Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.694
Filter
1.
BMC Complement Med Ther ; 24(1): 186, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734604

ABSTRACT

BACKGROUND: Cepharanthin® alone or in combination with glucocorticoid (GC) has been used to treat chronic immune thrombocytopenia (ITP) since the 1990s. Cepharanthine (CEP) is one of the main active components of Cepharanthin®. The purpose of this study was to investigate the effects of CEP on GC pharmacodynamics on immune cells and analyse the possible action mechanism of their interactions. METHODS: Peripheral blood mononuclear cells (PBMCs), T lymphocytic leukemia MOLT-4 cells and daunorubicin resistant MOLT-4 cells (MOLT-4/DNR) were used to evaluate the pharmacodynamics and molecular mechanisms. Drug pharmacodynamics was evaluated by WST-8 assay. P-glycoprotein function was examined by rhodamine 123 assay. CD4+CD25+Foxp3+ regulatory T cells and Th1/Th2/Th17 cytokines were detected by flow cytometry. P-glycoprotein expression and GC receptor translocation were examined by Western blot. RESULTS: CEP synergistically increased methylprednisolone (MP) efficacy with the suppressive effect on the cell viability of PBMCs. 0.3 and 1 µM of CEP significantly inhibited P-glycoprotein efflux function of CD4+ cells, CD8+ cells, and lymphocytes (P<0.05). 0.03~3 µM of CEP also inhibited the P-glycoprotein efflux function in MOLT-4/DNR cells in a concentration-dependent manner (P<0.001). However, 0.03~3 µM of CEP did not influence P-glycoprotein expression. 0.03~0.3 µM of CEP significantly increased the GC receptor distribution from the cytoplasm to the nucleus in a concentration-dependent manner in MOLT-4/DNR cells. The combination did not influence the frequency of CD4+, CD4+CD25+ and CD4+CD25+Foxp3+ T cells or the secretion of Th1/Th2/Th17 cytokines from PBMCs. In contrast, CEP alone at 1 µM decreased the percentage of CD4+ T cell significantly (P<0.01). It also inhibited the secretion of IL-6, IL-10, IL-17, TNF-α, and IFN-γ. CONCLUSIONS: CEP synergistically promoted MP pharmacodynamics to decrease the cell viability of the mitogen-activated PBMCs, possibly via inhibiting P-glycoprotein function and potentiating GC receptor translocation. The present study provides new evidence of the therapeutic effect of Cepharanthin® alone or in combination with GC for the management of chronic ITP.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Benzylisoquinolines , Drug Synergism , Leukocytes, Mononuclear , Methylprednisolone , Receptors, Glucocorticoid , Humans , Benzylisoquinolines/pharmacology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Methylprednisolone/pharmacology , Receptors, Glucocorticoid/metabolism , Benzodioxoles
2.
Biomed Pharmacother ; 175: 116721, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749180

ABSTRACT

BACKGROUND: Despite remarkable advances in the therapy of multiple sclerosis (MS), patients with MS may still experience relapses. High-dose short-term methylprednisolone (MP) remains the standard treatment in the acute management of MS relapses due to its potent anti-inflammatory and immunosuppressive properties. However, there is a lack of studies on the cell type-specific transcriptome changes that are induced by this synthetic glucocorticoid (GC). Moreover, it is not well understood why some patients do not benefit adequately from MP therapy. METHODS: We collected peripheral blood from MS patients in relapse immediately before and after ∼3-5 days of therapy with MP at 4 study centers. CD19+ B cells and CD4+ T cells were then isolated for profiling the transcriptome with high-density arrays. The patients' improvement of neurological symptoms was evaluated after ∼2 weeks by the treating physicians. We finally analyzed the data to identify genes that were differentially expressed in response to the therapy and whose expression differed between clinical responders and non-responders. RESULTS: After MP treatment, a total of 33 genes in B cells and 55 genes in T helper cells were significantly up- or downregulated. The gene lists overlap in 10 genes and contain genes that have already been described as GC-responsive genes in the literature on other cell types and diseases. Their differential expression points to a rapid and coordinated modulation of multiple signaling pathways that influence transcription. Genes that were previously suggested as potential prognostic biomarkers of the clinical response to MP therapy could not be confirmed in our data. However, a greater increase in the expression of genes encoding proteins with antimicrobial activity was detected in CD4+ T cells from non-responders compared to responders. CONCLUSION: Our study delved into the cell type-specific effects of MP at the transcriptional level. The data suggest a therapy-induced ectopic expression of some genes (e.g., AZU1, ELANE and MPO), especially in non-responders. The biological consequences of this remain to be explored in greater depth. A better understanding of the molecular mechanisms underlying clinical recovery from relapses in patients with MS will help to optimize future treatment decisions.


Subject(s)
B-Lymphocytes , Glucocorticoids , Methylprednisolone , Recurrence , T-Lymphocytes, Helper-Inducer , Humans , Glucocorticoids/pharmacology , Glucocorticoids/therapeutic use , Glucocorticoids/administration & dosage , Male , Adult , Female , B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , T-Lymphocytes, Helper-Inducer/drug effects , T-Lymphocytes, Helper-Inducer/metabolism , Methylprednisolone/pharmacology , Methylprednisolone/administration & dosage , Methylprednisolone/therapeutic use , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Multiple Sclerosis, Relapsing-Remitting/genetics , Middle Aged , Multiple Sclerosis/drug therapy , Multiple Sclerosis/genetics , Gene Expression Regulation/drug effects , Gene Expression Profiling/methods , Transcriptome/drug effects
3.
Front Immunol ; 15: 1375943, 2024.
Article in English | MEDLINE | ID: mdl-38765005

ABSTRACT

Introduction: Brain death (BD) is known to compromise graft quality by causing hemodynamic, metabolic, and hormonal changes. The abrupt reduction of female sex hormones after BD was associated with increased lung inflammation. The use of both corticoids and estradiol independently has presented positive results in modulating BD-induced inflammatory response. However, studies have shown that for females the presence of both estrogen and corticoids is necessary to ensure adequate immune response. In that sense, this study aims to investigate how the association of methylprednisolone (MP) and estradiol (E2) could modulate the lung inflammation triggered by BD in female rats. Methods: Female Wistar rats (8 weeks) were divided into four groups: sham (animals submitted to the surgical process, without induction of BD), BD (animals submitted to BD), MP/E2 (animals submitted to BD that received MP and E2 treatment 3h after BD induction) and MP (animals submitted to BD that received MP treatment 3h after BD induction). Results: Hemodynamics, systemic and local quantification of IL-6, IL-1ß, VEGF, and TNF-α, leukocyte infiltration to the lung parenchyma and airways, and adhesion molecule expression were analyzed. After treatment, MP/E2 association was able to reinstate mean arterial pressure to levels close to Sham animals (p<0.05). BD increased leukocyte infiltration to the airways and MP/E2 was able to reduce the number of cells (p=0.0139). Also, the associated treatment modulated the vasculature by reducing the expression of VEGF (p=0.0616) and maintaining eNOS levels (p=0.004) in lung tissue. Discussion: Data presented in this study show that the association between corticoids and estradiol could represent a better treatment strategy for lung inflammation in the female BD donor by presenting a positive effect in the hemodynamic management of the donor, as well as by reducing infiltrated leukocyte to the airways and release of inflammatory markers in the short and long term.


Subject(s)
Brain Death , Estradiol , Methylprednisolone , Pneumonia , Rats, Wistar , Animals , Female , Estradiol/pharmacology , Methylprednisolone/pharmacology , Rats , Pneumonia/drug therapy , Pneumonia/metabolism , Cytokines/metabolism , Lung/drug effects , Lung/pathology , Lung/metabolism , Lung/immunology , Disease Models, Animal , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
4.
Mol Biol Rep ; 51(1): 559, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643306

ABSTRACT

BACKGROUND: Methylprednisolone (MP) is a pharmaceutical agent employed in the management of Leukemia, which is a systemic malignancy that arises from abnormalities in the hematological system. Numerous investigations in the field of cancer research have directed their attention towards propolis, a natural substance with significant potential as a treatment-supportive agent. Its utilization aims to mitigate the potential adverse effects associated with chemotherapy medications. The objective of this study was to examine the impact of olive oil-based propolis (OEP) and caffeic acid phenethyl ester (CAPE) on the treatment of acute myeloid leukemia, as well as to determine if they exhibit a synergistic effect when combined with the therapeutic support product methylprednisolone. METHODS AND RESULTS: The proliferation of HL-60 cells was quantified using the WST-8 kit. The PI Staining technique was employed to do cell cycle analysis of DNA in cells subjected to OEP, CAPE, and MP, with subsequent measurement by flow cytometry. The apoptotic status of cells was determined by analyzing them using flow cytometry after staining with the Annexin V-APC kit. The quantification of apoptotic gene expression levels was conducted in HL-60 cells. In HL-60 cells, the IC50 dosages of CAPE and MP were determined to be 1 × 10- 6 M and 5 × 10- 4 M, respectively. The HL-60 cells were subjected to apoptosis and halted in the G0/G1 and G2/M phases of the cell cycle after being treated with MP, CAPE, and OEP. CONCLUSIONS: Propolis and its constituents have the potential to serve as effective adjunctive therapies in chemotherapy.


Subject(s)
Caffeic Acids , Leukemia, Myeloid, Acute , Phenylethyl Alcohol/analogs & derivatives , Propolis , Humans , Propolis/pharmacology , Olive Oil , Methylprednisolone/pharmacology , Apoptosis
5.
Target Oncol ; 19(3): 343-357, 2024 May.
Article in English | MEDLINE | ID: mdl-38643346

ABSTRACT

BACKGROUND: Ruxolitinib (RUX), an orally administered selective Janus kinase 1/2 inhibitor, has received approval for the treatment of myelofibrosis, polycythemia vera, and graft-versus-host disease. We have previously demonstrated the anti-multiple myeloma effects of RUX alone and in combination with the immunomodulatory agent lenalidomide (LEN) and glucocorticosteroids both pre-clinically and clinically. OBJECTIVE: This study aims to evaluate whether LEN can achieve clinical activity among patients with multiple myeloma progressing on the combination of RUX and methylprednisolone (MP). METHODS: In this part of a phase I, multicenter, open-label study, we evaluated the safety and efficacy of RUX and MP for patients with multiple myeloma with progressive disease who had previously received a proteasome inhibitor, LEN, glucocorticosteroids, and at least three prior regimens; we also determined the safety and efficacy of adding LEN at the time of disease progression from the initial doublet treatment. Initially, all subjects received oral RUX 15 mg twice daily and oral MP 40 mg every other day. Those patients who developed progressive disease according to the International Myeloma Working Group criteria then received LEN 10 mg once daily on days 1-21 within a 28-day cycle in addition to RUX and MP, which were administered at the same doses these patients were receiving at the time progressive disease developed. RESULTS: Twenty-nine subjects (median age 64 years; 18 [62%] male) were enrolled in this part of the study and initially received the two-drug combination of RUX and MP. The median number of prior therapies was six (range 3-12). The overall response rate from this two-drug combination was 31% and the clinical benefit rate was 34%. The best responses were 1 very good partial response, 8 partial responses, 1 minor response, 12 stable disease, and 7 progressive disease. The median progression-free survival was 3.5 months (range  0.5-36.2 months). The median time to response was 3.0 months. The median duration of response was 12.5 months (range 2.8-36.2 months). Twenty (69%) patients who showed progressive disease had LEN added to RUX and MP; all patients had prior exposure to LEN and all but one patient was refractory to their last LEN-containing regimen. After the addition of LEN, the overall response rate was 30% and the clinical benefit rate was 40%. The best responses of patients following the addition of LEN were 2 very good partial responses, 4 partial responses, 2 minor responses, 8 stable disease, and 4 progressive disease. The median time to response was 2.6 months (range 0.7-15.0 months). The median duration of response was not reached. The median progression-free survival following the addition of LEN was 3.5 months (range 0.3-25.9 months). CONCLUSIONS: For patients with multiple myeloma, treatment with RUX and MP is effective and well tolerated, and LEN can be used to extend the benefit of this RUX-based treatment. CLINICAL TRIAL REGISTRATION: This study is registered with ClinicalTrials.gov, NCT03110822, and is ongoing.


Subject(s)
Lenalidomide , Methylprednisolone , Multiple Myeloma , Nitriles , Pyrazoles , Pyrimidines , Humans , Multiple Myeloma/drug therapy , Male , Lenalidomide/therapeutic use , Lenalidomide/pharmacology , Female , Aged , Pyrazoles/therapeutic use , Pyrazoles/pharmacology , Nitriles/therapeutic use , Pyrimidines/therapeutic use , Pyrimidines/pharmacology , Middle Aged , Methylprednisolone/therapeutic use , Methylprednisolone/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Aged, 80 and over , Disease Progression , Adult
6.
J Transl Med ; 22(1): 304, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528569

ABSTRACT

BACKGROUND: The treatment of spinal cord injury (SCI) has always been a significant research focus of clinical neuroscience, with inhibition of microglia-mediated neuro-inflammation as well as oxidative stress key to successful SCI patient treatment. Caffeic acid phenethyl ester (CAPE), a compound extracted from propolis, has both anti-inflammatory and anti-oxidative effects, but its SCI therapeutic effects have rarely been reported. METHODS: We constructed a mouse spinal cord contusion model and administered CAPE intraperitoneally for 7 consecutive days after injury, and methylprednisolone (MP) was used as a positive control. Hematoxylin-eosin, Nissl, and Luxol Fast Blue staining were used to assess the effect of CAPE on the structures of nervous tissue after SCI. Basso Mouse Scale scores and footprint analysis were used to explore the effect of CAPE on the recovery of motor function by SCI mice. Western blot analysis and immunofluorescence staining assessed levels of inflammatory mediators and oxidative stress-related proteins both in vivo and in vitro after CAPE treatment. Further, reactive oxygen species (ROS) within the cytoplasm were detected using an ROS kit. Changes in mitochondrial membrane potential after CAPE treatment were detected with 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-imidacarbocyanine iodide. Mechanistically, western blot analysis and immunofluorescence staining were used to examine the effect of CAPE on the SIRT1/PGC1α/DRP1 signaling pathway. RESULTS: CAPE-treated SCI mice showed less neuronal tissue loss, more neuronal survival, and reduced demyelination. Interestingly, SCI mice treated with CAPE showed better recovery of motor function. CAPE treatment reduced the expression of inflammatory and oxidative mediators, including iNOS, COX-2, TNF-α, IL-1ß, 1L-6, NOX-2, and NOX-4, as well as the positive control MP both in vitro and in vivo. In addition, molecular docking experiments showed that CAPE had a high affinity for SIRT1, and that CAPE treatment significantly activated SIRT1 and PGC1α, with down-regulation of DRP1. Further, CAPE treatment significantly reduced the level of ROS in cellular cytoplasm and increased the mitochondrial membrane potential, which improved normal mitochondrial function. After administering the SIRT1 inhibitor nicotinamide, the effect of CAPE on neuro-inflammation and oxidative stress was reversed.On the contrary, SIRT1 agonist SRT2183 further enhanced the anti-inflammatory and antioxidant effects of CAPE, indicating that the anti-inflammatory and anti-oxidative stress effects of CAPE after SCI were dependent on SIRT1. CONCLUSION: CAPE inhibits microglia-mediated neuro-inflammation and oxidative stress and supports mitochondrial function by regulating the SIRT1/PGC1α/DRP1 signaling pathway after SCI. These effects demonstrate that CAPE reduces nerve tissue damage. Therefore, CAPE is a potential drug for the treatment of SCI through production of anti-inflammatory and anti-oxidative stress effects.


Subject(s)
Caffeic Acids , Mitochondrial Diseases , Phenylethyl Alcohol , Spinal Cord Injuries , Animals , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/metabolism , Caffeic Acids/pharmacology , Caffeic Acids/therapeutic use , Inflammation/drug therapy , Inflammation/metabolism , Methylprednisolone/pharmacology , Mitochondrial Diseases/drug therapy , Mitochondrial Diseases/metabolism , Molecular Docking Simulation , Oxidative Stress/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Phenylethyl Alcohol/analogs & derivatives , Reactive Oxygen Species/metabolism , Signal Transduction , Sirtuin 1/metabolism , Spinal Cord , Spinal Cord Injuries/drug therapy , Dynamins/drug effects
7.
Clin Lymphoma Myeloma Leuk ; 24(6): 382-391.e2, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38508880

ABSTRACT

BACKGROUND: Advancements in frontline therapy and chemotherapy-sparing treatments in chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) have altered the treatment algorithms of this disease. We present a frontline alternative for treatment- naïve (TN) CLL/SLL patients. METHODS: This was a single-center, phase 2 study of high-dose methylprednisolone (HDMP) and ofatumumab with lenalidomide and ofatumumab consolidative therapy for all comers with TN CLL/SLL. Treatment was continued until disease progression or intolerable side effects. Patients were assessed for response per iwCLL 2008 criteria after completing cycles 3 and 12. RESULTS: Forty-five patients were enrolled (median age, 62.6 years). High-risk features included del17p (18%), Del11q (22%), and unmutated IGHV gene (76%). Median treatment duration was 32·2 (2·7-75·9) months. Thirty-six patients discontinued treatment due to disease progression (22%), adverse events (40%), allogeneic hematopoietic cell transplantation (allo-HCT) (7%), consent withdrawal (4%), and secondary malignancies (7%). The best overall and complete response rates were 96& and 29% respectively. At median follow-up of 61·7 (5·6-84·9) months, 9 patients remained on treatment. Median progression-free survival was 54·4 (2·9-77·6) months. Three patients underwent allo-HCT after a median of 3 (3-4) treatment cycles. Treatment was well tolerated, with a grade 3/4 infusion reaction in one patient. The most common grade 3/4 hematological adverse event was neutropenia (69%). Four patients had grade 3/4 infections. No grade 3/4 tumor flares, tumor lysis syndrome, or thrombosis were observed. CONCLUSION: The combination of ofatumumab, HDMP, and lenalidomide was effective and relatively well tolerated in treatment-naive CLL/SLL. Its role in the frontline setting remains unclear given the current available and effective treatment options. FUNDING: The funders had no role in the study.


Subject(s)
Antibodies, Monoclonal, Humanized , Antineoplastic Combined Chemotherapy Protocols , Lenalidomide , Leukemia, Lymphocytic, Chronic, B-Cell , Methylprednisolone , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Lenalidomide/therapeutic use , Lenalidomide/pharmacology , Lenalidomide/administration & dosage , Middle Aged , Female , Male , Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/pharmacology , Follow-Up Studies , Methylprednisolone/therapeutic use , Methylprednisolone/administration & dosage , Methylprednisolone/pharmacology , Adult , Aged, 80 and over , Biomarkers, Tumor
8.
J Cell Physiol ; 239(5): e31224, 2024 May.
Article in English | MEDLINE | ID: mdl-38481029

ABSTRACT

With the prevalence of coronavirus disease 2019, the administration of glucocorticoids (GCs) has become more widespread. Treatment with high-dose GCs leads to a variety of problems, of which steroid-induced osteonecrosis of the femoral head (SONFH) is the most concerning. Since hypoxia-inducible factor 1α (HIF-1α) is a key factor in cartilage development and homeostasis, it may play an important role in the development of SONFH. In this study, SONFH models were established using methylprednisolone (MPS) in mouse and its proliferating chondrocytes to investigate the role of HIF-1α in cartilage differentiation, extracellular matrix (ECM) homeostasis, apoptosis and glycolysis in SONFH mice. The results showed that MPS successfully induced SONFH in vivo and vitro, and MPS-treated cartilage and chondrocytes demonstrated disturbed ECM homeostasis, significantly increased chondrocyte apoptosis rate and glycolysis level. However, compared with normal mice, not only the expression of genes related to collagens and glycolysis, but also chondrocyte apoptosis did not demonstrate significant differences in mice co-treated with MPS and HIF-1α inhibitor. And the effects observed in HIF-1α activator-treated chondrocytes were similar to those induced by MPS. And HIF-1α degraded collagens in cartilage by upregulating its downstream target genes matrix metalloproteinases. The results of activator/inhibitor of endoplasmic reticulum stress (ERS) pathway revealed that the high apoptosis rate induced by MPS was related to the ERS pathway, which was also affected by HIF-1α. Furthermore, HIF-1α affected glucose metabolism in cartilage by increasing the expression of glycolysis-related genes. In conclusion, HIF-1α plays a vital role in the pathogenesis of SONFH by regulating ECM homeostasis, chondrocyte apoptosis, and glycolysis.


Subject(s)
Apoptosis , Cartilage , Chondrocytes , Glucocorticoids , Glycolysis , Homeostasis , Hypoxia-Inducible Factor 1, alpha Subunit , Methylprednisolone , Animals , Male , Mice , Apoptosis/drug effects , Cartilage/metabolism , Cartilage/pathology , Cartilage/drug effects , Chondrocytes/metabolism , Chondrocytes/drug effects , Chondrocytes/pathology , Disease Models, Animal , Extracellular Matrix/metabolism , Femur Head/pathology , Femur Head/metabolism , Femur Head Necrosis/chemically induced , Femur Head Necrosis/pathology , Femur Head Necrosis/metabolism , Femur Head Necrosis/genetics , Glucocorticoids/adverse effects , Glucocorticoids/pharmacology , Glycolysis/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Methylprednisolone/adverse effects , Methylprednisolone/pharmacology , Mice, Inbred C57BL
9.
Adv Sci (Weinh) ; 11(21): e2308993, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38516757

ABSTRACT

Neural stem cells (NSCs) transplantation is an attractive and promising treatment strategy for spinal cord injury (SCI). Various pathological processes including the severe inflammatory cascade and difficulty in stable proliferation and differentiation of NSCs limit its application and translation. Here, a novel physico-chemical bifunctional neural stem cells delivery system containing magnetic nanoparticles (MNPs and methylprednisolone (MP) is designed to repair SCI, the former regulates NSCs differentiation through magnetic mechanical stimulation in the chronic phase, while the latter alleviates inflammatory response in the acute phase. The delivery system releases MP to promote microglial M2 polarization, inhibit M1 polarization, and reduce neuronal apoptosis. Meanwhile, NSCs tend to differentiate into functional neurons with magnetic mechanical stimulation generated by MNPs in the static magnetic field, which is related to the activation of the PI3K/AKT/mTOR pathway. SCI mice achieve better functional recovery after receiving NSCs transplantation via physico-chemical bifunctional delivery system, which has milder inflammation, higher number of M2 microglia, more functional neurons, and axonal regeneration. Together, this bifunctional NSCs delivery system combined physical mechanical stimulation and chemical drug therapy is demonstrated to be effective, which provides new treatment insights into clinical transformation of SCI repair.


Subject(s)
Disease Models, Animal , Magnetite Nanoparticles , Methylprednisolone , Neural Stem Cells , Spinal Cord Injuries , Animals , Spinal Cord Injuries/therapy , Methylprednisolone/pharmacology , Mice , Neural Stem Cells/transplantation , Neural Stem Cells/drug effects , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/therapeutic use , Cell Differentiation/drug effects , Stem Cell Transplantation/methods
10.
Ann Otol Rhinol Laryngol ; 133(1): 87-96, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37497827

ABSTRACT

OBJECTIVES/HYPOTHESIS: Systemic glucocorticoids (GC)s are employed to treat various voice disorders. However, GCs have varying pharmacodynamic properties with adverse effects ranging from changes in epithelial integrity, skeletal muscle catabolism, and altered body weight. We sought to characterize the acute temporal effects of systemic dexamethasone and methylprednisolone on vocal fold (VF) epithelial glucocorticoid receptor (GR) nuclear translocation, epithelial tight junction (ZO-1) expression, thyroarytenoid (TA) muscle fiber morphology, and body weight using an established pre-clinical model. We hypothesized dexamethasone and methylprednisolone will elicit changes in VF epithelial GR nuclear translocation, epithelial ZO-1 expression, TA muscle morphology, and body weight compared to placebo-treated controls. METHODS: Forty-five New Zealand white rabbits received intramuscular injections of methylprednisolone (4.5 mg; n = 15), dexamethasone (450 µg; n = 15), or volume matched saline (n = 15) into the iliocostalis/longissimus muscle for 6 consecutive days. Vocal folds from 5 rabbits from each treatment group were harvested at 1-, 3-, or 7 days following the final injection and subjected to immunohistochemistry for ZO-1 and GR as well as TA muscle fiber cross-sectional area (CSA) measures. RESULTS: Dexamethasone increased epithelial GR nuclear translocation and ZO-1 expression 1-day following injections compared to methylprednisolone (P = .024; P = .012). Dexamethasone and methylprednisolone increased TA CSA 1-day following injections (P = .011). Methylprednisolone decreased body weight 7 days following injections compared to controls (P = .004). CONCLUSIONS: Systemic dexamethasone may more efficiently activate GR in the VF epithelium with a lower risk of body weight loss, suggesting a role for more refined approaches to GC selection for laryngeal pathology.


Subject(s)
Glucocorticoids , Vocal Cords , Animals , Rabbits , Body Weight , Dexamethasone/pharmacology , Glucocorticoids/pharmacology , Injections, Intramuscular , Laryngeal Muscles , Methylprednisolone/pharmacology , Vocal Cords/drug effects , Vocal Cords/pathology
11.
EBioMedicine ; 99: 104950, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38159532

ABSTRACT

BACKGROUND: Pulmonary infection with SARS-CoV-2 stimulates host immune responses and can also result in the progression of dysregulated and critical inflammation. Throughout the pandemic, the management and treatment of COVID-19 has been continuously updated with a range of antiviral drugs and immunomodulators. Monotherapy with oral antivirals has proven to be effective in the treatment of COVID-19. However, treatment should be initiated in the early stages of infection to ensure beneficial therapeutic outcomes, and there is still room for further consideration on therapeutic strategies using antivirals. METHODS: We studied the therapeutic effects of monotherapy with the oral antiviral ensitrelvir or the anti-inflammatory corticosteroid methylprednisolone and combination therapy with ensitrelvir and methylprednisolone in a delayed dosing model of hamsters infected with SARS-CoV-2. FINDINGS: Combination therapy with ensitrelvir and methylprednisolone improved respiratory conditions and reduced the development of pneumonia in hamsters even when the treatment was started after 2 days post-infection. The combination therapy led to a differential histological and transcriptomic pattern in comparison to either of the monotherapies, with reduced lung damage and down-regulation of expression of genes involved in the inflammatory response. Furthermore, we found that the combination treatment is effective in case of infection with either the highly pathogenic delta or circulating omicron variants. INTERPRETATION: Our results demonstrate the advantage of combination therapy with antiviral and corticosteroid drugs in COVID-19 treatment from the perspective of lung pathology and host inflammatory responses. FUNDING: Funding bodies are described in the Acknowledgments section.


Subject(s)
COVID-19 , Humans , Animals , Cricetinae , COVID-19 Drug Treatment , Treatment Delay , SARS-CoV-2 , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Methylprednisolone/pharmacology , Methylprednisolone/therapeutic use , Adrenal Cortex Hormones , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
12.
Lupus Sci Med ; 10(2)2023 12 28.
Article in English | MEDLINE | ID: mdl-38154828

ABSTRACT

OBJECTIVES: Methylprednisolone (mPSL) pulse therapy is an essential option for patients with active systemic lupus erythematosus, but there is a risk of adverse events related to microcirculation disorders, including idiopathic osteonecrosis of the femoral head (ONFH). Recent studies have revealed that excessive neutrophil extracellular traps (NETs) are involved in microcirculation disorders. This study aimed to demonstrate that mPSL pulse could induce NETs in lupus mice and identify the factors contributing to this induction. METHODS: Six mice with imiquimod (IMQ)-induced lupus-like disease and six normal mice were intraperitoneally injected with mPSL on days 39 to 41, and five mice with IMQ-induced lupus-like disease and six normal mice were injected with phosphate-buffered saline. Pathological examinations were conducted to evaluate the ischaemic state of the femoral head and tissue infiltration of NET-forming neutrophils. Proteome analysis was performed to extract plasma proteins specifically elevated in mPSL-administered mice with IMQ-induced lupus-like disease, and their effects on NET formation were assessed in vitro. RESULTS: Mice with IMQ-induced lupus-like disease that received mPSL pulse demonstrated ischaemia of the femoral head cartilage with tissue infiltration of NET-forming neutrophils. Proteome analysis suggested that prenylcysteine oxidase 1 (PCYOX1) played a role in this phenomenon. The reaction of PCYOX1-containing very low-density lipoproteins (VLDL) with its substrate farnesylcysteine (FC) induced NETs in vitro. The combined addition of IMQ and mPSL synergistically enhanced VLDL-plus-FC-induced NET formation. CONCLUSION: PCYOX1 and related factors are worthy of attention to understand the underlying mechanisms and create novel therapeutic strategies for mPSL-mediated microcirculation disorders, including ONFH.


Subject(s)
Extracellular Traps , Lupus Erythematosus, Systemic , Mice , Humans , Animals , Methylprednisolone/therapeutic use , Methylprednisolone/metabolism , Methylprednisolone/pharmacology , Femur Head/pathology , Imiquimod/metabolism , Imiquimod/pharmacology , Imiquimod/therapeutic use , Lupus Erythematosus, Systemic/chemically induced , Lupus Erythematosus, Systemic/drug therapy , Proteome/metabolism , Proteome/pharmacology , Cartilage , Ischemia/metabolism , Ischemia/pathology
13.
ACS Nano ; 17(22): 22928-22943, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37948097

ABSTRACT

Spinal cord injury (SCI) can cause permanent loss of sensory and motor function, and there is no effective clinical treatment, to date. Due to the complex pathological process involved after injury, synergistic treatments are very urgently needed in clinical practice. We designed a nanofiber scaffold hyaluronic acid hydrogel patch to release both exosomes and methylprednisolone to the injured spinal cord in a non-invasive manner. This composite patch showed good biocompatibility in the stabilization of exosome morphology and toxicity to nerve cells. Meanwhile, the composite patch increased the proportion of M2-type macrophages and reduced neuronal apoptosis in an in vitro study. In vivo, the functional and electrophysiological performance of rats with SCI was significantly improved when the composite patch covered the surface of the hematoma. The composite patch inhibited the inflammatory response through macrophage polarization from M1 type to M2 type and increased the survival of neurons by inhibition neuronal of apoptosis after SCI. The therapeutic effects of this composite patch can be attributed to TLR4/NF-κB, MAPK, and Akt/mTOR pathways. Thus, the composite patch provides a medicine-exosomes dual-release system and may provide a non-invasive method for clinical treatment for individuals with SCI.


Subject(s)
Exosomes , Spinal Cord Injuries , Rats , Animals , Methylprednisolone/pharmacology , Methylprednisolone/therapeutic use , Methylprednisolone/metabolism , Exosomes/metabolism , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/pathology , Macrophages/metabolism , Neurons/metabolism , Spinal Cord/pathology
14.
Microb Cell Fact ; 22(1): 232, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37950185

ABSTRACT

BACKGROUND: Several reports demonstrated anti-inflammatory properties of minocycline in various inflammatory disorders including colitis. We have experimental evidence suggesting synergistic anti-inflammatory effect of minocycline with methyl prednisolone in reducing colitis severity in mice, but if this effect is in part related to modulating the composition of colonic microbiota is still unknown. METHODS: the effect of vehicle (V), minocycline (M), methyl prednisolone (MP), or combination (C) regimen on the composition of the microbiota of mice in a state of colon inflammation compared to untreated (UT) healthy mice was determined using 16s metagenomic sequencing, and the taxonomic and functional profiles were summarized. RESULTS: Overall, the bacterial flora from the phylum Firmicutes followed by Bacteroidota were found to be predominant in all the samples. However, the composition of Firmicutes was decreased relatively in all the treatment groups compared to UT group. A relatively higher percentage of Actinobacteriota was observed in the samples from the C group. At the genus level, Muribaculaceae, Bacteroides, Bifidobacterium, and Lactobacillus were found to be predominant in the samples treated with both drugs (C). Whereas "Lachnospiraceae NK4A136 group" and Helicobacter in the M group, and Helicobacter in the MP group were found to be predominant. But, in the UT group, Weissella and Staphylococcus were found to be predominant. Eubacterium siraeum group, Clostridia vadinBB60 group, Erysipelatoclostridium and Anaeroplasma genera were identified to have a significant (FDR p < 0.05) differential abundance in V compared to C and UT groups. While at the species level, the abundance of Helicobacter mastomyrinus, Massiliomicrobiota timonensis and uncultured Anaeroplasma were identified as significantly low in UT, C, and M compared to V group. Functional categories related to amino acid, carbohydrate, and energy metabolism, cell motility and cell cycle control were dominated overall across all the samples. Methane metabolism was identified as an enriched pathway. For the C group, "Colitis (decrease)" was among the significant (p = 1.81E-6) associations based on the host-intrinsic taxon set. CONCLUSION: Combination regimen of minocycline plus methyl prednisolone produces a synergistic anti-inflammatory effect which is part related to alternation in the colonic microbiota composition.


Subject(s)
Colitis , Minocycline , Mice , Animals , Minocycline/pharmacology , Minocycline/therapeutic use , Minocycline/metabolism , Dextran Sulfate/metabolism , Dextran Sulfate/pharmacology , Dextran Sulfate/therapeutic use , Methylprednisolone/metabolism , Methylprednisolone/pharmacology , Methylprednisolone/therapeutic use , Colon , Colitis/drug therapy , Inflammation/drug therapy , Bacteria , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/metabolism , Disease Models, Animal , Mice, Inbred C57BL
15.
Sci Rep ; 13(1): 17986, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37863994

ABSTRACT

Whilst the presence of 2 subphenotypes among the heterogenous Acute Respiratory Distress Syndrome (ARDS) population is becoming clinically accepted, subphenotype-specific treatment efficacy has yet to be prospectively tested. We investigated anti-inflammatory treatment in different ARDS models in sheep, previously shown similarities to human ARDS subphenotypes, in a preclinical, randomized, blinded study. Thirty anesthetized sheep were studied up to 48 h and randomized into: (a) OA: oleic acid (n = 15) and (b) OA-LPS: oleic acid and subsequent lipopolysaccharide (n = 15) to achieve a PaO2/FiO2 ratio of < 150 mmHg. Then, animals were randomly allocated to receive treatment with methylprednisolone or erythromycin or none. Assessed outcomes were oxygenation, pulmonary mechanics, hemodynamics and survival. All animals reached ARDS. Treatment with methylprednisolone, but not erythromycin, provided the highest therapeutic benefit in Ph2 animals, leading to a significant increase in PaO2/FiO2 ratio by reducing pulmonary edema, dead space ventilation and shunt fraction. Animals treated with methylprednisolone displayed a higher survival up to 48 h than all others. In animals treated with erythromycin, there was no treatment benefit regarding assessed physiological parameters and survival in both phenotypes. Treatment with methylprednisolone improves oxygenation and survival, more so in ovine phenotype 2 which resembles the human hyperinflammatory subphenotype.


Subject(s)
Anti-Inflammatory Agents , Oleic Acid , Respiratory Distress Syndrome , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Erythromycin/therapeutic use , Methylprednisolone/pharmacology , Methylprednisolone/therapeutic use , Oleic Acid/therapeutic use , Respiration , Sheep , Random Allocation , Disease Models, Animal
16.
Arch Biochem Biophys ; 747: 109738, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37696383

ABSTRACT

Acute kidney injury in sepsis patients has an extreme mortality rate in clinical. It obviously seems that immune cells, for example, macrophages are involved with this process. Macrophages, as highly important immune cells, play a significant role in the development of human kidney diseases. But the specific role of macrophages in this process is still unclear. Under different timeline points, we surprisingly found that macrophages had the most dynamic changes in acute kidney injury immune cells. Based on macrophages' functions, they are primarily classified into M1 macrophages (pro-inflammatory) and M2 macrophages (anti-inflammatory). The polarization of M2 macrophages is closely associated with the seriousness of sepsis-induced kidney injury, but how to modulate their polarization to alleviate sepsis-associated renal damage remains unknown. We discovered that the polarization of M2 macrophages after methylprednisolone injection can significantly alleviate acute kidney injury by reducing secreted cytokine. This study suggests that the proportion of macrophage subtypes can be regulated by methylprednisolone to alleviate acute kidney injury in sepsis to provide a new sight for a clinical to provide a promising strategy for renal injury caused.


Subject(s)
Acute Kidney Injury , Sepsis , Humans , Methylprednisolone/pharmacology , Methylprednisolone/therapeutic use , Kidney , Macrophages , Acute Kidney Injury/drug therapy , Sepsis/complications , Sepsis/drug therapy
17.
Drug Dev Ind Pharm ; 49(7): 467-478, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37421633

ABSTRACT

OBJECTIVE: This study was carried out to transform the hydrolyzed pea protein into a pharmaceutical tablet form by masking methylprednisolone. SIGNIFICANCE: This study provides some crucial contributions in showing how functional excipients such as pea protein, which are generally used in food industries, can be used in pharmaceutical product formulations and their effects. METHODS: Methylprednisolone was formulated using spray drying technology. Design Expert Software (Version 13) was used for the statistical analysis. The in vitro cytotoxic effects for NIH/3T3 mouse fibroblast cells were investigated by XTT cell viability assay. HPLC was used to analyze the Caco-2 permeability studies and dissolution tests. RESULTS: The optimum formulation was evaluated against the reference product by performing cytotoxicity and cell permeability studies. According to our test results, Papp (apparent permeability) values of Methylprednisolone were measured around 3 × 10-6 cm/s and Fa (fraction absorbed) values around 30%. These data indicate that Methylprednisolone HCl has 'moderate permeability' and our study confirmed that it could have belonged to BCS Class II-IV since both low solubility and moderate permeability. CONCLUSION: The findings offer valuable information to guide and inform the use of pea protein in pharmaceutical formulations. Significant effects on methylprednisolone tablet formulation designed with the philosophy of quality by design (QbD) of pea protein have been demonstrated by both in vitro and cell studies.


Subject(s)
Pea Proteins , Humans , Animals , Mice , Caco-2 Cells , Tablets , Permeability , Methylprednisolone/pharmacology , Solubility
18.
Cells ; 12(11)2023 05 30.
Article in English | MEDLINE | ID: mdl-37296635

ABSTRACT

The implantation of oligodendrocyte precursor cells may be a useful therapeutic strategy for targeting remyelination. However, it is yet to be established how these cells behave after implantation and whether they retain the capacity to proliferate or differentiate into myelin-forming oligodendrocytes. One essential issue is the creation of administration protocols and determining which factors need to be well established. There is controversy around whether these cells may be implanted simultaneously with corticosteroid treatment, which is widely used in many clinical situations. This study assesses the influence of corticosteroids on the capacity for proliferation and differentiation and the survival of human oligodendroglioma cells. Our findings show that corticosteroids reduce the capacity of these cells to proliferate and to differentiate into oligodendrocytes and decrease cell survival. Thus, their effect does not favour remyelination; this is consistent with the results of studies with rodent cells. In conclusion, protocols for the administration of oligodendrocyte lineage cells with the aim of repopulating oligodendroglial niches or repairing demyelinated axons should not include corticosteroids, given the evidence that the effects of these drugs may undermine the objectives of cell transplantation.


Subject(s)
Methylprednisolone , Oligodendroglia , Humans , Methylprednisolone/pharmacology , Myelin Sheath , Axons , Cell Differentiation
19.
J Control Release ; 360: 236-248, 2023 08.
Article in English | MEDLINE | ID: mdl-37355211

ABSTRACT

A new method of transdural delivering drugs to the spinal cord has been developed, involving the use of microneedles (MNs) and a ß-cyclodextrin metal-organic framework (CD-MOF). This epidural microneedle array, dubbed MNs@CD-MOF@MPSS, can be utilized to deliver methylprednisolone sodium succinate (MPSS) to the site of spinal cord injury (SCI) in a controlled manner. MNs allows to generate micropores in the dura for direct drug delivery to the spinal cord, overcoming tissue barriers and targeting damaged regions. Additionally, the CD-MOF provides a secondary extended release after separating from the MNs. In in vitro study, inward MNs increased cellular absorption of MPSS and then reduced LPS-induced M1 polarization of microglia. And animal studies have shown that this method of drug delivery results in improved BMS scores and a reduction in M1 phenotype microphage and glial scar formation. Furthermore, the downregulation of the NLRP3-positive inflammasome and related pro-inflammatory cytokines was observed. In conclusion, this new drug platform has potential for clinical application in spinal cord diseases and is a valuable composite for minimally transdural controlled drug delivery. STATEMENT OF SIGNIFICANCE: This research presents a new epidural microneedle patch made up of microneedles (MNs) and a ß-cyclodextrin metal-organic framework (CD-MOF). The epidural microneedle patch boasts high drug loading capacity, the ability to penetrate the dura, and controlled release. When loaded with methylprednisolone sodium succinate (MPSS), it effectively reduces inflammation and improves neurological function after spinal cord injury. Therefore, it is a novel and promising drug platform for the treatment of spinal cord diseases in a clinical setting.


Subject(s)
Cyclodextrins , Metal-Organic Frameworks , Spinal Cord Injuries , beta-Cyclodextrins , Animals , Methylprednisolone Hemisuccinate/pharmacology , Methylprednisolone Hemisuccinate/therapeutic use , Cyclodextrins/pharmacology , Delayed-Action Preparations/therapeutic use , Spinal Cord Injuries/drug therapy , Spinal Cord , beta-Cyclodextrins/therapeutic use , Methylprednisolone/pharmacology , Methylprednisolone/therapeutic use
20.
ACS Nano ; 17(13): 12176-12187, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37387550

ABSTRACT

Spinal cord injury (SCI), which is characterized by excessive inflammatory cell infiltration and accumulation of oxidative substance, would severely impede neurological functional recovery and lead to permanent and profound neurologic deficits and even disability. Methylprednisolone (MP) is the most commonly used clinical anti-inflammatory drug for SCI treatment, but high doses are typically required that can cause severe side effects. Here, we developed a carrier-free thioketal linked MP dimer@rutin nanoparticles (MP2-TK@RU NPs) which can achieve combined SCI treatment by coassembling reactive oxygen species (ROS) cleavable MP dimers and rutin. This proposed nanodrug possesses the following favorable advantages: (1) the carrier-free system is easily accessible and has a high drug-loading capacity, which is preferred by the pharmaceutical industry; (2) The ROS-cleavable linker increases the efficiency of targeted drug delivery to the injury site; (3) Rutin, a type of plant-derived natural flavonoid with good biocompatibility, anti-inflammatory, and antioxidant properties, is codelivered to enhance the therapy outcomes. The obtained MP2-TK@RU NPs exhibited potent anti-inflammatory and antioxidative properties both in vitro and in vivo, demonstrating superior locomotor function recovery and neuroprotective efficacy in rats with SCI. This carrier-free nanodrug is anticipated to provide a promising therapeutic strategy for clinical SCI treatment.


Subject(s)
Nanoparticles , Neuroprotective Agents , Spinal Cord Injuries , Rats , Animals , Methylprednisolone/pharmacology , Methylprednisolone/therapeutic use , Reactive Oxygen Species/pharmacology , Rutin/pharmacology , Rutin/therapeutic use , Spinal Cord Injuries/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Polymers/pharmacology , Nanoparticles/therapeutic use , Spinal Cord , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...