilizing effects of isoflurane, sevoflurane, and desflurane were assessed by evaluating the loss of righting reflex (LORR) and tail-pinch withdrawal response (LTWR) in MAOB knockout and wild-type mice. Minimum alveolar concentration (MAC) for LORR, time to LORR, MAC for LTWR and time to LTWR of isoflurane, sevoflurane, and desflurane were assessed. RESULTS: Time to LORR and time to LTWR with isoflurane were significantly longer in MAOB knockout mice than in wild-type mice (P < 0.001 and P = 0.032, respectively). Time to LORR with 0.8 MAC of sevoflurane was significantly longer in MAOB knockout mice than in wild-type mice (P < 0.001), but not with 1.0 MAC of sevoflurane (P=0.217). MAC for LTWR was significantly higher in MAOB knockout mice exposed to sevoflurane (P < 0.001). With desflurane, MAOB knockout mice had a significantly higher MAC for LORR (P = 0.003) and higher MAC for LTWR (P < 0.001) than wild-type mice. CONCLUSIONS: MAOB knockout mice showed reduced sensitivity to the hypnotic and immobilizing effects of isoflurane, sevoflurane, and desflurane. Behavioral tests revealed that the hypnotic and immobilizing effects of inhalational anesthetics would be mediated by astrocytic GABA.


Subject(s)
Anesthetics, Inhalation , Isoflurane , Methyl Ethers , Mice , Animals , Isoflurane/pharmacology , Sevoflurane/pharmacology , Desflurane/pharmacology , Anesthetics, Inhalation/pharmacology , gamma-Aminobutyric Acid , Hypnotics and Sedatives , Mice, Knockout , Receptors, GABA-A , Methyl Ethers/pharmacology
9.
PLoS One ; 19(3): e0298264, 2024.
Article in English | MEDLINE | ID: mdl-38547201

ABSTRACT

Although sevoflurane is one of the most commonly used inhalational anesthetic agents, the popularity of desflurane is increasing to a level similar to that of sevoflurane. Inhalational anesthesia generally activates and represses the expression of genes related to xenobiotic metabolism and immune response, respectively. However, there has been no comprehensive comparison of the effects of sevoflurane and desflurane on the expression of these genes. Thus, we used a next-generation sequencing method to compare alterations in the global gene expression profiles in the livers of rats subjected to inhalational anesthesia by sevoflurane or desflurane. Our bioinformatics analyses revealed that sevoflurane and, to a greater extent, desflurane significantly activated genes related to xenobiotic metabolism. Our analyses also revealed that both anesthetic agents, especially sevoflurane, downregulated many genes related to immune response.


Subject(s)
Anesthetics, Inhalation , Isoflurane , Methyl Ethers , Animals , Rats , Sevoflurane/pharmacology , Desflurane , Isoflurane/pharmacology , Methyl Ethers/pharmacology , Transcriptome , Xenobiotics , Anesthetics, Inhalation/pharmacology , Anesthesia, Inhalation
10.
Aging (Albany NY) ; 16(5): 4670-4683, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38446592

ABSTRACT

Surgery and anesthesia are vital medical interventions, but concerns over their potential cognitive side effects, particularly with the use of inhalational anesthetics like sevoflurane, have surfaced. This study delves into the neuroprotective potential of Echinatin against sevoflurane-induced neurotoxicity and the underlying mechanisms. Echinatin, a natural compound, has exhibited anti-inflammatory, antioxidant, and anticancer properties. Sevoflurane, while a popular anesthetic, is associated with perioperative neurocognitive disorders (PND) and neurotoxicity. Our investigation began with cellular models, where Echinatin demonstrated a significant reduction in sevoflurane-induced apoptosis. Mechanistically, we identified ferroptosis, a novel form of programmed cell death characterized by iron accumulation and lipid peroxidation, as a key player in sevoflurane-induced neuronal injury. Echinatin notably suppressed ferroptosis in sevoflurane-exposed cells, suggesting a pivotal role in neuroprotection. Expanding our research to a murine model, we observed perturbations in iron homeostasis, inflammatory cytokines, and antioxidants due to sevoflurane exposure. Echinatin treatment effectively restored iron balance, mitigated inflammation, and preserved antioxidant levels in vivo. Behavioral assessments using the Morris water maze further confirmed Echinatin's neuroprotective potential, as it ameliorated sevoflurane-induced spatial learning and memory impairments. In conclusion, our study unveils Echinatin as a promising candidate for mitigating sevoflurane-induced neurotoxicity. Through the regulation of ferroptosis, iron homeostasis, and inflammation, Echinatin demonstrates significant neuroprotection both in vitro and in vivo. These findings illuminate the potential for Echinatin to enhance the safety of surgical procedures involving sevoflurane anesthesia, minimizing the risk of cognitive deficits and neurotoxicity.


Subject(s)
Chalcones , Ferroptosis , Methyl Ethers , Neurotoxicity Syndromes , Rats , Animals , Mice , Sevoflurane/toxicity , Methyl Ethers/pharmacology , Methyl Ethers/toxicity , Antioxidants/pharmacology , Animals, Newborn , Rats, Sprague-Dawley , Homeostasis , Inflammation/metabolism , Hippocampus/metabolism
11.
J Ethnopharmacol ; 328: 118051, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38493905

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Traditionally, the plant Morinda longissima Y.Z.Ruan (Rubiaceae) is used by ethnic people in Vietnam for the treatment of liver diseases and hepatitis. AIM OF THE STUDY: The study was designed to assess the efficacy of the 95% ethanolic extract of Morinda longissima roots (MLE) in experimental immune inflammation. The phytochemical variation of root extract and the chemical structures of natural compounds were also investigated using HPLC-DAD-HR-MS analysis. MATERIALS AND METHODS: Three different doses (100, 200, and 300 mg/kg b.w.) of MLE were chosen to determine anti-inflammatory activity. The mice were given orally extracts and monitored their behavior and mortality for 14 days to evaluate acute toxicity. The volume of the paw and the histopathological evaluation were carried out. The polyphenolic phytoconstituents of MLE extract were identified using LC/MS analysis. The anti-inflammatory efficacy in silico and molecular docking simulations of these natural products were evaluated based on their cyclooxygenase (COX)-1 and 2 inhibitory effects. RESULTS: This investigation showed the 95% ethanolic extract of Morinda longissima roots was found non-toxic up to 2000 mg/kg dose level in an acute study, neither showed mortality nor treatment-related signs of toxicity in mice. Eight anthraquinones and anthraquinone glycosides of Morinda longissima roots were identified by HPLC-DAD-HR-MS analysis. In the in vivo experiments, MLE was found to possess powerful anti-inflammatory activities in comparison with diclofenac sodium. The highest anti-inflammatory activity of MLE in mice was observed at a dose of 300 mg/kg body weight. The in silico analysis showed that seven out the eight anthraquinones and anthraquinone glycosides possess a selectivity index RCOX-2/COX-1 lower than 1, indicating that these compounds are selective against the COX-2 enzyme in the following the order: rubiadin-3-methyl ether < morindone morindone-6-methyl ether < morindone-5-methyl ether < damnacanthol < rubiadin < damnacanthol-3-O-ß-primeveroside. The natural compounds with the best selectivity against the COX-2 enzyme are quercetin (9), rubiadin-3-methyl ether (7), and morindone (4), with RCOX2/COX1 ratios of 0.02, 0.03, and 0.19, respectively. When combined with the COX-2 protein in the MD research, quercetin and rubiadin-3-methyl ether greatly stabilized the backbone proteins and ligands. CONCLUSION: In conclusion, the anthraquinones and ethanolic extract of Morinda longissima roots may help fight COX-2 inflammation. To develop novel treatments for inflammatory disorders linked to this one, these chemicals should be investigated more in the future.


Subject(s)
Methyl Ethers , Morinda , Rubiaceae , Humans , Mice , Animals , Morinda/chemistry , Rubiaceae/chemistry , Molecular Docking Simulation , Cyclooxygenase 2 , Quercetin/analysis , Plant Roots/chemistry , Anthraquinones/pharmacology , Anthraquinones/therapeutic use , Plant Extracts/therapeutic use , Plant Extracts/toxicity , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/analysis , Glycosides/chemistry , Inflammation/drug therapy , Methyl Ethers/analysis , Phytochemicals/therapeutic use , Phytochemicals/toxicity
12.
Mol Med ; 30(1): 39, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493090

ABSTRACT

OBJECTIVE: Anesthetics have been linked to cognitive alterations, particularly in the elderly. The current research delineates how Fibroblast Growth Factor 2 (Fgf2) modulates tau protein phosphorylation, contributing to cognitive impairments in aged rats upon sevoflurane administration. METHODS: Rats aged 3, 12, and 18 months were subjected to a 2.5% sevoflurane exposure to form a neurotoxicity model. Cognitive performance was gauged, and the GEO database was employed to identify differentially expressed genes (DEGs) in the 18-month-old cohort post sevoflurane exposure. Bioinformatics tools, inclusive of STRING and GeneCards, facilitated detailed analysis. Experimental validations, both in vivo and in vitro, examined Fgf2's effect on tau phosphorylation. RESULTS: Sevoflurane notably altered cognitive behavior in older rats. Out of 128 DEGs discerned, Fgf2 stood out as instrumental in regulating tau protein phosphorylation. Sevoflurane exposure spiked Fgf2 expression in cortical neurons, intensifying tau phosphorylation via the PI3K/AKT/Gsk3b trajectory. Diminishing Fgf2 expression correspondingly curtailed tau phosphorylation, neurofibrillary tangles, and enhanced cognitive capacities in aged rats. CONCLUSION: Sevoflurane elicits a surge in Fgf2 expression in aging rats, directing tau protein phosphorylation through the PI3K/AKT/Gsk3b route, instigating cognitive aberrations.


Subject(s)
Anesthetics, Inhalation , Cognitive Dysfunction , Methyl Ethers , Aged , Animals , Humans , Infant , Rats , Anesthetics, Inhalation/adverse effects , Anesthetics, Inhalation/metabolism , Cognition , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/metabolism , Hippocampus/metabolism , Methyl Ethers/pharmacology , Methyl Ethers/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Sevoflurane/metabolism , Sevoflurane/pharmacology , tau Proteins/metabolism , Fibroblast Growth Factor 2/metabolism
13.
BMC Anesthesiol ; 24(1): 94, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38454342

ABSTRACT

BACKGROUND: Remimazolam is a novel ultrashort-acting intravenous benzodiazepine sedative-hypnotic. The combination of remimazolam and sevoflurane does not increase respiratory sensitivity, produce bronchospasm, or cause other adverse conditions. We aimed to observe the effects of different remimazolam doses on the minimum alveolar concentration (MAC) of sevoflurane at end-expiration during laryngeal mask insertion and evaluate the effect of sex on the efficacy of the combination of remimazolam on the suppression of laryngeal mask insertion in adult patients. METHODS: We included 240 patients undergoing laparoscopic surgery under general anesthesia with elective placement of a laryngeal mask (120 males and 120 females). The patients were randomly divided into four groups according to sex: a control group (randomization for female patients, RF0; randomization for male patients, RM0) and three remimazolam groups (RF1, RM1 / RM2, RF2 / RM3, RF3), with 30 patients in each group. Induction was established by vital capacity rapid inhalation induction (VCRII), using 8% sevoflurane and 100% oxygen (6 L/min) in all patients. The (RF1, RM1), (RM2, RF2), and (RM3, RF3) groups were continuously injected with remimazolam at doses of 1, 1.5, and 2.0 mg/kg/h, respectively, while the (RM0, RF0) group was injected with an equal volume of normal saline. The end-expiratory concentration of sevoflurane was adjusted to a preset value after the patient's eyelash reflex disappeared. After the end-expiratory concentration of sevoflurane was kept stable for at least 15 min, the laryngeal mask was placed, and the patient's physical response to the mask placement was observed immediately and within 30 s of placement. The MAC of sevoflurane was measured using the up-and-down sequential method of Dixon. RESULTS: The calculated MAC of end-expiratory sevoflurane during laryngeal mask insertion in adult females was (2.94 ± 0.18)%, (2.69 ± 0.16)%, (2.32 ± 0.16)% and (1.83 ± 0.15)% in groups RF0, RF1, RF2 and RF3; (2.98 ± 0.18)%, (2.80 ± 0.19)%, (2.54 ± 0.15)% and (2.15 ± 0.15)% in male groups RM0, RM1, RM2 and RM3, respectively. The MAC values were significantly lower in the (RF1-RF3, RM1-RM3) group when compared to the (RF0, RM0) group. There was no significant difference between (RF0, RF1) and (RM0, RM1), but the MAC value of the RF2-RF3 group was significantly lower than that of the RM2-RM3 group. CONCLUSIONS: Remimazolam can effectively reduce end-expiratory sevoflurane MAC values during laryngeal mask placement in adults. When remimazolam was measured above 1.5 mg/kg/h, the effect of inhibiting laryngeal mask implantation in female patients was stronger than that in male patients. Remimazolam at a dose of 1-2 mg/kg/h combined with sevoflurane induction can be safely and effectively used in these patients.


Subject(s)
Anesthetics, Inhalation , Laryngeal Masks , Methyl Ethers , Adult , Humans , Male , Female , Sevoflurane , Benzodiazepines
14.
CNS Neurosci Ther ; 30(2): e14553, 2024 02.
Article in English | MEDLINE | ID: mdl-38334231

ABSTRACT

In recent years, sevoflurane and isoflurane are the most popular anesthetics in general anesthesia for their safe, rapid onset, and well tolerant. Nevertheless, many studies reported their neurotoxicity among pediatric and aged populations. This effect is usually manifested as cognitive impairment such as perioperative neurocognitive disorders. The wide application of sevoflurane and isoflurane during general anesthesia makes their safety a major health concern. Evidence indicates that iron dyshomeostasis and ferroptosis may establish a role in neurotoxicity of sevoflurane and isoflurane. However, the mechanisms of sevoflurane- and isoflurane-induced neuronal injury were not fully understood, which poses a barrier to the treatment of its neurotoxicity. We, therefore, reviewed the current knowledge on mechanisms of iron dyshomeostasis and ferroptosis and aimed to promote a better understanding of their roles in sevoflurane- and isoflurane-induced neurotoxicity.


Subject(s)
Anesthetics, Inhalation , Ferroptosis , Isoflurane , Methyl Ethers , Humans , Child , Aged , Isoflurane/adverse effects , Sevoflurane/adverse effects , Anesthetics, Inhalation/adverse effects , Neurocognitive Disorders , Homeostasis
15.
J Psychosom Res ; 178: 111605, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38368651

ABSTRACT

BACKGROUND: Postoperative fatigue syndrome (POFS) is an important factor in postoperative recovery. However, the effect of anesthetic drugs on postoperative fatigue in female patients has been rarely studied. This study compared the effects of maintaining general anesthesia with propofol or sevoflurane on the incidence of POFS in patients undergoing laparoscopic hysterectomy. METHODS: This prospective, single-blind, randomized controlled trial enrolled patients scheduled for laparoscopic hysterectomy. Eligible patients were randomized into the propofol and sevoflurane groups. The primary outcome was the incidence of POFS within 30 Days, defined by a simplified identity consequence fatigue scale (ICFS-10) scores≥24 or Visual Analogue Scale (VAS) scores of fatigues>6. Secondary outcomes were perioperative grip strength, early ambulation and anal exhaust after surgery, and inpatient days. RESULTS: 32 participants were assigned to the propofol group (P) and 33 to the sevoflurane group (S). Incidence of POFS on postoperative D1 was P (8/32) vs. S (10/33) (p = 0.66, 95% confidence interval [CI]: 16.4-27.00); D3 P (2/32) vs. S (5/33) (p = 0.45,95% CI:5.96-23.76). POFS were not found on postoperative D5 and D30. There were no differences in perioperative grip strength, early ambulation and anal exhaust after surgery, and inpatient days between the two groups. CONCLUSIONS: POFS after scheduled laparoscopic hysterectomy was unaffected by anesthesia with propofol vs. sevoflurane. The incidence of POFS was highest on the first postoperative day, at 27.7%, and declined progressively over the postoperative 30 days. Trial registration Chinese Clinical Trial Registry (No. ChiCTR 2,000,033,861), registered on 14/06/2020).


Subject(s)
Laparoscopy , Methyl Ethers , Propofol , Humans , Female , Propofol/adverse effects , Sevoflurane/adverse effects , Prospective Studies , Single-Blind Method , Hysterectomy/adverse effects , Laparoscopy/adverse effects
16.
PeerJ ; 12: e16848, 2024.
Article in English | MEDLINE | ID: mdl-38371374

ABSTRACT

Background: The Index of Consciousness (IoC) is a new monitoring index of anesthesia depth reflecting the state of consciousness of the brain independently developed by China. The research on monitoring the depth of anesthesia mainly focuses on propofol, and bispectral index (BIS) is a sensitive and accurate objective index to evaluate the state of consciousness at home and abroad. This study mainly analyzed the effect of IoC on monitoring the depth of sevoflurane anesthesia and the consistency and accuracy with BIS when monitoring sevoflurane maintenance anesthesia. Objective: To investigate the monitoring value of the Index of Consciousness (IoC) for the depth of sevoflurane anesthesia in laparoscopic surgery. Methods: The study population consisted of 108 patients who experienced elective whole-body anesthesia procedures within the timeframe of April 2020 to June 2023 at our hospital. Throughout the anesthesia process, which encompassed induction and maintenance using inhaled sevoflurane, all patients were diligently monitored for both the Bispectral Index (BIS) and the Index of Consciousness (IoC). We conducted an analysis to assess the correlation between IoC and BIS throughout the anesthesia induction process and from the maintenance phase to the regaining of consciousness. To evaluate the predictive accuracy of IoC and BIS for the onset of unconsciousness during induction and the return of consciousness during emergence, we employed receiver operating characteristic (ROC) curve analysis. Results: The mean difference between BIS and IoC, spanning from the pre-anesthesia induction phase to the completion of propofol induction, was 1.3 (95% Limits of Agreement [-53.4 to 56.0]). Similarly, during the interval from the initiation of sevoflurane inhalation to the point of consciousness restoration, the average difference between BIS and IoC was 0.3 (95% LOA [-10.8 to 11.4]). No statistically significant disparities were observed in the data acquired from the two measurement methodologies during both the anesthesia induction process and the journey from maintenance to the regaining of consciousness (P > 0.05). The outcomes of the ROC curve analysis disclosed that the areas under the curve (AUC) for prognosticating the occurrence of loss of consciousness were 0.967 (95% CI [0.935-0.999]) for BIS and 0.959 (95% CI [0.924-0.993]) for IoC, with optimal threshold values set at 81 (sensitivity: 88.10%, specificity: 92.16%) and 77 (sensitivity: 79.55%, specificity: 95.45%) correspondingly. For the prediction of recovery of consciousness, the AUCs were 0.995 (95% CI [0.987-1.000]) for BIS and 0.963 (95% CI [0.916-1.000]) for IoC, each associated with optimal cutoff values of 76 (sensitivity: 92.86%, specificity: 100.00%) and 72 (sensitivity: 86.36%, specificity: 100.00%) respectively. Conclusion: The monitoring of sevoflurane anesthesia maintenance using IoC demonstrates a level of comparability to BIS, and its alignment with BIS during the maintenance phase of sevoflurane anesthesia is robust. IoC displays promising potential for effectively monitoring the depth of anesthesia.


Subject(s)
Anesthetics, Inhalation , Laparoscopy , Methyl Ethers , Propofol , Humans , Sevoflurane , Propofol/pharmacology , Consciousness , Anesthetics, Inhalation/pharmacology , Methyl Ethers/pharmacology , Monitoring, Intraoperative/methods , Anesthesia, General/methods
17.
Article in English | MEDLINE | ID: mdl-38387342

ABSTRACT

A rapid and practicable analytical method for the measurement of short-chain fatty acids (SCFAs) in human plasma was developed. The extraction procedure involved the use of acidified water and methyl tert-butyl ether (MTBE), while the separation and detection of SCFAs, including acetic, propionic, and butyric acids was carried out by using gas chromatography-mass spectrometry (GC-MS) technique. The novelty of the research involves reducing the analysis time (less than 7 min) by using the novel fast GC-MS method. A narrow-bore GC capillary column of dimensions 30 m × 0.25 mm ID × 0.25 µm df with acid-modified poly(ethylene glycol) stationary phase was employed for the chromatographic separation. The signals of target compounds were acquired in selected ion monitoring (SIM) mode monitoring a quantifier ion (Q) and two qualifier ions (q1 and q2). Linearity of the method, limits of detection (LoD) and quantification (LoQ) were evaluated. In detail, regression coefficients of the calibration curves were between 0.9960 and 0.9933; LoDs ranged from 0.02 µM to 0.03 µM, while LoQs from 0.06 µM to 0.10 µM.


Subject(s)
Fatty Acids, Volatile , Methyl Ethers , Humans , Gas Chromatography-Mass Spectrometry/methods , Fatty Acids, Volatile/analysis , Limit of Detection , Butyrates/analysis , Methyl Ethers/analysis , Fatty Acids
18.
Environ Sci Pollut Res Int ; 31(11): 16150-16163, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38319419

ABSTRACT

Understanding anaerobic biodegradation of ether oxygenates beyond MTBE in groundwater is important, given that it is replaced by ETBE as a gasoline additive in several regions. The lack of studies demonstrating anaerobic biodegradation of ETBE, and its product TBA, reflects the relative resistance of ethers and alcohols with a tertiary carbon atom to enzymatic attack under anoxic conditions. Anaerobic ETBE- or TBA-degrading microorganisms have not been characterized. Only one field study suggested anaerobic ETBE biodegradation. Anaerobic (co)metabolism of ETBE or TBA was reported in anoxic microcosms, indicating their biodegradation potential in anoxic groundwater systems. Non-isotopic methods, such as the detection of contaminant loss, metabolites, or ETBE- and TBA-degrading bacteria are not sufficiently sensitive to track anaerobic biodegradation in situ. Compound- and position-specific stable isotope analysis provides a means to study MTBE biodegradation, but isotopic fractionation of ETBE has only been studied with a few aerobic bacteria (εC -0.7 to -1.7‰, εH -11 to -73‰) and at one anoxic field site (δ2H-ETBE +14‰). Similarly, stable carbon isotope enrichment (δ13C-TBA +6.5‰) indicated TBA biodegradation at an anoxic field site. CSIA and PSIA are promising methods to detect anaerobic ETBE and TBA biodegradation but need to be investigated further to assess their full potential at field scale.


Subject(s)
Ethyl Ethers , Groundwater , Methyl Ethers , tert-Butyl Alcohol , Anaerobiosis , Biodegradation, Environmental , Carbon Isotopes/analysis , Carbon
19.
Anesthesiology ; 140(5): 890-905, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38207324

ABSTRACT

BACKGROUND: High-density electroencephalographic (EEG) monitoring remains underutilized in clinical anesthesia, despite its obvious utility in unraveling the profound physiologic impact of these agents on central nervous system functioning. In school-aged children, the routine practice of rapid induction with high concentrations of inspiratory sevoflurane is commonplace, given its favorable efficacy and tolerance profile. However, few studies investigate topographic EEG during the critical timepoint coinciding with loss of responsiveness-a key moment for anesthesiologists in their everyday practice. The authors hypothesized that high initial sevoflurane inhalation would better precipitate changes in brain regions due to inhomogeneities in maturation across three different age groups compared with gradual stepwise paradigms utilized by other investigators. Knowledge of these changes may inform strategies for agent titration in everyday clinical settings. METHODS: A total of 37 healthy children aged 5 to 10 yr underwent induction with 4% or greater sevoflurane in high-flow oxygen. Perturbations in anesthetic state were investigated in 23 of these children using 64-channel EEG with the Hjorth Laplacian referencing scheme. Topographical maps illustrated absolute, relative, and total band power across three age groups: 5 to 6 yr (n = 7), 7 to 8 yr (n = 8), and 9 to 10 yr (n = 8). RESULTS: Spectral analysis revealed a large shift in total power driven by increased delta oscillations. Well-described topographic patterns of anesthesia, e.g., frontal predominance, paradoxical beta excitation, and increased slow activity, were evident in the topographic maps. However, there were no statistically significant age-related changes in spectral power observed in a midline electrode subset between the groups when responsiveness was lost compared to the resting state. CONCLUSIONS: High initial concentration sevoflurane induction causes large-scale topographic effects on the pediatric EEG. Within the minute after unresponsiveness, this dosage may perturb EEG activity in children to an extent where age-related differences are not discernible.


Subject(s)
Anesthetics, Inhalation , Methyl Ethers , Child , Humans , Child, Preschool , Sevoflurane , Anesthetics, Inhalation/pharmacology , Electroencephalography , Anesthesia, General , Brain
20.
Environ Sci Process Impacts ; 26(2): 334-343, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38168809

ABSTRACT

Insulin resistance is closely related to many metabolic diseases and has become a serious public health problem worldwide. So, it is crucial to find its environmental pathogenic factors. Methyl tert-butyl ether (MTBE), a widely used unleaded gasoline additive, has been proven to affect glycolipid metabolism. However, results from population studies are lacking. For this purpose, the potential relationships between MTBE exposure and the triglyceride glucose (TyG) index, a useful surrogate marker of insulin resistance, were evaluated using a small-scale occupational population. In this study, 201 participants including occupational and non-occupational MTBE exposure workers were recruited from the Occupational Disease Prevention and Control Hospital of Huaibei, and their health examination information and blood samples with informed consent were collected. The internal exposure levels were assessed by detecting blood MTBE using solid-phase-micro-extraction gas chromatography-mass spectrometry. Then the adjusted linear regression model was used to assess the relationship between MTBE exposure and fasting plasma glucose (FPG), or TyG index. Then, receiver-operating-characteristic (ROC) curves were performed to calculate the optimal cut-off points. Multivariable and hierarchical logistic regression models were used to analyze the impact of MTBE exposure on the risk of insulin resistance. Obvious correlations were observed between blood MTBE levels with TyG index (p = 0.016) and FPG (p = 0.001). Further analysis showed that using the mean of the TyG index (8.77) as a cutoff value had a good effect on reflecting the risk of insulin resistance. Multivariable logistic regression analysis also indicated that MTBE exposure was an independent risk factor for a high TyG index (OR = 1.088, p = 0.038), which indicated that MTBE exposure might be a new environmental pathogenic factor leading to insulin resistance, and MTBE exposure might increase the risk of insulin resistance by independently elevating the TyG index in male gas station workers.


Subject(s)
Insulin Resistance , Methyl Ethers , Humans , Male , Triglycerides , Gas Chromatography-Mass Spectrometry , Biomarkers
SELECTION OF CITATIONS
SEARCH DETAIL
...