Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Physiol ; 133(3): 471-81, 1987 Dec.
Article in English | MEDLINE | ID: mdl-3693410

ABSTRACT

In the presence of lovastatin (mevinolin), an inhibitor of endogenous mevalonate synthesis, C1300 murine neuroblastoma cells incorporated (2-14C)mevalonate into several discrete polypeptides that were separable by SDS-PAGE. The electrophoretic pattern of the labeled proteins did not vary substantially when cells were homogenized with Ca++, Mg++, high concentrations of NaCl or phosphatase inhibitor, or when cells were lysed immediately in trichloroacetic acid. When cells that had been prelabeled with (14C)mevalonate were incubated with lovastatin and simultaneously deprived of exogenous mevalonate, there was a 50-60% decline in the concentration of protein-bound isoprenoid label within 17 h. In contrast, there was little change in the radioactivity in the sterol, dolichol, or ubiquinone fractions. The time course of the decline in mevalonate-derived label in cellular polypeptides paralleled the onset of neurite outgrowth and preceded the decline of DNA synthesis, suggesting that a decreased intracellular concentration of protein-bound isoprenoid groups may contribute to the well-documented effects of mevalonate deprivation on cell morphology and cell cycling. Fractionation of neuroblastoma cells by differential centrifugation and sucrose density-gradient centrifugation revealed that mevalonate-labeled proteins of 53 kDA, 22-26 kDa, and 17 kDa were concentrated in the cytosol. Proteins migrating at 45 kDa were found in both the soluble and particulate fractions, including those enriched in mitochondria and plasma membrane. The isoprenylated proteins migrating at approximately 66 kDa were localized exclusively in the nuclear fraction. When chromatin was removed from the nuclei by extraction with 2 M NaCl, the 66 kDa isoprenylated proteins remained associated with the residual components of the nuclear matrix and lamina. Isoprenylated proteins with electrophoretic mobilities similar to those observed in neuroblastoma cells were detected in a variety of established cell lines. However, there was considerable variation among cell lines in the overall efficiency of protein labeling with (14C) mevalonate and in the prominence and mobilities of specific labeled proteins in the 45-70 kDa range. Comparisons of paired transformed vs. nontransformed fibroblast cell lines suggested that the profile of mevalonate-labeled proteins in a given cell line is not altered by malignant transformation.(ABSTRACT TRUNCATED AT 400 WORDS)


Subject(s)
Mevalonic Acid/deficiency , Proteins/metabolism , Terpenes/metabolism , Tumor Cells, Cultured/metabolism , Animals , Cell Division , DNA/biosynthesis , Mevalonic Acid/metabolism , Neuroblastoma/metabolism , Neuroblastoma/pathology , Neuroblastoma/ultrastructure , Peptides/metabolism , Subcellular Fractions/metabolism , Tumor Cells, Cultured/cytology , Tumor Cells, Cultured/ultrastructure
2.
Proc Natl Acad Sci U S A ; 82(10): 3257-61, 1985 May.
Article in English | MEDLINE | ID: mdl-2582409

ABSTRACT

The isolation of a somatic cell mutant (Mev-1) with a block in one of the mevalonate-biosynthesizing enzymes (3-hydroxy-3-methylglutaryl-coenzyme A synthase, EC 4.1.3.5) has afforded us the opportunity to test and to extend the hypothesis that a product of mevalonate biosynthesis other than cholesterol is required for cellular proliferation. We present evidence here that both DNA synthesis and protein synthesis are inhibited in this mutant by mevalonate starvation, although RNA synthesis appears to be unaffected. The loss of DNA synthesis and the loss of protein synthesis in this mutant appear to be due to independent processes. DNA synthesis is reversibly inhibited by mevalonate starvation at a unique point in the cell cycle. Resumption of DNA synthesis after readdition of mevalonate exhibits a long lag; the peak of S-phase DNA synthesis occurs approximately 17 hr after mevalonate readdition, suggesting that mevalonate starvation puts cells into a quiescent (G0) state owing to their failure to transit a restriction point. The loss of DNA biosynthesis in the Mev-1 cell is well correlated with the rate of turnover of mevalonate label of certain terpenylated polypeptides.


Subject(s)
Cell Cycle , Mevalonic Acid/deficiency , Adenine/analogs & derivatives , Adenine/metabolism , Animals , Cell Line , Cricetinae , Cricetulus , DNA/biosynthesis , DNA Replication , Female , Hydroxymethylglutaryl CoA Reductases/genetics , Isopentenyladenosine , Ovary , Protein Biosynthesis , RNA/biosynthesis , RNA, Transfer/metabolism
3.
J Cell Biol ; 95(1): 144-53, 1982 Oct.
Article in English | MEDLINE | ID: mdl-7142283

ABSTRACT

We used two model systems to investigate the effect of compactin, a competitive inhibitor of beta-hydroxy beta-methylglutarylcoenzyme A reductase, on the shape of Swiss 3T3 cells. We maintained cells in a quiescent state in medium deficient in platelet-derived growth factor (PDGF), or we added PDGF to quiescent cells to initiate traverse through a single cell cycle. In both systems, the cells responded to compactin by acquiring a characteristic rounded shape. Cell rounding seemed to depend on an induced deficiency of mevalonic acid (MVA) since the response could be prevented or reversed by adding MVA to the culture medium. Compactin-induced rounding appeared in PDGF-stimulated cells concomitantly with a compactin-mediated inhibition of DNA synthesis, and both effects had similar sensitivities to exogenous compactin and MVA. However, cell rounding seemed to be unrelated to other, previously observed effects of MVA deficiency. Compactin did not influence the total content of cell cholesterol, and little cholesterol was formed when we added radioactive MVA to round cells to effect shape change reversal. Measurement of the dolichol-dependent glycosylation of cell protein revealed no evidence of dolichol deficiency. In addition, reversal of cell rounding by MVA was not prevented by concentrations of tunicamycin that effectively blocked the incorporation of radioactive mannose into cell protein or by concentrations of cycloheximide that blocked protein synthesis. Taken together, our results suggest a new role for MVA or its products in the maintenance of cell shape.


Subject(s)
Cells, Cultured/cytology , Lovastatin/analogs & derivatives , Mevalonic Acid/pharmacology , Naphthalenes/pharmacology , Animals , Cell Adhesion/drug effects , Cell Division/drug effects , Cholesterol/biosynthesis , DNA/biosynthesis , Dolichols/biosynthesis , Growth Substances/pharmacology , Mevalonic Acid/deficiency , Mevalonic Acid/physiology , Mice , Peptides/pharmacology , Platelet-Derived Growth Factor , Protein Biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...