Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35.138
Filter
1.
Proc Natl Acad Sci U S A ; 121(25): e2316143121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38861595

ABSTRACT

Vibrio vulnificus causes life-threatening wound and gastrointestinal infections, mediated primarily by the production of a Multifunctional-Autoprocessing Repeats-In-Toxin (MARTX) toxin. The most commonly present MARTX effector domain, the Makes Caterpillars Floppy-like (MCF) toxin, is a cysteine protease stimulated by host adenosine diphosphate (ADP) ribosylation factors (ARFs) to autoprocess. Here, we show processed MCF then binds and cleaves host Ras-related proteins in brain (Rab) guanosine triphosphatases within their C-terminal tails resulting in Rab degradation. We demonstrate MCF binds Rabs at the same interface occupied by ARFs. Moreover, we show MCF preferentially binds to ARF1 prior to autoprocessing and is active to cleave Rabs only subsequent to autoprocessing. We then use structure prediction algorithms to demonstrate that structural composition, rather than sequence, determines Rab target specificity. We further determine a crystal structure of aMCF as a swapped dimer, revealing an alternative conformation we suggest represents the open, activated state of MCF with reorganized active site residues. The cleavage of Rabs results in Rab1B dispersal within cells and loss of Rab1B density in the intestinal tissue of infected mice. Collectively, our work describes an extracellular bacterial mechanism whereby MCF is activated by ARFs and subsequently induces the degradation of another small host guanosine triphosphatase (GTPase), Rabs, to drive organelle damage, cell death, and promote pathogenesis of these rapidly fatal infections.


Subject(s)
Bacterial Toxins , Vibrio vulnificus , rab GTP-Binding Proteins , Animals , Female , Humans , Mice , ADP-Ribosylation Factors/metabolism , Bacterial Toxins/metabolism , Bacterial Toxins/chemistry , HEK293 Cells , Mice, Inbred ICR , Proteolysis , rab GTP-Binding Proteins/metabolism , Vibrio Infections/microbiology , Vibrio Infections/metabolism , Vibrio vulnificus/metabolism , Vibrio vulnificus/pathogenicity
2.
Mol Hum Reprod ; 30(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38830032

ABSTRACT

Preterm birth is a serious pregnancy complication that affects neonatal mortality, morbidity, and long-term neurological prognosis. Predicting spontaneous preterm delivery (PTD) is important for its management. While excluding the risk of PTD is important, identifying women at high risk of PTD is imperative for medical intervention. Currently used PTD prediction parameters in clinical practice have shown high negative predictive values, but low positive predictive values. We focused on sulfated and sialylated glycocalyx changes in the uterus and vagina prior to the onset of parturition and explored the potential of electrophysiological detection of these changes as a PTD prediction parameter with a high positive predictive value. In vivo local vaginal bioelectrical impedance (VZ) was measured using two different mouse PTD models. PTD was induced in ICR mice through the subcutaneous injection of mifepristone or local intrauterine injection of lipopolysaccharide (LPS). The PTD rates were 100% and 60% post-administration of mifepristone (16-20 h, n = 4) and LPS (12-24 h, n = 20), respectively. The local VZ values (15 and 10 h after mifepristone or LPS treatment, respectively) were significantly lower in the PTD group than in the non-PTD group. Receiver operator characteristic (ROC) curve analysis of VZ at 125 kHz as a predictor of PTD showed an area under the ROC curve of 1.00 and 0.77 and positive predictive values of 1.00 and 0.86, for the mifepristone and LPS models, respectively, suggesting that local VZ value can predict PTD. Histological examination of the LPS-treated model 6 h post-treatment revealed increased expression of sulfomucins and/or sulfated proteoglycans and sialomucins in the cervical epithelium, cervical stroma and vaginal stroma. In conclusion, local VZ values can determine sulfated and sialylated glycocalyx alterations within the uterus and vagina and might be a useful PTD prediction parameter.


Subject(s)
Electric Impedance , Mice, Inbred ICR , Premature Birth , Vagina , Animals , Female , Vagina/metabolism , Vagina/drug effects , Vagina/pathology , Pregnancy , Mice , Premature Birth/metabolism , Premature Birth/diagnosis , Mifepristone/pharmacology , Uterus/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/toxicity , Predictive Value of Tests , ROC Curve , Disease Models, Animal
3.
Int J Mol Sci ; 25(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38891856

ABSTRACT

Astatine (211At) is a cyclotron-produced alpha emitter with a physical half-life of 7.2 h. In our previous study, the 211At-labeled prostate-specific membrane antigen (PSMA) compound ([211At]PSMA-5) exhibited excellent tumor growth suppression in a xenograft model. We conducted preclinical biodistribution and toxicity studies for the first-in-human clinical trial. [211At]PSMA-5 was administered to both normal male ICR mice (n = 85) and cynomolgus monkeys (n = 2). The mice were divided into four groups for the toxicity study: 5 MBq/kg, 12 MBq/kg, 35 MBq/kg, and vehicle control, with follow-ups at 1 day (n = 10 per group) and 14 days (n = 5 per group). Monkeys were observed 24 h post-administration of [211At]PSMA-5 (9 MBq/kg). Blood tests and histopathological examinations were performed at the end of the observation period. Blood tests in mice indicated no significant myelosuppression or renal dysfunction. However, the monkeys displayed mild leukopenia 24 h post-administration. Despite the high accumulation in the kidneys and thyroid, histological analysis revealed no abnormalities. On day 1, dose-dependent single-cell necrosis/apoptosis was observed in the salivary glands of mice and intestinal tracts of both mice and monkeys. Additionally, tingible body macrophages in the spleen and lymph nodes indicated phagocytosis of apoptotic B lymphocytes. Cortical lymphopenia (2/10) in the thymus and a decrease in the bone marrow cells (9/10) were observed in the 35 MBq/kg group in mice. These changes were transient, with no irreversible toxicity observed in mice 14 days post-administration. This study identified no severe toxicities associated with [211At]PSMA-5, highlighting its potential as a next-generation targeted alpha therapy for prostate cancer. The sustainable production of 211At using a cyclotron supports its applicability for clinical use.


Subject(s)
Mice, Inbred ICR , Prostatic Neoplasms , Animals , Male , Prostatic Neoplasms/pathology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Mice , Tissue Distribution , Astatine/pharmacokinetics , Astatine/chemistry , Alpha Particles/therapeutic use , Humans , Macaca fascicularis , Glutamate Carboxypeptidase II/metabolism , Radiopharmaceuticals/pharmacokinetics , Radiopharmaceuticals/chemistry
4.
Int J Mol Sci ; 25(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38892026

ABSTRACT

In this study, we examined the potential antidepressant-like effects of Chinese quince fruit extract (Chaenomeles sinensis fruit extract, CSFE) in an in vivo model induced by repeated injection of corticosterone (CORT)-induced depression. HPLC analysis determined that chlorogenic acid (CGA), neo-chlorogenic acid (neo-CGA), and rutin (RT) compounds were major constituents in CSFE. Male ICR mice (5 weeks old) were orally administered various doses (30, 100, and 300 mg/kg) of CSFE and selegiline (10 mg/kg), a monoamine oxidase B (MAO-B) inhibitor, as a positive control following daily intraperitoneal injections of CORT (40 mg/kg) for 21 days. In our results, mice treated with CSFE exhibited significant improvements in depressive-like behaviors induced by CORT. This was evidenced by reduced immobility times in the tail suspension test and forced swim test, as well as increased step-through latency times in the passive avoidance test. Indeed, mice treated with CSFE also exhibited a significant decrease in anxiety-like behaviors as measured by the elevated plus maze test. Moreover, molecular docking analysis indicated that CGA and neo-CGA from CSFE had stronger binding to the active site of MAO-B. Our results indicate that CSFE has potential antidepressant effects in a mouse model of repeated injections of CORT-induced depression.


Subject(s)
Antidepressive Agents , Depression , Fruit , Mice, Inbred ICR , Molecular Docking Simulation , Plant Extracts , Rosaceae , Animals , Antidepressive Agents/pharmacology , Antidepressive Agents/chemistry , Male , Mice , Fruit/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Depression/drug therapy , Rosaceae/chemistry , Behavior, Animal/drug effects , Monoamine Oxidase/metabolism , Disease Models, Animal , Corticosterone , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase Inhibitors/chemistry , Chlorogenic Acid/pharmacology , Chlorogenic Acid/chemistry , East Asian People
5.
J Physiol Sci ; 74(1): 32, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849720

ABSTRACT

We investigated whether calorie restriction (CR) enhances metabolic adaptations to endurance training (ET). Ten-week-old male Institute of Cancer Research (ICR) mice were fed ad libitum or subjected to 30% CR. The mice were subdivided into sedentary and ET groups. The ET group performed treadmill running (20-25 m/min, 30 min, 5 days/week) for 5 weeks. We found that CR decreased glycolytic enzyme activity and monocarboxylate transporter (MCT) 4 protein content, while enhancing glucose transporter 4 protein content in the plantaris and soleus muscles. Although ET and CR individually increased citrate synthase activity in the plantaris muscle, the ET-induced increase in respiratory chain complex I protein content was counteracted by CR. In the soleus muscle, mitochondrial enzyme activity and protein levels were increased by ET, but decreased by CR. It has been suggested that CR partially interferes with skeletal muscle adaptation to ET.


Subject(s)
Caloric Restriction , Energy Metabolism , Liver , Monocarboxylic Acid Transporters , Muscle, Skeletal , Physical Conditioning, Animal , Animals , Muscle, Skeletal/metabolism , Male , Mice , Caloric Restriction/methods , Liver/metabolism , Physical Conditioning, Animal/physiology , Energy Metabolism/physiology , Monocarboxylic Acid Transporters/metabolism , Mice, Inbred ICR , Endurance Training/methods , Glucose Transporter Type 4/metabolism , Adaptation, Physiological/physiology , Citrate (si)-Synthase/metabolism , Muscle Proteins
6.
J Environ Sci (China) ; 145: 117-127, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38844312

ABSTRACT

Atmospheric particulate matter (PM) exacerbates the risk factor for Alzheimer's and Parkinson's diseases (PD) by promoting the alpha-synuclein (α-syn) pathology in the brain. However, the molecular mechanisms of astrocytes involvement in α-syn pathology underlying the process remain unclear. This study investigated PM with particle size <200 nm (PM0.2) exposure-induced α-syn pathology in ICR mice and primary astrocytes, then assessed the effects of mammalian target of rapamycin inhibitor (PP242) in vitro studies. We observed the α-syn pathology in the brains of exposed mice. Meanwhile, PM0.2-exposed mice also exhibited the activation of glial cell and the inhibition of autophagy. In vitro study, PM0.2 (3, 10 and 30 µg/mL) induced inflammatory response and the disorders of α-syn degradation in primary astrocytes, and lysosomal-associated membrane protein 2 (LAMP2)-mediated autophagy underlies α-syn pathology. The abnormal function of autophagy-lysosome was specifically manifested as the expression of microtubule-associated protein light chain 3 (LC3II), cathepsin B (CTSB) and lysosomal abundance increased first and then decreased, which might both be a compensatory mechanism to toxic α-syn accumulation induced by PM0.2. Moreover, with the transcription factor EB (TFEB) subcellular localization and the increase in LC3II, LAMP2, CTSB, and cathepsin D proteins were identified, leading to the restoration of the degradation of α-syn after the intervention of PP242. Our results identified that PM0.2 exposure could promote the α-syn pathological dysregulation in astrocytes, providing mechanistic insights into how PM0.2 increases the risk of developing PD and highlighting TFEB/LAMP2 as a promising therapeutic target for antagonizing PM0.2 toxicity.


Subject(s)
Astrocytes , Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Lysosomal-Associated Membrane Protein 2 , Lysosomes , Mice, Inbred ICR , Particulate Matter , alpha-Synuclein , Animals , Astrocytes/drug effects , alpha-Synuclein/metabolism , Autophagy/drug effects , Mice , Lysosomes/metabolism , Lysosomes/drug effects , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Lysosomal-Associated Membrane Protein 2/metabolism , Particulate Matter/toxicity , Air Pollutants/toxicity
7.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(5): 960-966, 2024 May 20.
Article in Chinese | MEDLINE | ID: mdl-38862454

ABSTRACT

OBJECTIVE: To assess the effects of repeated mild traumatic brain injury (rmTBI) in the parietal cortex on neuronal morphology and synaptic plasticity in the medulla oblongata of mice. METHODS: Thirty-two male ICR mice were randomly divided into sham operation group (n=8) and rmTBI group (n=24). The mice in the latter group were subjected to repeated mild impact injury of the parietal cortex by a free-falling object. The mice surviving the injuries were evaluated for neurological deficits using neurological severity scores (NSS), righting reflex test and forced swimming test, and pathological changes of the neuronal cells in the medulla oblongata were observed with HE and Nissl staining. Western blotting and immunofluorescence staining were used to detect the expressions of neuroligin 1(NLG-1) and postsynaptic density protein 95(PSD-95) in the medulla oblongata of the mice that either survived rmTBI or not. RESULTS: None of the mice in the sham-operated group died, while the mortality rate was 41.67% in rmTBI group. The mice surviving rmTBI showed significantly reduced NSS, delayed recovery of righting reflex, increased immobility time in forced swimming test (P < 0.05), and loss of Nissl bodies; swelling and necrosis were observed in a large number of neurons in the medulla oblongata, where the expression levels of NLG-1 and PSD-95 were significantly downregulated (P < 0.05). The mice that did not survive rmTBI showed distorted and swelling nerve fibers and decreased density of neurons in the medulla oblongina with lowered expression levels of NLG-1 and PSD-95 compared with the mice surviving the injuries (P < 0.01). CONCLUSION: The structural and functional anomalies of the synapses in the medulla oblongata may contribute to death and neurological impairment following rmTBI in mice.


Subject(s)
Cell Adhesion Molecules, Neuronal , Disks Large Homolog 4 Protein , Medulla Oblongata , Mice, Inbred ICR , Parietal Lobe , Animals , Mice , Medulla Oblongata/metabolism , Disks Large Homolog 4 Protein/metabolism , Male , Parietal Lobe/metabolism , Cell Adhesion Molecules, Neuronal/metabolism , Neurons/metabolism , Brain Injuries, Traumatic/metabolism , Neuronal Plasticity
8.
Immun Inflamm Dis ; 12(6): e1320, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38888378

ABSTRACT

BACKGROUND: At present, neonatal hypoxic-ischemic encephalopathy (HIE), especially moderate to severe HIE, is a challenging disease for neonatologists to treat, and new alternative/complementary treatments are urgently needed. The neuroinflammatory cascade triggered by hypoxia-ischemia (HI) insult is one of the core pathological mechanisms of HIE. Early inhibition of neuroinflammation provides long-term neuroprotection. Plant-derived monomers have impressive anti-inflammatory effects. Aloesin (ALO) has been shown to have significant anti-inflammatory and antioxidant effects in diseases such as ulcerative colitis, but its role in HIE is unclear. To this end, we conducted a series of experiments to explore the potential mechanism of ALO in preventing and treating brain damage caused by HI insult. MATERIALS AND METHODS: Hypoxic-ischemic brain damage (HIBD) was induced in 7-day-old Institute of Cancer Research (ICR) mice, which were then treated with 20 mg/kg ALO. The neuroprotective effects of ALO on HIBD and the underlying mechanism were evaluated through neurobehavioral testing, infarct size measurement, apoptosis detection, protein and messenger RNA level determination, immunofluorescence, and molecular docking. RESULTS: ALO alleviated the long-term neurobehavioral deficits caused by HI insult; reduced the extent of cerebral infarction; inhibited cell apoptosis; decreased the levels of the inflammatory factors interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α; activated microglia and astrocytes; and downregulated the protein expression of members in the TLR4 signaling pathway. In addition, molecular docking showed that ALO can bind stably to TLR4. CONCLUSION: ALO ameliorated HIBD in neonatal mice by inhibiting the neuroinflammatory response mediated by TLR4 signaling.


Subject(s)
Animals, Newborn , Hypoxia-Ischemia, Brain , Neuroinflammatory Diseases , Neuroprotective Agents , Toll-Like Receptor 4 , Animals , Toll-Like Receptor 4/metabolism , Hypoxia-Ischemia, Brain/drug therapy , Hypoxia-Ischemia, Brain/metabolism , Hypoxia-Ischemia, Brain/pathology , Mice , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/etiology , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/metabolism , Mice, Inbred ICR , Disease Models, Animal , Signal Transduction/drug effects , Apoptosis/drug effects , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Molecular Docking Simulation
9.
Food Funct ; 15(12): 6759-6767, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38842261

ABSTRACT

The safety of the carrageenan (CGN) consumption as a food additive is under debate, with negative effects being associated with the products of hydrolysis of CGN. Moreover, there is an increasing need to integrate gut microbiome analysis in the scientific risk assessment of food additives. The objective of this study was to test the effects of CGN consumption on the gut microbiota and the intestinal homeostasis of young male and female mice. Female and male ICR-CD1 mice (8 weeks old) orally received 540 mg kg-1 day-1 of CGN, representing the maximum-level exposure assessment scenario surveyed for children, over the course of two weeks. Fecal material and peritoneal immune cells were analyzed to determine changes in the fecal microbiota, based on the analysis of bacterial 16S rRNA gene amplicon sequences and short-chain fatty acid (SCFA) concentrations, and some immune functions and redox parameters of peritoneal leukocytes. Non-significant microbiota taxonomical changes associated with CGN intake were found in the mouse stools, resulting the housing time in an increase in bacterial groups belonging to the Bacteroidota phylum. The PICRUSt2 functional predictions showed an overall increase in functional clusters of orthologous genes (COGs) involved in carbohydrate transport and metabolism. A significant increase in the cytotoxicity of fecal supernatants was observed in CGN-fed mice, which correlated with worsening of immune functions and oxidative parameters. The altered immunity and oxidative stress observed in young mice after the consumption of CGN, along with the fecal cytotoxicity shown towards intestinal epithelial cells, may be associated with the gut microbiota's capacity to degrade CGN. The characterization of the gut microbiota's ability to hydrolyze CGN should be included in the risk assessment of this food additive.


Subject(s)
Bacteria , Carrageenan , Feces , Food Additives , Gastrointestinal Microbiome , Homeostasis , Mice, Inbred ICR , Animals , Gastrointestinal Microbiome/drug effects , Mice , Male , Female , Food Additives/metabolism , Feces/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Intestines/microbiology , Intestines/drug effects , RNA, Ribosomal, 16S/genetics , Fatty Acids, Volatile/metabolism
10.
BMC Res Notes ; 17(1): 155, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840123

ABSTRACT

BACKGROUND AND OBJECTIVE: Aspartame (L-aspartyl L-phenylalanine methyl ester) is an artificial sweetener widely used as a sugar substitute. There are concerns regarding the effects of high aspartame doses on the kidney owing to oxidative stress; however, whether the maximum allowed dose of aspartame in humans affects the kidneys remains unknown. Therefore, in this study, we investigated whether the maximum allowed dose of aspartame in humans affects the kidneys. METHODS: In this study, animals were fed a folate-deficient diet to mimic human aspartame metabolism. Eight-week-old ICR mice were divided into control (CTL), 40 mg/kg/day of aspartame-administered (ASP), folate-deficient diet (FD), and 40 mg/kg/day of aspartame-administered with a folate-deficient diet (FD + ASP) groups. Aspartame was administered orally for eight weeks. Thereafter, we evaluated aspartame's effect on kidneys via histological analysis. RESULTS: There were no differences in serum creatinine and blood urea nitrogen levels between the CTL and ASP groups or between the FD and FD + ASP groups. There was no histological change in the kidneys in any group. The expression of superoxide dismutase and 4-hydroxy-2-nonenal in the kidney did not differ between the CTL and ASP groups or the FD and FD + ASP groups. CONCLUSION: Our findings indicate that the allowed doses of aspartame in humans may not affect kidney function or oxidative states.


Subject(s)
Aspartame , Kidney , Mice, Inbred ICR , Oxidative Stress , Sweetening Agents , Animals , Aspartame/pharmacology , Kidney/drug effects , Kidney/metabolism , Sweetening Agents/pharmacology , Sweetening Agents/administration & dosage , Mice , Male , Oxidative Stress/drug effects , Antioxidants/pharmacology , Antioxidants/metabolism , Superoxide Dismutase/metabolism , Blood Urea Nitrogen
11.
J Diabetes Res ; 2024: 1222395, 2024.
Article in English | MEDLINE | ID: mdl-38725443

ABSTRACT

This study is aimed at assessing the impact of soluble dietary fiber inulin on the treatment of diabetes-related chronic inflammation and kidney injury in mice with type 2 diabetes (T2DM). The T2DM model was created by feeding the Institute of Cancer Research (ICR) mice a high-fat diet and intraperitoneally injecting them with streptozotocin (50 mg/kg for 5 consecutive days). The thirty-six ICR mice were divided into three dietary groups: the normal control (NC) group, the T2DM (DM) group, and the DM + inulin diet (INU) group. The INU group mice were given inulin at the dose of 500 mg/kg gavage daily until the end of the 12th week. After 12 weeks, the administration of inulin resulted in decreased serum levels of fasting blood glucose (FBG), low-density lipoprotein cholesterol (LDL-C), blood urea nitrogen (BUN), and creatinine (CRE). The administration of inulin not only ameliorated renal injury but also resulted in a reduction in the mRNA expressions of inflammatory factors in the spleen and serum oxidative stress levels, when compared to the DM group. Additionally, inulin treatment in mice with a T2DM model led to a significant increase in the concentrations of three primary short-chain fatty acids (SCFAs) (acetic acid, propionic acid, and butyric acid), while the concentration of advanced glycation end products (AGEs), a prominent inflammatory factor in diabetes, exhibited a significant decrease. The results of untargeted metabolomics indicate that inulin has the potential to alleviate inflammatory response and kidney damage in diabetic mice. This beneficial effect is attributed to its impact on various metabolic pathways, including glycerophospholipid metabolism, taurine and hypotaurine metabolism, arginine biosynthesis, and tryptophan metabolism. Consequently, oral inulin emerges as a promising treatment option for diabetes and kidney injury.


Subject(s)
Blood Glucose , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Inflammation , Inulin , Animals , Male , Mice , Blood Glucose/metabolism , Blood Glucose/drug effects , Blood Urea Nitrogen , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetic Nephropathies/blood , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/etiology , Diet, High-Fat , Fatty Acids, Volatile/metabolism , Inflammation/drug therapy , Inulin/pharmacology , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Metabolomics , Mice, Inbred ICR , Oxidative Stress/drug effects
12.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2169-2177, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812232

ABSTRACT

This study aims to explore the mechanism of Shoutai Pills in treating threatened abortion. According to the random number table method, ICR female mice were randomized into a normal group, a model group, a dydrogesterone group, and a Shoutai Pills group, with 15 mice in each group. Mice were administrated with normal saline(normal and model groups) or the suspension of Shoutai Pills or dydrogesterone by gavage at 9:00 am every day. At 16:00 every day, mice in the normal group were administrated with an equal volume of distilled water, while those in the model, Shoutai Pills, and dydrogesterone groups were administrated with hydrocortisone solution by gavage for 4 consecutive days. ICR female and male mice were caged in a ratio of 2∶1 during the pre-estrous or estrous period. From the first day of pregnancy, drug administration was continued for 5 consecutive days. On day 6, mice were administrated with mifepristone by gavage to establish the model of kidney deficiency-induced abortion. On day 6 of pregnancy, 10 female ICR mice were randomly selected from each group, and the uterus was collected for observation of the pathological changes of trophoblasts at the maternal-fetal interface by hematoxylin-eosin(HE) staining. The protein levels of key enzymes of glycolysis, hexokinase 2(HK2), enolase 1(ENO1), pyruvate kinase M2(PKM2), and lactate dehydrogenase A(LDHA), were determined by Western blot and immunofluorescence. The expression of apoptosis-related proteins including B cell lymphoma-2(Bcl-2), Bcl-2-associated protein X(Bax), and cysteinyl aspartate-specific proteinase-3(caspase-3) was determined by Western blot and real-time PCR. Terminal-deoxynucleoitidyl transferase-mediated nick-end labeling was employed to examine apoptosis. The embryo loss rate of the remaining five female mice was calculated by trypan blue staining method on day 14 of pregnancy. On day 14 of pregnancy, the embryo loss rate of the normal group was 5.00%, which was lower than that(27.78%) in the model group(P<0.05). Dydrogesterone and Shoutai Pills groups showed reduced embryo loss rates(10.26% and 7.50%, respectively) compared with the model group. On day 6 of pregnancy, compared with the normal group, the model group showed down-regulated expression of HK2, ENO1, PKM2, LDHA, and Bcl-2 and up-regulated expression of Bax and caspase-3(P<0.05). Compared with the model group, dydrogesterone and Shoutai Pills up-regulated the expression of HK2, ENO1, PKM2, LDHA, and Bcl-2 and down-regulated the expression of Bax and caspase-3(P<0.05). Compared with that in the normal group, the apoptosis rate in the model group increased(P<0.05). Compared with the model group, dydrogesterone and Shoutai Pills reduced the apoptosis rate(P<0.05). In conclusion, Shoutai Pills can reduce the embryo loss rate and protect embryos by promoting aerobic glycolysis at the maternal-fetal interface and inhibiting the apoptosis of trophoblasts in mice.


Subject(s)
Apoptosis , Drugs, Chinese Herbal , Mice, Inbred ICR , Animals , Female , Mice , Apoptosis/drug effects , Drugs, Chinese Herbal/administration & dosage , Pregnancy , Abortion, Threatened/drug therapy , Abortion, Threatened/metabolism , Glycolysis/drug effects , Male , Disease Models, Animal , Humans
13.
Biomed Pharmacother ; 176: 116786, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38805971

ABSTRACT

Multitargeting has become a promising strategy for the development of anti-Alzheimer's disease (AD) drugs, considering the complexity of molecular mechanisms in AD pathology. In most pre-clinical studies, the effectiveness of these multi-targeted anti-AD drugs has been demonstrated but comprehensive safety assessments are lacking. Here, the safety evaluation of a novel multi-targeted candidate in AD (XYY-CP1106), characterized by its dual-property of iron chelation and monoamine oxidase B inhibition, was conducted by multifaceted analysis. Acute toxicity in mice was conducted to investigate the safety of oral administration and the maximum tolerated dose of the agent. In vitro Ames analysis, CHL chromosomal aberration analysis, and bone marrow micronucleus analysis were executed to evaluate the genotoxicity. A teratogenesis investigation in pregnant mice were meticulously performed to evaluate the teratogenesis of XYY-CP1106. Furthermore, a 90-day long-term toxicity analysis in rats was investigated to evaluate the cumulative toxicity after long-term administration. Strikingly, no toxic phenomena were found in all investigations, demonstrating relatively high safety profile of the candidate compound. The securing of safety heightened the translational significance of XYY-CP1106 as a novel multi-targeted anti-AD candidate, supporting the rationality of multitargeting strategy in the designs of smart anti-AD drugs.


Subject(s)
Alzheimer Disease , Animals , Alzheimer Disease/drug therapy , Female , Mice , Male , Pregnancy , Rats , Rats, Sprague-Dawley , Mice, Inbred ICR , Maximum Tolerated Dose , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase Inhibitors/toxicity , Chromosome Aberrations/drug effects , Teratogenesis/drug effects
14.
Nutrients ; 16(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38794645

ABSTRACT

To maintain a beneficial concentration of eicosapentaenoic acid (EPA), the efficient conversion of its precursor, α-linolenic acid (α-LA), is important. Here, we studied the conversion of α-LA to EPA using ICR and C57BL/6 mice. A single dose of perilla oil rich-in α-LA or free α-LA had not been converted to EPA 18 h following administration. The α-LA was absorbed into the circulation, and its concentration peaked 6 h after administration, after which it rapidly decreased. In contrast, EPA administration was followed by an increase in circulating EPA concentration, but this did not decrease between 6 and 18 h, indicating that the clearance of EPA is slower than that of α-LA. After ≥1 week perilla oil intake, the circulating EPA concentration was >20 times higher than that of the control group which consumed olive oil, indicating that daily consumption, but not a single dose, of α-LA-rich oil might help preserve the physiologic EPA concentration. The consumption of high concentrations of perilla oil for 4 weeks also increased the hepatic expression of Elovl5, which is involved in fatty acid elongation; however, further studies are needed to characterize the relationship between the expression of this gene and the conversion of α-LA to EPA.


Subject(s)
Eicosapentaenoic Acid , Liver , Mice, Inbred C57BL , Mice, Inbred ICR , Plant Oils , alpha-Linolenic Acid , Animals , alpha-Linolenic Acid/administration & dosage , Eicosapentaenoic Acid/blood , Eicosapentaenoic Acid/administration & dosage , Male , Plant Oils/administration & dosage , Mice , Liver/metabolism , Fatty Acid Elongases/metabolism , Olive Oil/administration & dosage , Acetyltransferases/metabolism , Acetyltransferases/genetics
15.
J Cell Biol ; 223(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38767572

ABSTRACT

Proteasome activity is crucial for cellular integrity, but how tissues adjust proteasome content in response to catabolic stimuli is uncertain. Here, we demonstrate that transcriptional coordination by multiple transcription factors is required to increase proteasome content and activate proteolysis in catabolic states. Using denervated mouse muscle as a model system for accelerated proteolysis in vivo, we reveal that a two-phase transcriptional program activates genes encoding proteasome subunits and assembly chaperones to boost an increase in proteasome content. Initially, gene induction is necessary to maintain basal proteasome levels, and in a more delayed phase (7-10 days after denervation), it stimulates proteasome assembly to meet cellular demand for excessive proteolysis. Intriguingly, the transcription factors PAX4 and α-PALNRF-1 control the expression of proteasome among other genes in a combinatorial manner, driving cellular adaptation to muscle denervation. Consequently, PAX4 and α-PALNRF-1 represent new therapeutic targets to inhibit proteolysis in catabolic diseases (e.g., type-2 diabetes, cancer).


Subject(s)
Nuclear Respiratory Factor 1 , Paired Box Transcription Factors , Proteasome Endopeptidase Complex , Proteolysis , Animals , Male , Mice , Gene Expression Regulation , Muscle, Skeletal/metabolism , Paired Box Transcription Factors/metabolism , Paired Box Transcription Factors/genetics , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/genetics , Mice, Inbred ICR , Nuclear Respiratory Factor 1/genetics , Nuclear Respiratory Factor 1/metabolism
16.
Environ Pollut ; 351: 124101, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38710361

ABSTRACT

Both nanoplastics (NPs) and 3-tert-butyl-4-hydroxyanisole (3-BHA) are environmental contaminants that can bio-accumulate through the food chain. However, the combined effects of which on mammalian female reproductive system remain unclear. Here, the female ICR-CD1 mice were used to evaluate the damage effects of ovaries and uterus after NPs and 3-BHA co-treatment for 35 days. Firstly, co-exposure significantly reduced the body weight and organ index of ovaries and uterus in mice. Secondly, combined effects of NPs and 3-BHA exacerbated the histopathological abnormalities to the ovaries and uterus and decreased female sex hormones such as FSH and LH while increased antioxidant activities including CAT and GSH-Px. Moreover, the apoptotic genes, inflammatory cytokines and the key reproductive development genes such as FSTL1 were significantly up-regulated under co-exposure conditions. Thirdly, through transcriptional and bioinformatics analysis, immunofluorescence and western blotting assays, together with molecular docking simulation, we determined that co-exposure up-regulated the FSTL1, TGF-ß and p-Smad1/5/9 but down-regulated the expression of BMP4. Finally, the pharmacological rescue experiments further demonstrated that co-exposure of NPs and 3-BHA mainly exacerbated the female reproductive toxicity through FSTL1-mediated BMP4/TGF-ß/SMAD signaling pathway. Taken together, our studies provided the theoretical basis of new environmental pollutants on the reproductive health in female mammals.


Subject(s)
Mice, Inbred ICR , Ovary , Polystyrenes , Uterus , Animals , Female , Mice , Uterus/drug effects , Uterus/metabolism , Ovary/drug effects , Ovary/metabolism , Polystyrenes/toxicity , Reproduction/drug effects , Microplastics/toxicity , Bone Morphogenetic Protein 4/genetics , Bone Morphogenetic Protein 4/metabolism , Nanoparticles/toxicity , Molecular Docking Simulation , Environmental Pollutants/toxicity , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics
17.
Sci Rep ; 14(1): 10854, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740788

ABSTRACT

Unlike adult mammalian wounds, early embryonic mouse skin wounds completely regenerate and heal without scars. Analysis of the underlying molecular mechanism will provide insights into scarless wound healing. Twist2 is an important regulator of hair follicle formation and biological patterning; however, it is unclear whether it plays a role in skin or skin appendage regeneration. Here, we aimed to elucidate Twist2 expression and its role in fetal wound healing. ICR mouse fetuses were surgically wounded on embryonic day 13 (E13), E15, and E17, and Twist2 expression in tissue samples from these fetuses was evaluated via in situ hybridization, immunohistochemistry, and reverse transcription-quantitative polymerase chain reaction. Twist2 expression was upregulated in the dermis of E13 wound margins but downregulated in E15 and E17 wounds. Twist2 knockdown on E13 left visible marks at the wound site, inhibited regeneration, and resulted in defective follicle formation. Twist2-knockdown dermal fibroblasts lacked the ability to undifferentiate. Furthermore, Twist2 hetero knockout mice (Twist + /-) formed visible scars, even on E13, when all skin structures should regenerate. Thus, Twist2 expression correlated with skin texture formation and hair follicle defects in late mouse embryos. These findings may help develop a therapeutic strategy to reduce scarring and promote hair follicle regeneration.


Subject(s)
Fetus , Hair Follicle , Regeneration , Skin , Twist-Related Protein 2 , Wound Healing , Animals , Hair Follicle/metabolism , Mice , Wound Healing/genetics , Wound Healing/physiology , Fetus/metabolism , Skin/metabolism , Twist-Related Protein 2/metabolism , Twist-Related Protein 2/genetics , Mice, Knockout , Mice, Inbred ICR , Female , Fibroblasts/metabolism , Repressor Proteins , Twist-Related Protein 1
18.
Bull Exp Biol Med ; 176(5): 572-575, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38730104

ABSTRACT

A comparative assessment of radioprotective properties of inosine nucleoside (riboxin) and recognized radioprotector indralin was carried out. We analyzed survival of male ICR CD-1 mice weighting 32.2±0.2 g exposed to external X-ray radiation at doses 6.5 and 6.75 Gy and receiving indralin at a dose of 100 or 150 µg/g body weight or riboxin (inosine) at a dose of 100 or 200 µg/g body weight before irradiation. The survival analysis was carried out by the Kaplan-Meier method. The significance was assessed by using the log-rank-test. Inosine showed a significant difference from the irradiated control only at a dose of 100 µg/g body weight at a radiation dose of 6.75 Gy. The survival of animals treated with indralin was significantly higher in comparison with not only the irradiated control group, but also with the groups receiving inosine.


Subject(s)
Inosine , Radiation-Protective Agents , Animals , Inosine/pharmacology , Radiation-Protective Agents/pharmacology , Male , Mice , Mice, Inbred ICR , X-Rays , Phenols
19.
BMC Complement Med Ther ; 24(1): 198, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773460

ABSTRACT

BACKGROUND: Yokukansan, a traditional Japanese medicine (Kampo), has been widely used to treat neurosis, dementia, and chronic pain. Previous in vitro studies have suggested that Yokukansan acts as a partial agonist of the 5-HT1A receptor, resulting in amelioration of chronic pain through inhibition of nociceptive neuronal activity. However, its effectiveness for treating postoperative pain remains unknown, although its analgesic mechanism of action has been suggested to involve serotonin and glutamatergic neurotransmission. This study aimed to investigate the effect of Yokukansan on postoperative pain in an animal model. METHODS: A mouse model of postoperative pain was created by plantar incision, and Yokukansan was administered orally the day after paw incision. Pain thresholds for mechanical and heat stimuli were examined in a behavioral experiment. In addition, to clarify the involvement of the serotonergic nervous system, we examined the analgesic effects of Yokukansan in mice that were serotonin-depleted by para-chlorophenylalanine (PCPA) treatment and intrathecal administration of NAN-190, 5-HT1A receptor antagonist. RESULTS: Orally administered Yokukansan increased the pain threshold dose-dependent in postoperative pain model mice. Pretreatment of para-chlorophenylalanine dramatically suppressed serotonin immunoreactivity in the spinal dorsal horn without changing the pain threshold after the paw incision. The analgesic effect of Yokukansan tended to be attenuated by para-chlorophenylalanine pretreatment and significantly attenuated by intrathecal administration of 2.5 µg of NAN-190 compared to that in postoperative pain model mice without para-chlorophenylalanine treatment and NAN-190 administration. CONCLUSION: This study demonstrated that oral administration of Yokukansan has acute analgesic effects in postoperative pain model mice. Behavioral experiments using serotonin-depleted mice and mice intrathecally administered with a 5-HT1A receptor antagonist suggested that Yokukansan acts as an agonist at the 5-HT1A receptor, one of the serotonin receptors, to produce analgesia.


Subject(s)
Analgesics , Disease Models, Animal , Drugs, Chinese Herbal , Pain, Postoperative , Animals , Mice , Drugs, Chinese Herbal/pharmacology , Male , Pain, Postoperative/drug therapy , Analgesics/pharmacology , Serotonin/metabolism , Receptor, Serotonin, 5-HT1A/metabolism , Receptor, Serotonin, 5-HT1A/drug effects , Administration, Oral , Mice, Inbred ICR
20.
Reprod Toxicol ; 126: 108608, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735593

ABSTRACT

Tripterygium wilfordii (TW) preparations have been utilized in China for treating rheumatoid arthritis and autoimmune diseases. However, their clinical use is limited due to reproductive toxicity, notably premature ovarian failure (POF). Our study aimed to investigate the effect and mechanism of bergenin in attenuating POF induced by triptolide in mice. POF was induced in female ICR mice via oral triptolide administration (50 µg/kg) for 60 days. Mice received bergenin (25, 50, 100 mg/kg, i.g.) or estradiol valerate (EV) (0.1 mg/kg, i.g.) daily, 1 h before triptolide treatment. In vitro, ovarian granulosa cells (OGCs) were exposed to triptolide (100 nM) and bergenin (1, 3, 10 µM). Antioxidant enzyme activity, protein expression, apoptosis rate, and reactive oxygen species (ROS) levels were assessed. The results showed that triptolide-treated mice exhibited evident atrophy, along with an increase in atretic follicles. Bergenin (50, 100 mg/kg) and EV (0.1 mg/kg), orally administered, exerted significant anti-POF effect. Bergenin and EV also decreased apoptosis in mouse ovaries. In vitro, bergenin (1, 3, 10 µM) attenuated triptolide-induced OGCs apoptosis by reducing levels of apoptosis-related proteins. Additionally, bergenin reduced oxidative stress through downregulation of antioxidant enzymes activity and overall ROS levels. Moreover, the combined use with Sh-Nrf2 resulted in a reduced protection of bergenin against triptolide-induced apoptosis of OGCs. Together, bergenin counteracts triptolide-caused POF in mice by inhibiting Nrf2-mediated oxidative stress and preventing OGC apoptosis. Combining bergenin with TW preparations may effectively reduce the risk of POF.


Subject(s)
Antioxidants , Apoptosis , Benzopyrans , Diterpenes , Epoxy Compounds , Granulosa Cells , Mice, Inbred ICR , Phenanthrenes , Primary Ovarian Insufficiency , Reactive Oxygen Species , Animals , Female , Primary Ovarian Insufficiency/chemically induced , Primary Ovarian Insufficiency/drug therapy , Primary Ovarian Insufficiency/prevention & control , Diterpenes/pharmacology , Phenanthrenes/toxicity , Phenanthrenes/pharmacology , Epoxy Compounds/toxicity , Antioxidants/pharmacology , Apoptosis/drug effects , Benzopyrans/pharmacology , Benzopyrans/therapeutic use , Reactive Oxygen Species/metabolism , Granulosa Cells/drug effects , Granulosa Cells/metabolism , Oxidative Stress/drug effects , NF-E2-Related Factor 2/metabolism , Mice , Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...