Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 429
Filter
1.
Front Cell Infect Microbiol ; 14: 1413787, 2024.
Article in English | MEDLINE | ID: mdl-38836053

ABSTRACT

Background: Trimethylamine-N-oxide (TMAO) is produced by hepatic flavin-containing monooxygenase 3 (FMO3) from trimethylamine (TMA). High TMAO level is a biomarker of cardiovascular diseases and metabolic disorders, and it also affects periodontitis through interactions with the gastrointestinal microbiome. While recent findings indicate that periodontitis may alter systemic TMAO levels, the specific mechanisms linking these changes and particular oral pathogens require further clarification. Methods: In this study, we established a C57BL/6J male mouse model by orally administering Porphyromonas gingivalis (P. gingivalis, Pg), Fusobacterium nucleatum (F. nucleatum, Fn), Streptococcus mutans (S. mutans, Sm) and PBS was used as a control. We conducted LC-MS/MS analysis to quantify the concentrations of TMAO and its precursors in the plasma and cecal contents of mice. The diversity and composition of the gut microbiome were analyzed using 16S rRNA sequencing. TMAO-related lipid metabolism and enzymes in the intestines and liver were assessed by qPCR and ELISA methods. We further explored the effect of Pg on FMO3 expression and lipid molecules in HepG2 cells by stimulating the cells with Pg-LPS in vitro. Results: The three oral pathogenic bacteria were orally administered to the mice for 5 weeks. The Pg group showed a marked increase in plasma TMAO, betaine, and creatinine levels, whereas no significant differences were observed in the gut TMAO level among the four groups. Further analysis showed similar diversity and composition in the gut microbiomes of both the Pg and Fn groups, which were different from the Sm and control groups. The profiles of TMA-TMAO pathway-related genera and gut enzymes were not significantly different among all groups. The Pg group showed significantly higher liver FMO3 levels and elevated lipid factors (IL-6, TG, TC, and NEFA) in contrast to the other groups. In vitro experiments confirmed that stimulation of HepG2 cells with Pg-LPS upregulated the expression of FMO3 and increased the lipid factors TC, TG, and IL-6. Conclusion: This study conclusively demonstrates that Pg, compared to Fn and Sm, plays a critical role in elevating plasma TMAO levels and significantly influences the TMA-TMAO pathway, primarily by modulating the expression of hepatic FMO3 and directly impacting hepatic lipid metabolism.


Subject(s)
Gastrointestinal Microbiome , Methylamines , Mice, Inbred C57BL , Oxygenases , Porphyromonas gingivalis , Animals , Male , Methylamines/metabolism , Methylamines/blood , Humans , Mice , Oxygenases/metabolism , Porphyromonas gingivalis/metabolism , Fusobacterium nucleatum/metabolism , Metabolic Networks and Pathways , Hep G2 Cells , Lipid Metabolism , Disease Models, Animal , Periodontitis/microbiology , Periodontitis/metabolism , Liver/metabolism , RNA, Ribosomal, 16S/genetics , Tandem Mass Spectrometry , Mouth/microbiology
2.
Nutr Diabetes ; 14(1): 42, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858392

ABSTRACT

BACKGROUND: Vitamin D was shown to directly exert a protective effect on diabetic kidney disease (DKD) in our previous study. However, whether it has an effect on perirenal adipose tissue (PRAT) or the intestinal flora and its metabolites (trimethylamine N-oxide, TMAO) is unclear. METHODS: DKD mice were received different concentrations of 1,25-(OH)2D3 for 2 weeks. Serum TNF-α levels and TMAO levels were detected. 16S rRNA sequencing was used to analyze gut microbiota. qPCR was used to detect the expression of TLR4, NF-Κb, PGC1α, and UCP-1 in kidney and adipose tissue. Histological changes in kidney and perirenal adipose tissue were observed using HE, PAS, Masson and oil red staining. Immunofluorescence and immunohistochemistry were used to detect the expression of VDR, PGC1α, podocin, and UCP-1 in kidney and adipose tissue. Electron microscopy was used to observe the pathological changes in the kidney. VDR knockout mice were constructed to observe the changes in the gut and adipose tissue, and immunofluorescence and immunohistochemistry were used to detect the expression of UCP-1 and collagen IV in the kidney. RESULTS: 1,25-(OH)2D3 could improve the dysbiosis of the intestinal flora of mice with DKD, increase the abundance of beneficial bacteria, decrease the abundance of harmful bacteria, reduce the pathological changes in the kidney, reduce fat infiltration, and downregulate the expression of TLR4 and NF-κB in kidneys. The serum TMAO concentration in mice with DKD was significantly higher than that of the control group, and was significantly positively correlated with the urine ACR. In addition, vitamin D stimulated the expression of the surface markers PGC1α, UCP-1 and VDR in the PRAT in DKD mice, and TMAO downregulated the expression of PRAT and renal VDR. CONCLUSIONS: The protective effect of 1,25-(OH)2D3 in DKD mice may affect the intestinal flora and its related metabolite TMAO on perirenal fat and kidneys.


Subject(s)
Diabetic Nephropathies , Gastrointestinal Microbiome , Kidney , Methylamines , Mice, Knockout , Receptors, Calcitriol , Animals , Gastrointestinal Microbiome/drug effects , Mice , Kidney/metabolism , Methylamines/metabolism , Methylamines/blood , Male , Receptors, Calcitriol/metabolism , Diabetic Nephropathies/metabolism , Adipose Tissue/metabolism , Mice, Inbred C57BL , Vitamin D/pharmacology , Calcitriol/pharmacology
3.
Alzheimers Res Ther ; 16(1): 113, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769578

ABSTRACT

BACKGROUND: The gut-derived metabolite Trimethylamine N-oxide (TMAO) and its precursors - betaine, carnitine, choline, and deoxycarnitine - have been associated with an increased risk of cardiovascular disease, but their relation to cognition, neuroimaging markers, and dementia remains uncertain. METHODS: In the population-based Rotterdam Study, we used multivariable regression models to study the associations between plasma TMAO, its precursors, and cognition in 3,143 participants. Subsequently, we examined their link to structural brain MRI markers in 2,047 participants, with a partial validation in the Leiden Longevity Study (n = 318). Among 2,517 participants, we assessed the risk of incident dementia using multivariable Cox proportional hazard models. Following this, we stratified the longitudinal associations by medication use and sex, after which we conducted a sensitivity analysis for individuals with impaired renal function. RESULTS: Overall, plasma TMAO was not associated with cognition, neuroimaging markers or incident dementia. Instead, higher plasma choline was significantly associated with poor cognition (adjusted mean difference: -0.170 [95% confidence interval (CI) -0.297;-0.043]), brain atrophy and more markers of cerebral small vessel disease, such as white matter hyperintensity volume (0.237 [95% CI: 0.076;0.397]). By contrast, higher carnitine concurred with lower white matter hyperintensity volume (-0.177 [95% CI: -0.343;-0.010]). Only among individuals with impaired renal function, TMAO appeared to increase risk of dementia (hazard ratio (HR): 1.73 [95% CI: 1.16;2.60]). No notable differences were observed in stratified analyses. CONCLUSIONS: Plasma choline, as opposed to TMAO, was found to be associated with cognitive decline, brain atrophy, and markers of cerebral small vessel disease. These findings illustrate the complexity of relationships between TMAO and its precursors, and emphasize the need for concurrent study to elucidate gut-brain mechanisms.


Subject(s)
Cognition , Dementia , Magnetic Resonance Imaging , Methylamines , Neuroimaging , Humans , Methylamines/blood , Male , Female , Dementia/blood , Dementia/diagnostic imaging , Dementia/epidemiology , Aged , Middle Aged , Cognition/physiology , Brain/diagnostic imaging , Choline/blood , Biomarkers/blood , Prospective Studies
4.
Aging (Albany NY) ; 16(9): 8306-8319, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38742944

ABSTRACT

BACKGROUND: Glioblastoma Multiforme (GBM) is one of the most aggressive and fatal brain cancers. The study of metabolites could be crucial for understanding GBM's biology and reveal new treatment strategies. METHODS: The GWAS data for GBM were sourced from the FinnGen database. A total of 1400 plasma metabolites were collected from the GWAS Catalog dataset. The cerebrospinal fluid (CSF) metabolites data were collected from subsets of participants in the WADRC and WRAP studies. We utilized the inverse variance weighting (IVW) method as the primary tool to explore the causal relationship between metabolites in plasma and CSF and glioblastoma, ensuring the exclusion of instances with horizontal pleiotropy. Additionally, four supplementary analytical methods were applied to reinforce our findings. Aberrant results were identified and omitted based on the outcomes of the leave-one-out sensitivity analysis. Conclusively, a reverse Mendelian Randomization analysis was also conducted to further substantiate our results. RESULTS: The study identified 69 plasma metabolites associated with GBM. Of these, 40 metabolites demonstrated a significant positive causal relationship with GBM, while 29 exhibited a significant negative causal association. Notably, Trimethylamine N-oxide (TMAO) levels in plasma, not CSF, were found to be a significant exposure factor for GBM (OR = 3.1627, 95% CI = (1.6347, 6.1189), P = 0.0006). The study did not find a reverse causal relationship between GBM and plasma TMAO levels. CONCLUSIONS: This research has identified 69 plasma metabolites potentially associated with the incidence of GBM, among which TMAO stands out as a promising candidate for an early detectable biomarker for GBM.


Subject(s)
Brain Neoplasms , Genome-Wide Association Study , Glioblastoma , Mendelian Randomization Analysis , Humans , Glioblastoma/cerebrospinal fluid , Glioblastoma/blood , Glioblastoma/genetics , Brain Neoplasms/cerebrospinal fluid , Brain Neoplasms/genetics , Brain Neoplasms/blood , Biomarkers, Tumor/cerebrospinal fluid , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Methylamines/blood , Methylamines/cerebrospinal fluid , Female , Male
5.
BMC Cardiovasc Disord ; 24(1): 265, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773380

ABSTRACT

BACKGROUND: Trimethylamine N-oxide (TMAO) is a metabolite derived from the gut microbiota and has been reported to be correlated with cardiovascular diseases. Although TMAO is associated with the severity of coronary artery disease in subjects with coronary heart disease (CHD) history. However, the correlation between TMAO and the atherosclerotic burden in newly diagnosed cases of CHD is unknown. METHODS: In this hospital-based study, we enrolled 429 individuals newly diagnosed with CHD undergoing coronary angiography. Plasma TMAO was assessed before coronary angiography. SYNTAX score was computed during coronary angiography to estimate the coronary artery atherosclerotic burden. Both linear and logistic regression analyses were conducted to explore the correlation between plasma TMAO levels and SYNTAX score in newly diagnosed CHD population. RESULTS: The TMAO in patients with SYNTAX ≥ 33 and subjects with SYNTAX < 23 were 6.10 (interquartile range [IQR]: 3.53 to 9.15) µmol/L and 4.90 [IQR: 3.25 to 7.68] µmol/L, respectively. Linear regression adjusting for traditional risk factors showed TMAO level was positively correlated with SYNTAX score (ß = 0.179; p = 0.006) in CHD population. When TMAO was added to models with traditional risk factors, the predictive value improved significantly, with the receiver operating characteristic curve (AUC) increased from 0.7312 to 0.7502 (p = 0.003). Stratified analysis showed that the correlations did not hold true for subjects who were non-smoker or with histories of diabetes. None of the stratifying factors significantly altered the correlation (all p for interaction < 0.05). CONCLUSIONS: We found a positive linear correlation between plasma TMAO and SYNTAX score among newly diagnosed CHD individuals in Chinese population.


Subject(s)
Biomarkers , Coronary Angiography , Coronary Artery Disease , Methylamines , Predictive Value of Tests , Severity of Illness Index , Humans , Methylamines/blood , Male , Female , Middle Aged , Coronary Artery Disease/blood , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/diagnosis , Biomarkers/blood , Aged , Risk Factors , Up-Regulation , Plaque, Atherosclerotic/blood , Risk Assessment
6.
Zhonghua Xin Xue Guan Bing Za Zhi ; 52(4): 405-412, 2024 Apr 24.
Article in Chinese | MEDLINE | ID: mdl-38644256

ABSTRACT

Objective: To evaluate the predictive value of combined serum levels of trimethylamine N-oxide (TMAO) and trimethyllysine (TML) for poor prognosis in patients with heart failure. Methods: This single-center prospective cohort study included hospitalized patients with heart failure and complete baseline data from the Department of Cardiology at Ruijin Hospital, Shanghai Jiao Tong University School of Medicine from June 2017 to December 2020. Patients were categorized into four groups based on median serum levels of TMAO and TML after admission: TMAO low level TML low level group (TMAO<9.7 µmol/L, TML<0.73 µmol/L), TMAO low level TML high level group (TMAO<9.7 µmol/L, TML≥0.73 µmol/L), TMAO high level TML low level group (TMAO≥9.7 µmol/L, TML<0.73 µmol/L) and TMAO high level TML high level group (TMAO≥9.7 µmol/L, TML≥0.73 µmol/L). The primary endpoint was a composite endpoint of cardiovascular death and readmission for heart failure. Multiple factor Cox regression analysis was conducted to evaluate the correlation between serum TMAO and TML levels and poor prognosis in patients with heart failure. Results: A total of 471 patients with heart failure were included, with an mean age of (62.5±12.0) years and a median follow-up time of 1.61 (1.06, 2.90) years. Multivariate Cox regression analysis showed that after adjusting for age, gender, and traditional risk factors, the TMAO high level TML high level group had a higher incidence of primary endpoint events compared to the TMAO low level TML low level group (HR=1.71, 95%CI 1.05-2.77, P=0.03). Conclusion: Elevated serum levels of both TMAO and TML can effectively predict the occurrence of long-term adverse events in patients with heart failure.


Subject(s)
Heart Failure , Lysine/analogs & derivatives , Methylamines , Humans , Heart Failure/blood , Methylamines/blood , Prognosis , Prospective Studies , Female , Male , Predictive Value of Tests , Risk Factors , Middle Aged
7.
Biosci Rep ; 44(5)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38669041

ABSTRACT

BACKGROUND: Trimethylamine N-oxide (TMAO) is synthesized by the intestinal microbiota and is an independent predictor of cardiovascular disease (CVD). However, its underlying mechanisms remain unclear. We investigated TMAO levels across different CVD-risk patient groups, and evaluated associations between TMAO and vascular alterations (e.g., arterial stiffness, intima-media thickness [IMT], and the presence and grade of carotid artery plaques [CAPs]). METHODS: We examined 95 patients (58.5 ± 7.3 years): 40 with clinical atherosclerotic cardiovascular disease (ASCVD), 40 with atherosclerosis risk factors (RF), and 15 controls. Arterial stiffness was measured by Carotid-Femoral Pulse Wave Velocity (C-F PWV). B-mode ultrasound was used to evaluate the presence and grade of CAPs and carotid IMT (CIMT). TMAO was measured by high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) and results were presented as the median (interquartile range). RESULTS: TMAO levels were higher in patients with ASCVD (251.5 [164.5] µg/l) when compared with patients with RFs (194.0 [174] µg/l, P=0.04) and controls (122.0 (77) µg/l, P<0.001). A significant correlation was observed between TMAO and PWV (r = 0.31, P=0.003), which was not confirmed after adjustment for RFs. TMAO levels were significantly correlated with plaque score (r = 0.46, P<0.001) and plaque height (r=0.41, P=0.003), and were independent predictors for grade III plaques (odds ratio [OR] = 1.002, confidence interval (CI) 95%: 1.000047-1.003, P=0.044). CONCLUSIONS: TMAO levels are increased with expanded CVD risk. Across different types of vascular damage, TMAO is associated with atherosclerotic changes.


Subject(s)
Cardiovascular Diseases , Carotid Intima-Media Thickness , Methylamines , Vascular Stiffness , Humans , Methylamines/blood , Middle Aged , Male , Female , Aged , Cardiovascular Diseases/etiology , Heart Disease Risk Factors , Atherosclerosis/diagnostic imaging , Atherosclerosis/blood , Plaque, Atherosclerotic , Case-Control Studies , Risk Factors , Biomarkers/blood , Carotid Artery Diseases/diagnostic imaging , Carotid Artery Diseases/blood
8.
Kidney Int ; 105(6): 1239-1253, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38431216

ABSTRACT

Intestinal microbiota and their metabolites affect systemic inflammation and kidney disease outcomes. Here, we investigated the key metabolites associated with the acute kidney injury (AKI)-to chronic kidney disease (CKD) transition and the effect of antibiotic-induced microbiota depletion (AIMD) on this transition. In 61 patients with AKI, 59 plasma metabolites were assessed to determine the risk of AKI-to-CKD transition. An AKI-to-CKD transition murine model was established four weeks after unilateral ischemia-reperfusion injury (IRI) to determine the effects of AIMD on the gut microbiome, metabolites, and pathological responses related to CKD transition. Human proximal tubular epithelial cells were challenged with CKD transition-related metabolites, and inhibitory effects of NADPH oxidase 2 (NOX2) signals were tested. Based on clinical metabolomics, plasma trimethylamine N-oxide (TMAO) was associated with a significantly increased risk for AKI-to-CKD transition [adjusted odds ratio 4.389 (95% confidence interval 1.106-17.416)]. In vivo, AIMD inhibited a unilateral IRI-induced increase in TMAO, along with a decrease in apoptosis, inflammation, and fibrosis. The expression of NOX2 and oxidative stress decreased after AIMD. In vitro, TMAO induced fibrosis with NOX2 activation and oxidative stress. NOX2 inhibition successfully attenuated apoptosis, inflammation, and fibrosis with suppression of G2/M arrest. NOX2 inhibition (in vivo) showed improvement in pathological changes with a decrease in oxidative stress without changes in TMAO levels. Thus, TMAO is a key metabolite associated with the AKI-to-CKD transition, and NOX2 activation was identified as a key regulator of TMAO-related AKI-to-CKD transition both in vivo and in vitro.


Subject(s)
Acute Kidney Injury , Anti-Bacterial Agents , Disease Models, Animal , Gastrointestinal Microbiome , Methylamines , NADPH Oxidase 2 , Oxidative Stress , Renal Insufficiency, Chronic , Acute Kidney Injury/chemically induced , Acute Kidney Injury/microbiology , Acute Kidney Injury/prevention & control , Acute Kidney Injury/pathology , Acute Kidney Injury/drug therapy , Methylamines/blood , Methylamines/metabolism , Animals , NADPH Oxidase 2/antagonists & inhibitors , NADPH Oxidase 2/metabolism , Humans , Male , Gastrointestinal Microbiome/drug effects , Renal Insufficiency, Chronic/microbiology , Renal Insufficiency, Chronic/complications , Middle Aged , Mice , Oxidative Stress/drug effects , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/pharmacology , Mice, Inbred C57BL , Female , Reperfusion Injury/prevention & control , Aged , Apoptosis/drug effects , Disease Progression
9.
Br J Nutr ; 131(11): 1915-1923, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38443197

ABSTRACT

It is inconclusive whether trimethylamine N-oxide (TMAO) and choline and related metabolites, namely trimethylamine (TMA), l-carnitine, betaine and dimethylglycine (DMG), are associated with non-alcoholic fatty liver disease (NAFLD). Our objective was to investigate these potential associations. Additionally, we sought to determine the mediating role of TMAO. In this 1:1 age- and sex-matched case-control study, a total of 150 pairs comprising NAFLD cases and healthy controls were identified. According to the fully adjusted model, after the highest tertile was compared with the lowest tertile, the plasma TMAO concentration (OR = 2·02 (95 % CI 1·04, 3·92); P trend = 0·003), l-carnitine concentration (OR = 1·79 (1·01, 3·17); P trend = 0·020) and DMG concentration (OR = 1·81 (1·00, 3·28); P trend = 0·014) were significantly positively associated with NAFLD incidence. However, a significantly negative association was found for plasma betaine (OR = 0. 50 (0·28, 0·88); P trend = 0·001). The restricted cubic splines model consistently indicated positive dose-response relationships between exposure to TMAO, l-carnitine, and DMG and NAFLD risk, with a negative association being observed for betaine. The corresponding AUC increased significantly from 0·685 (0·626, 0·745) in the traditional risk factor model to 0·769 (0·716, 0·822) when TMAO and its precursors were included (l-carnitine, betaine and choline) (P = 0·032). Mediation analyses revealed that 14·7 and 18·6 % of the excess NAFLD risk associated with l-carnitine and DMG, respectively, was mediated by TMAO (the P values for the mediating effects were 0·021 and 0·036, respectively). These results suggest that a higher concentration of TMAO is associated with increased NAFLD risk among Chinese adults and provide evidence of the possible mediating role of TMAO.


Subject(s)
Betaine , Carnitine , Choline , Methylamines , Non-alcoholic Fatty Liver Disease , Humans , Methylamines/blood , Choline/blood , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/etiology , Female , Male , Case-Control Studies , Middle Aged , Betaine/blood , Carnitine/blood , Carnitine/analogs & derivatives , Adult , Risk Factors , Sarcosine/analogs & derivatives , Sarcosine/blood , China/epidemiology , Incidence
10.
Biosci Biotechnol Biochem ; 88(6): 648-655, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38490741

ABSTRACT

Lysophosphatidylcholine (LPC) is present in various foods and contains a choline moiety such as in glycerophosphocholine (GPC). However, the potential of LPC as a choline source remains unclear. This study investigated the single-dose pharmacokinetics of 480 mg soy-derived LPC in 12 healthy men compared with that of either soy oil with the same lipid amount (placebo) or GPC with the same choline amount. Both LPC and GPC supplementation increased plasma choline, serum phospholipid, and serum triglyceride concentrations, but neither of them significantly elevated plasma trimethylamine N-oxide concentration. In addition, although the intake of LPC slightly increased plasma LPC16:0, LPC18:2, and total LPC concentrations, their concentrations remained within physiological ranges. No adverse events were attributed to the LPC supplementation. To the best of our knowledge, this study is the first to compare LPC and GPC pharmacokinetics in humans and shows that LPC can be a source of choline.


Subject(s)
Choline , Glycerylphosphorylcholine , Glycine max , Lysophosphatidylcholines , Humans , Male , Lysophosphatidylcholines/blood , Glycerylphosphorylcholine/pharmacokinetics , Glycerylphosphorylcholine/blood , Choline/pharmacokinetics , Choline/blood , Adult , Glycine max/chemistry , Dietary Supplements , Young Adult , Triglycerides/blood , Methylamines/blood , Methylamines/pharmacokinetics
11.
Cancer ; 130(11): 1982-1990, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38285606

ABSTRACT

BACKGROUND: Dietary intake influences gut microbiome composition, which in turn may be associated with colorectal cancer (CRC). Associations of the gut microbiome with colorectal carcinogenesis may be mediated through bacterially regulated, metabolically active metabolites, including trimethylamine N-oxide (TMAO) and its precursors, choline, L-carnitine, and betaine. METHODS: Prospective associations of circulating TMAO and its precursors with CRC risk were investigated. TMAO, choline, betaine, and L-carnitine were measured in baseline serum samples from 761 incident CRC cases and 1:1 individually matched controls in the prospective Prostate, Lung, Colorectal, Ovarian Cancer Screening Trial Cohort using targeted fully quantitative liquid chromatography tandem mass spectrometry panels. Prospective associations of the metabolites with CRC risk, using multivariable conditional logistic regression, were measured. Associations of a priori-selected dietary exposures with the four metabolites were also investigated. RESULTS: TMAO and its precursors were not associated with CRC risk overall, but TMAO and choline were positively associated with higher risk for distal CRC (continuous ORQ90 vs. Q10 [95% CI] = 1.90 [CI, 1.24-2.92; p = .003] and 1.26 [1.17-1.36; p < .0001], respectively). Conversely, choline was inversely associated with rectal cancer (ORQ90 vs. Q10 [95% CI] = 0.77 [0.76-0.79; p < .001]). Red meat, which was previously associated with CRC risk in the Prostate, Lung, Colorectal, Ovarian Cancer Screening Trial Cohort , was positively associated with TMAO (Spearman rho = 0.10; p = .0003). CONCLUSIONS: Serum TMAO and choline may be associated with higher risk of distal CRC, and red meat may be positively associated with serum TMAO. These findings provide insight into a potential microbially mediated mechanism underlying CRC etiology.


Subject(s)
Choline , Colorectal Neoplasms , Early Detection of Cancer , Methylamines , Prostatic Neoplasms , Humans , Methylamines/blood , Male , Female , Colorectal Neoplasms/blood , Colorectal Neoplasms/epidemiology , Middle Aged , Aged , Prostatic Neoplasms/blood , Prostatic Neoplasms/epidemiology , Prostatic Neoplasms/diagnosis , Choline/blood , Early Detection of Cancer/methods , Prospective Studies , Carnitine/blood , Ovarian Neoplasms/blood , Ovarian Neoplasms/epidemiology , Lung Neoplasms/blood , Lung Neoplasms/epidemiology , Case-Control Studies , Betaine/blood , Risk Factors , Gastrointestinal Microbiome
12.
Medicine (Baltimore) ; 103(1): e36784, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38181288

ABSTRACT

BACKGROUND: The gut microbiota-dependent metabolite trimethylamine N-oxide (TMAO) has recently been recognized to be one of the risk factors for cardiovascular disease (CVD). However, there is a scarcity of data on the relationship between circulating TMAO levels and hypertension in patients with CVD. Meta analysis and a dose-response relationship were used in this study to assess the relationship between circulating trimethylamine N-oxide levels and the risk of hypertension in patients with CVD. METHODS: CNKI, Wanfang Database, Pubmed, Embase, Cochrane Library, and Web of Science were searched up to June 01, 2023. Meta-analysis and dose-response analysis of relative risk data from prospective cohort studies reporting on the relationship between circulating TMAO levels and hypertension risk in patients with CVD were conducted. RESULTS: Fifteen studies with a total of 15,498 patients were included in the present meta-analysis. Compared with a lower circulating TMAO level, a higher TMAO level was associated with a higher risk of hypertension in patients with CVD (RR = 1.14,95%CI (1.08, 1.20)). And the higher the TMAO level, the greater the risk of hypertension. The dose-response analysis revealed a linear dose-response relationship between circulating TMAO levels and the risk of hypertension in patients with CVD. The risk of hypertension increased by 1.014% when the circulating TMAO level increased by 1 µ mol/L. CONCLUSION: In patients with CVD, the level of circulating TMAO is significantly related to the risk of hypertension. The risk of hypertension increased by 1.014% for every 1 µ mol/L increase in circulating TMAO levels.


Subject(s)
Cardiovascular Diseases , Hypertension , Methylamines , Humans , Cardiovascular Diseases/blood , Cardiovascular Diseases/epidemiology , Hypertension/blood , Hypertension/epidemiology , Methylamines/blood , Prospective Studies
13.
Clin Nephrol ; 100(6): 275-283, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37877299

ABSTRACT

BACKGROUND: Trimethylamine N-oxide (TMAO), a gut microbiota-derived metabolite, has emerged as a new potentially important cause of increased atherosclerosis and cardiovascular risk in chronic kidney disease (CKD) patients. However, the possible causes whereby TMAO potentiates atherosclerosis development remain poorly defined. The strong association between gut microbiota and obesity suggested that the TMAO pathway may be linked to the pathogenesis of obesity. MATERIALS AND METHODS: A total of 184 hemodialysis (HD) patients and 38 healthy controls were enrolled in the study from March 2019 to May 2019. We evaluated visceral fat area (VFA) by anthropometric measurement and measured serum TMAO concentrations using liquid chromatography/differential ion mobility spectrometry tandem mass spectrometry. We also examined the relationship between TMAO levels and visceral fat accumulation. RESULTS: TMAO level was markedly higher in HD patients than in control subjects (5.80 (3.96, 9.46) vs. 0.18 (0.11, 0.32) µg/mL, p < 0.01), and its level in diabetic HD patients was significantly higher than in nondiabetic patients (6.93 (4.67, 11.40) vs. 5.25 (3.78, 8.02) µg/mL, p < 0.01). A significant positive correlation was found between serum TMAO level and VFA in these patients (r = 0.282, p = 0.005). Multiple regression analysis showed that Ln(TMAO) was independently associated with Ln(VFA) in HD patients (p = 0.008). CONCLUSION: Our results showed that there was a significant positive correlation between serum TMAO levels and visceral fat in HD patients, which suggested that TMAO may predict cardiovascular risk through increased visceral fat.


Subject(s)
Atherosclerosis , Intra-Abdominal Fat , Methylamines , Renal Dialysis , Humans , Obesity , Renal Dialysis/adverse effects , Methylamines/blood
14.
Zhonghua Xin Xue Guan Bing Za Zhi ; 50(7): 684-689, 2022 Jul 24.
Article in Chinese | MEDLINE | ID: mdl-35856225

ABSTRACT

Objective: To explore the value of the assessment of plasma trimethylamine N-oxide (TMAO) combined with N-terminal pro-B-type natriuretic peptide (NT-proBNP) on predicting the all-cause mortality, length of hospitalization, and hospital cost in ischemic heart failure (IHF) patients. Methods: This prospective cohort study included 189 patients (157 males, mean age (64.0±10.5) years) with a left ventricular ejection fraction<45% caused by coronary artery disease, who hospitalized in our department from March 2016 to December 2020. Baseline data, including demographics, comorbid conditions and laboratory examination, were analyzed. The cumulative rate of all-cause mortality was evaluated using the Kaplan-Meier method and compared between the groups according to the log-rank test. Relative risks were reported as hazard ratios (HR) and 95% confidence interval (95%CI) calculated using the Cox proportional-hazards analysis, with stepwise adjustment for covariables. Spearman correlation analysis was then performed to determine the relationship between TMAO combined with NT-proBNP and length of hospitalization and hospital cost. Results: There were 50 patients in the low TMAO+low NT-proBNP group, 89 patients in high TMAO or high NT-proBNP group, 50 patients in high TMAO+high NT-proBNP group. The mean follow-up period was 3.0 years. Death occurred in 70 patients (37.0%), 27 patients (54.0%) in high TMAO+high NT-proBNP group, 29 patients (32.6%) in high TMAO or high NT-proBNP group and 14 patients (28.0%) in low TMAO+low NT-proBNP group. TMAO, in combination with NT-proBNP, improved all-cause mortality prediction in IHF patients when stratified as none, one or both biomarker(s) elevation, with the highest risk of all-cause mortality in high TMAO+high NT-proBNP group (HR=3.62, 95%CI 1.89-6.96, P<0.001). ROC curve analysis further confirmed that TMAO combined with NT-proBNP strengthened the prediction performance on the risk of all-cause death (AUC=0.727(95%CI 0.640-0.813), sensitivity 55.0%, characteristic 83.1%). Spearman correlation analysis showed that IHF patients with high TMAO and high NT-proBNP were positively associated with longer duration of hospitalization (r=0.191,P=0.009), but not associated with higher hospital cost (r=0.030, P=0.686). Conclusions: TMAO combined with NT-proBNP are valuable prediction tool on risk stratification of patients with IHF, and those with two biomarkers elevation face the highest risk of mortality during follow-up period, and are associated with the longer hospital stay.


Subject(s)
Heart Failure , Methylamines , Natriuretic Peptide, Brain , Aged , Biomarkers/blood , Female , Heart Failure/blood , Heart Failure/diagnosis , Hospitalization , Humans , Male , Methylamines/blood , Middle Aged , Natriuretic Peptide, Brain/blood , Peptide Fragments , Prognosis , Prospective Studies
15.
Oxid Med Cell Longev ; 2022: 1599747, 2022.
Article in English | MEDLINE | ID: mdl-35242275

ABSTRACT

Trimethylamine-N-oxide (TMAO), an intestinal flora metabolite of choline, may aggravate atherosclerosis by inducing a chronic inflammatory response and thereby promoting the occurrence of cerebrovascular diseases. Knowledge about the influence of TMAO-related inflammatory response on the pathological process of acute stroke is limited. This study was designed to explore the effects of TMAO on neuroinflammation, brain injury severity, and long-term neurologic function in mice with acute intracerebral hemorrhage (ICH). We fed mice with either a regular chow diet or a chow diet supplemented with 1.2% choline pre- and post-ICH. In this study, we measured serum levels of TMAO with ultrahigh-performance liquid chromatography-tandem mass spectrometry at 24 h and 72 h post-ICH. The expression level of P38-mitogen-protein kinase (P38-MAPK), myeloid differentiation factor 88 (MyD88), high-mobility group box1 protein (HMGB1), and interleukin-1ß (IL-1ß) around hematoma was examined by western blotting at 24 h. Microglial and astrocyte activation and neutrophil infiltration were examined at 72 h. The lesion was examined on days 3 and 28. Neurologic deficits were examined for 28 days. A long-term choline diet significantly increased serum levels of TMAO compared with a regular diet at 24 h and 72 h after sham operation or ICH. Choline diet-induced high serum levels of TMAO did not enhance the expression of P38-MAPK, MyD88, HMGB1, or IL-1ß at 24 h. However, it did increase the number of activated microglia and astrocytes around the hematoma at 72 h. Contrary to our expectations, it did not aggravate acute or long-term histologic damage or neurologic deficits after ICH. In summary, choline diet-induced high serum levels of TMAO increased the cellular inflammatory response probably by activating microglia and astrocytes. However, it did not aggravate brain injury or worsen long-term neurologic deficits. Although TMAO might be a potential risk factor for cerebrovascular diseases, this exploratory study did not support that TMAO is a promising target for ICH therapy.


Subject(s)
Astrocytes/metabolism , Brain Injuries/blood , Brain Injuries/complications , Cerebral Hemorrhage/blood , Cerebral Hemorrhage/complications , Choline/adverse effects , Diet/adverse effects , Methylamines/blood , Microglia/metabolism , Signal Transduction/drug effects , Acute Disease , Animals , Brain Injuries/microbiology , Cerebral Hemorrhage/microbiology , Disease Models, Animal , Gastrointestinal Microbiome , Inflammation/blood , Inflammation/chemically induced , Interleukin-1beta/metabolism , Male , Mice , Mice, Inbred C57BL , Neutrophil Infiltration/drug effects , Neutrophils/immunology , p38 Mitogen-Activated Protein Kinases/metabolism
16.
Eur J Nutr ; 61(5): 2357-2364, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35113194

ABSTRACT

PURPOSE: Some species of fish and seafood are high in trimethylamine N-oxide (TMAO), which accumulates in muscle where it protects against pressure and cold. Trimethylamine (TMA), the metabolic precursor to TMAO, is formed in fish during bacterial spoilage. Fish intake is promoted for its potential cardioprotective effects. However, numerous studies show TMAO has pro-atherothrombotic properties. Here, we determined the effects of fish or seafood consumption on circulating TMAO levels in participants with normal renal function. METHODS: TMAO and omega-3 fatty acid content were quantified across multiple different fish or seafood species by mass spectrometry. Healthy volunteers (n = 50) were recruited for three studies. Participants in the first study consented to 5 consecutive weekly blood draws and provided dietary recall for the 24 h preceding each draw. In the second study, TMAO levels were determined following defined low and high TMAO diets. Finally, participants consumed test meals containing shrimp, tuna, fish sticks, salmon or cod. TMAO levels were quantified by mass spectrometry in blood collected before and after dietary challenge. RESULTS: TMAO + TMA content varied widely across fish and seafood species. Consumption of fish sticks, cod, and to a lesser extent salmon led to significant increases in circulating TMAO levels. Within 1 day, circulating TMAO concentrations in all participants returned to baseline levels. CONCLUSIONS: We conclude that some fish and seafood contain high levels of TMAO, and may induce a transient elevation in TMAO levels in some individuals. Selection of low TMAO content fish is prudent for subjects with elevated TMAO, cardiovascular disease or impaired renal function.


Subject(s)
Fishes , Seafood , Animals , Bacteria , Diet , Fatty Acids, Omega-3 , Fishes/microbiology , Humans , Mass Spectrometry , Methylamines/blood , Seafood/microbiology
17.
Clin Nutr ; 41(2): 489-499, 2022 02.
Article in English | MEDLINE | ID: mdl-35007817

ABSTRACT

BACKGROUND & AIMS: Whether bioactive lysophospholipids (lyso-PLs) and trimethylamine-N-oxide (TMAO) serve as non-invasive biomarkers in early human hypercholesterolemia (HC) is unknown. This study aimed to assess whether serum lyso-PLs and plasma TMAO may be suitable susceptibility/risk biomarkers of HC in humans. Secondarily, we aimed to evaluate the relationships between targeted metabolites, diet composition and circulating liver transaminases, and verify these results in hamsters. METHODS: A targeted metabolomics and lipidomics approach determined plasma TMAO and serum lysophosphatidylcholines (lyso-PCs) and lysophosphatidylethanolamines (lyso-PEs) in low (L-LDL-c) and moderate to high (MH-LDL-c) LDL-cholesterol subjects. Additionally, the relationships between targeted metabolites, liver transaminases and diet, particularly fatty acid intake, were tested. In parallel, plasma and liver lyso-PL profiles were studied in 16 hamsters fed a moderate high-fat (HFD) or low-fat (LFD) diet for 30 days. RESULTS: Predictive models identified lyso-PC15:0 and lyso-PE18:2 as the most discriminant lyso-PLs among groups. In MH-LDL-c (n = 48), LDL-cholesterol and saturated FAs were positively associated with lyso-PC15:0, whereas in L-LDL-c (n = 70), LDL-cholesterol and polyunsaturated fatty acids (PUFAs) were negatively and positively related to lyso-PE18:2, respectively. Interestingly, in MH-LDL-c, the lower lyso-PE 18:2 concentrations were indicative of higher LDL-cholesterol levels. Intrahepatic accumulation of lyso-PLs-containing essential n-6 PUFAs, including lyso-PE18:2, were higher in HFD-fed hamsters than LFD-fed hamsters. CONCLUSIONS: Overall, results revealed a possible hepatic adaptive mechanism to counteract diet-induced steatosis in animal and hypercholesterolemia progression in humans. In particular, low serum lyso-PE18:2 suggests a suitable susceptibility/risk biomarker of HC in humans.


Subject(s)
Diet/statistics & numerical data , Disease Susceptibility/blood , Hypercholesterolemia/etiology , Lysophospholipids/blood , Methylamines/blood , Animals , Biomarkers/blood , Cholesterol, LDL/blood , Cricetinae , Cross-Sectional Studies , Diet/adverse effects , Dietary Fats/analysis , Disease Progression , Eating , Fatty Liver/diagnosis , Fatty Liver/etiology , Humans , Hypercholesterolemia/diagnosis , Liver/metabolism , Metabolome , Risk Assessment/methods
18.
J Nutr Biochem ; 100: 108906, 2022 02.
Article in English | MEDLINE | ID: mdl-34801688

ABSTRACT

Although eggs are a nutrient dense food delivering high quality protein and micronutrients, given that eggs are also rich in cholesterol and choline, whether egg intake is contraindicated for individuals at risk for cardiovascular disease (CVD) remains controversial. In this mini review, we provide a Precision Nutrition perspective, highlighting the importance of two factors: the effect of egg cholesterol on plasma cholesterol concentrations in most people and in cholesterol hyper-absorbers, and the effect of egg choline on plasma concentrations of trimethylamine-N-oxide (TMAO), a microbe-host co-metabolite independently associated with increased CVD risk. We discuss recent evidence from intervention studies showing that in most individuals egg intake does not have a deleterious effect on plasma lipid profiles, but also highlight that some individuals are cholesterol hyper-absorbers or individuals who are not able to maintain cholesterol homeostasis by suppressing endogenous cholesterol synthesis, and that for these individuals the intake of eggs and other dietary sources of cholesterol would be contraindicated. We also discuss the complex relationship between dietary sources of choline vs. phosphatidylcholine, the gut microbiome, and plasma TMAO concentrations, highlighting the high inter-individual variability in TMAO production and gut microbiome profiles among healthy individuals and those with metabolic conditions. Precision Nutrition approaches that allow the clinician to stratify risk and improve dietary recommendations for individual patients are desirable for improving patient compliance and health outcomes. More clinical studies are needed to determine how to identify individuals at risk for CVD for whom egg intake is contraindicated vs. those for whom egg intake is not associated with negative effects on plasma lipid profiles nor plasma TMAO concentrations.


Subject(s)
Cardiovascular Diseases/etiology , Cholesterol/blood , Eggs , Heart Disease Risk Factors , Methylamines/blood , Bacteria/metabolism , Biological Variation, Population , Cholesterol/analysis , Choline/analysis , Choline/metabolism , Diet , Eggs/adverse effects , Gastrointestinal Microbiome , Humans , Phosphatidylcholines/metabolism
19.
Nutr Metab Cardiovasc Dis ; 32(1): 210-219, 2022 01.
Article in English | MEDLINE | ID: mdl-34895998

ABSTRACT

BACKGROUND AND AIMS: Recent evidence links trimethylamine oxide (TMAO) to endothelial dysfunction, an early indicator of cardiovascular disease. We aimed to determine whether short-term consumption of a diet patterned after the 2010 Dietary Guidelines for Americans (DGA) would affect endothelial function, plasma TMAO concentrations, and cardiovascular disease risk, differently than a typical American Diet (TAD). METHODS AND RESULTS: An 8-wk controlled feeding trial was conducted in overweight/obese women pre-screened for insulin resistance and/or dyslipidemia. Women were randomized to a DGA or TAD group (n = 22/group). At wk0 (pre-intervention) and wk8 (post-intervention) vascular age was calculated; endothelial function (reactive hyperemia index (RHI)) and augmentation index (AI@75) were measured using EndoPAT, and plasma TMAO was measured by LC-MS/MS. Vascular age was reduced in DGA at wk8 compared to wk0 but TAD wk8 was not different from wk0 (DGA wk0: 54.2 ± 4.0 vs. wk8: 50.5 ± 3.1 (p = 0.05), vs. TAD wk8: 47.7 ± 2.3). Plasma TMAO concentrations, RHI, and AI@75 were not different between groups or weeks. CONCLUSION: Consumption of a diet based on the 2010 Dietary Guidelines for Americans for 8 weeks did not improve endothelial function or reduce plasma TMAO. CLINICALTRIALS.GOV: NCT02298725.


Subject(s)
Cardiometabolic Risk Factors , Diet , Methylamines/blood , Chromatography, Liquid , Female , Humans , Nutrition Policy , Obesity , Overweight , Tandem Mass Spectrometry , United States/epidemiology
20.
Chinese Journal of Cardiology ; (12): 684-689, 2022.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-940907

ABSTRACT

Objective: To explore the value of the assessment of plasma trimethylamine N-oxide (TMAO) combined with N-terminal pro-B-type natriuretic peptide (NT-proBNP) on predicting the all-cause mortality, length of hospitalization, and hospital cost in ischemic heart failure (IHF) patients. Methods: This prospective cohort study included 189 patients (157 males, mean age (64.0±10.5) years) with a left ventricular ejection fraction<45% caused by coronary artery disease, who hospitalized in our department from March 2016 to December 2020. Baseline data, including demographics, comorbid conditions and laboratory examination, were analyzed. The cumulative rate of all-cause mortality was evaluated using the Kaplan-Meier method and compared between the groups according to the log-rank test. Relative risks were reported as hazard ratios (HR) and 95% confidence interval (95%CI) calculated using the Cox proportional-hazards analysis, with stepwise adjustment for covariables. Spearman correlation analysis was then performed to determine the relationship between TMAO combined with NT-proBNP and length of hospitalization and hospital cost. Results: There were 50 patients in the low TMAO+low NT-proBNP group, 89 patients in high TMAO or high NT-proBNP group, 50 patients in high TMAO+high NT-proBNP group. The mean follow-up period was 3.0 years. Death occurred in 70 patients (37.0%), 27 patients (54.0%) in high TMAO+high NT-proBNP group, 29 patients (32.6%) in high TMAO or high NT-proBNP group and 14 patients (28.0%) in low TMAO+low NT-proBNP group. TMAO, in combination with NT-proBNP, improved all-cause mortality prediction in IHF patients when stratified as none, one or both biomarker(s) elevation, with the highest risk of all-cause mortality in high TMAO+high NT-proBNP group (HR=3.62, 95%CI 1.89-6.96, P<0.001). ROC curve analysis further confirmed that TMAO combined with NT-proBNP strengthened the prediction performance on the risk of all-cause death (AUC=0.727(95%CI 0.640-0.813), sensitivity 55.0%, characteristic 83.1%). Spearman correlation analysis showed that IHF patients with high TMAO and high NT-proBNP were positively associated with longer duration of hospitalization (r=0.191,P=0.009), but not associated with higher hospital cost (r=0.030, P=0.686). Conclusions: TMAO combined with NT-proBNP are valuable prediction tool on risk stratification of patients with IHF, and those with two biomarkers elevation face the highest risk of mortality during follow-up period, and are associated with the longer hospital stay.


Subject(s)
Aged , Female , Humans , Male , Middle Aged , Biomarkers/blood , Heart Failure/diagnosis , Hospitalization , Methylamines/blood , Natriuretic Peptide, Brain/blood , Peptide Fragments , Prognosis , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...