Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Gene Ther ; 21(9): 1147-54, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20486773

ABSTRACT

Methylmalonic acidemia is a severe metabolic disorder caused by a deficiency of the ubiquitously expressed mitochondrial enzyme, methylmalonyl-CoA mutase (MUT). Liver transplantation has been used to treat a small number of patients with variable success, and whether liver-directed gene therapy might be employed in such a pleiotropic metabolic disorder is uncertain. In this study, we examined the therapeutic effects of hepatocyte-directed delivery of the Mut gene to mice with a severe form of methylmalonic acidemia. We show that a single intrahepatic injection of recombinant adeno-associated virus serotype 8 expressing the Mut gene under the control of the liver-specific thyroxine-binding globulin (TBG) promoter is sufficient to rescue Mut(-/-) mice from neonatal lethality and provide long-term phenotypic correction. Treated Mut(-/-) mice lived beyond 1 year of age, had improved growth, lower plasma methylmalonic acid levels, and an increased capacity to oxidize [1-(13)C]propionate in vivo. The older treated mice showed increased Mut transcription, presumably mediated by upregulation of the TBG promoter during senescence. The results indicate that the stable transduction of a small number of hepatocytes with the Mut gene can be efficacious in the phenotypic correction of an inborn error of organic acid metabolism and support the rapid translation of liver-directed gene therapy vectors already optimized for human subjects to patients with methylmalonic acidemia.


Subject(s)
Dependovirus/genetics , Gene Transfer Techniques , Genetic Therapy , Liver/metabolism , Recombination, Genetic/genetics , Amino Acid Metabolism, Inborn Errors/enzymology , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/pathology , Amino Acid Metabolism, Inborn Errors/therapy , Animals , Disease Models, Animal , Injections , Methylmalonyl-CoA Mutase/genetics , Methylmalonyl-CoA Mutase/therapeutic use , Mice , Organ Specificity , Phenotype , Survival Analysis , Thyroxine-Binding Proteins/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...