Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 16.890
Filter
1.
PLoS One ; 19(5): e0303863, 2024.
Article in English | MEDLINE | ID: mdl-38781241

ABSTRACT

Type 1 diabetes (T1D)-associated hyperglycemia develops, in part, from loss of insulin-secreting beta cells. The degree of glycemic dysregulation and the age at onset of disease can serve as indicators of the aggressiveness of the disease. Tracking blood glucose levels in prediabetic mice may demonstrate the onset of diabetes and, along with animal age, also presage disease severity. In this study, an analysis of blood glucose levels obtained from female NOD mice starting at 4 weeks until diabetes onset was undertaken. New onset diabetic mice were orally vaccinated with a Salmonella-based vaccine towards T1D-associated preproinsulin combined with TGFß and IL10 along with anti-CD3 antibody. Blood glucose levels were obtained before and after development of disease and vaccination. Animals were classified as acute disease if hyperglycemia was confirmed at a young age, while other animals were classified as progressive disease. The effectiveness of the oral T1D vaccine was greater in mice with progressive disease that had less glucose excursion compared to acute disease mice. Overall, the Salmonella-based vaccine reversed disease in 60% of the diabetic mice due, in part, to lessening of islet inflammation, improving residual beta cell health, and promoting tolerance. In summary, the age of disease onset and severity of glucose dysregulation in NOD mice predicted response to vaccine therapy. This suggests a similar disease categorization in the clinic may predict therapeutic response.


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 1 , Mice, Inbred NOD , Animals , Female , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/microbiology , Mice , Administration, Oral , Blood Glucose/metabolism , Salmonella Vaccines/immunology , Salmonella Vaccines/administration & dosage , Salmonella/immunology , Insulin/immunology , Disease Progression , Acute Disease , Protein Precursors
2.
Pathol Oncol Res ; 30: 1611586, 2024.
Article in English | MEDLINE | ID: mdl-38689823

ABSTRACT

Mounting evidence suggests that the immune landscape within prostate tumors influences progression, metastasis, treatment response, and patient outcomes. In this study, we investigated the spatial density of innate immune cell populations within NOD.SCID orthotopic prostate cancer xenografts following microinjection of human DU145 prostate cancer cells. Our laboratory has previously developed nanoscale liposomes that attach to leukocytes via conjugated E-selectin (ES) and kill cancer cells via TNF-related apoptosis inducing ligand (TRAIL). Immunohistochemistry (IHC) staining was performed on tumor samples to identify and quantify leukocyte infiltration for different periods of tumor growth and E-selectin/TRAIL (EST) liposome treatments. We examined the spatial-temporal dynamics of three different immune cell types infiltrating tumors using QuPath image analysis software. IHC staining revealed that F4/80+ tumor-associated macrophages (TAMs) were the most abundant immune cells in all groups, irrespective of time or treatment. The density of TAMs decreased over the course of tumor growth and decreased in response to EST liposome treatments. Intratumoral versus marginal analysis showed a greater presence of TAMs in the marginal regions at 3 weeks of tumor growth which became more evenly distributed over time and in tumors treated with EST liposomes. TUNEL staining indicated that EST liposomes significantly increased cell apoptosis in treated tumors. Additionally, confocal microscopy identified liposome-coated TAMs in both the core and periphery of tumors, highlighting the ability of liposomes to infiltrate tumors by "piggybacking" on macrophages. The results of this study indicate that TAMs represent the majority of innate immune cells within NOD.SCID orthotopic prostate tumors, and spatial density varies widely as a function of tumor size, duration of tumor growth, and treatment of EST liposomes.


Subject(s)
Liposomes , Mice, Inbred NOD , Mice, SCID , Prostatic Neoplasms , Tumor-Associated Macrophages , Animals , Male , Prostatic Neoplasms/pathology , Prostatic Neoplasms/immunology , Mice , Humans , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/pathology , Xenograft Model Antitumor Assays , Apoptosis , Disease Models, Animal , TNF-Related Apoptosis-Inducing Ligand/metabolism , E-Selectin/metabolism , Tumor Microenvironment/immunology
3.
Int J Mol Sci ; 25(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38791299

ABSTRACT

Type 1 diabetes (T1D) affects gastrointestinal (GI) motility, favoring gastroparesis, constipation, and fecal incontinence, which are more prevalent in women. The mechanisms are unknown. Given the G-protein-coupled estrogen receptor's (GPER) role in GI motility, we investigated sex-related diabetes-induced epigenetic changes in GPER. We assessed GPER mRNA and protein expression levels using qPCR and Western blot analyses, and quantified the changes in nuclear DNA methyltransferases and histone modifications (H3K4me3, H3Ac, and H3K27Ac) by ELISA kits. Targeted bisulfite and chromatin immunoprecipitation assays were used to evaluate DNA methylation and histone modifications around the GPER promoter by chromatin immunoprecipitation assays in gastric and colonic smooth muscle tissues of male and female control (CTR) and non-obese diabetic (NOD) mice. GPER expression was downregulated in NOD, with sex-dependent variations. In the gastric smooth muscle, not in colonic smooth muscle, downregulation coincided with differences in methylation ratios between regions 1 and 2 of the GPER promoter of NOD. DNA methylation was higher in NOD male colonic smooth muscle than in NOD females. H3K4me3 and H3ac enrichment decreased in NOD gastric smooth muscle. H3K4me3 levels diminished in the colonic smooth muscle of NOD. H3K27ac levels were unaffected, but enrichment decreased in NOD male gastric smooth muscle; however, it increased in the NOD male colonic smooth muscle and decreased in the female NOD colonic smooth muscle. Male NOD colonic smooth muscle exhibited decreased H3K27ac levels, not female, whereas female NOD colonic smooth muscle demonstrated diminished enrichment of H3ac at the GPER promoter, contrary to male NOD. Sex-specific epigenetic mechanisms contribute to T1D-mediated suppression of GPER expression in the GI tract. These insights advance our understanding of T1D complications and suggest promising avenues for targeted therapeutic interventions.


Subject(s)
Colon , DNA Methylation , Epigenesis, Genetic , Histones , Mice, Inbred NOD , Muscle, Smooth , Promoter Regions, Genetic , Receptors, G-Protein-Coupled , Animals , Female , Male , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Muscle, Smooth/metabolism , Mice , Histones/metabolism , Colon/metabolism , Colon/pathology , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/genetics , Receptors, Estrogen/metabolism , Receptors, Estrogen/genetics , Stomach/pathology
4.
Oncoimmunology ; 13(1): 2348254, 2024.
Article in English | MEDLINE | ID: mdl-38737793

ABSTRACT

Metastatic (m) colorectal cancer (CRC) is an incurable disease with a poor prognosis and thus remains an unmet clinical need. Immune checkpoint blockade (ICB)-based immunotherapy is effective for mismatch repair-deficient (dMMR)/microsatellite instability-high (MSI-H) mCRC patients, but it does not benefit the majority of mCRC patients. NK cells are innate lymphoid cells with potent effector responses against a variety of tumor cells but are frequently dysfunctional in cancer patients. Memory-like (ML) NK cells differentiated after IL-12/IL-15/IL-18 activation overcome many challenges to effective NK cell anti-tumor responses, exhibiting enhanced recognition, function, and in vivo persistence. We hypothesized that ML differentiation enhances the NK cell responses to CRC. Compared to conventional (c) NK cells, ML NK cells displayed increased IFN-γ production against both CRC cell lines and primary patient-derived CRC spheroids. ML NK cells also exhibited improved killing of CRC target cells in vitro in short-term and sustained cytotoxicity assays, as well as in vivo in NSG mice. Mechanistically, enhanced ML NK cell responses were dependent on the activating receptor NKG2D as its blockade significantly decreased ML NK cell functions. Compared to cNK cells, ML NK cells exhibited greater antibody-dependent cytotoxicity when targeted against CRC by cetuximab. ML NK cells from healthy donors and mCRC patients exhibited increased anti-CRC responses. Collectively, our findings demonstrate that ML NK cells exhibit enhanced responses against CRC targets, warranting further investigation in clinical trials for mCRC patients, including those who have failed ICB.


Subject(s)
Cell Differentiation , Colorectal Neoplasms , Immunologic Memory , Killer Cells, Natural , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Killer Cells, Natural/immunology , Killer Cells, Natural/drug effects , Humans , Animals , Mice , Cell Differentiation/drug effects , Cell Line, Tumor , Interferon-gamma/metabolism , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Mice, Inbred NOD , Female
5.
Nat Methods ; 21(5): 846-856, 2024 May.
Article in English | MEDLINE | ID: mdl-38658646

ABSTRACT

CD4+ T cells recognize peptide antigens presented on class II major histocompatibility complex (MHC-II) molecules to carry out their function. The remarkable diversity of T cell receptor sequences and lack of antigen discovery approaches for MHC-II make profiling the specificities of CD4+ T cells challenging. We have expanded our platform of signaling and antigen-presenting bifunctional receptors to encode MHC-II molecules presenting covalently linked peptides (SABR-IIs) for CD4+ T cell antigen discovery. SABR-IIs can present epitopes to CD4+ T cells and induce signaling upon their recognition, allowing a readable output. Furthermore, the SABR-II design is modular in signaling and deployment to T cells and B cells. Here, we demonstrate that SABR-IIs libraries presenting endogenous and non-contiguous epitopes can be used for antigen discovery in the context of type 1 diabetes. SABR-II libraries provide a rapid, flexible, scalable and versatile approach for de novo identification of CD4+ T cell ligands from single-cell RNA sequencing data using experimental and computational approaches.


Subject(s)
CD4-Positive T-Lymphocytes , Epitopes, T-Lymphocyte , Histocompatibility Antigens Class II , CD4-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , Animals , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class II/chemistry , Mice , Humans , Diabetes Mellitus, Type 1/immunology , Peptides/immunology , Peptides/chemistry , Antigen Presentation/immunology , Receptors, Antigen, T-Cell/immunology , Mice, Inbred NOD , Single-Cell Analysis/methods
6.
Brain Res Bull ; 211: 110950, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38631651

ABSTRACT

The aim of this study was to investigate the expression and function of the transient receptor potential vanilloid 1 (TRPV1) in glioma. We found that the expression of TRPV1 mRNA and protein were upregulated in glioma compared with normal brain by qPCR and western blot analysis. In order to investigate the function of TRPV1 in glioma, short hairpin RNA (shRNA) and the inhibitor of TRPV1 were used. In vitro, the activation of TRPV1 induced cell apoptosis with decreased migration capability and inhibited proliferation, which was abolished upon TRPV1 pharmacological inhibition and silencing. Mechanistically, TRPV1 modulated glioma proliferation through the protein kinase B (Akt) signaling pathway. More importantly, in immunodeficient (NOD-SCID) mouse xenograft models, tumor size was significantly increased when TRPV1 expression was disrupted by a shRNA knockdown approach in vivo. Altogether, our findings indicate that TRPV1 negatively controls glioma cell proliferation in an Akt-dependent manner, which suggests that targeting TRPV1 may be a potential therapeutic strategy for glioma.


Subject(s)
Apoptosis , Brain Neoplasms , Cell Proliferation , Glioma , TRPV Cation Channels , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , Glioma/metabolism , Glioma/pathology , Animals , Humans , Cell Proliferation/physiology , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Cell Line, Tumor , Mice , Apoptosis/physiology , Mice, SCID , Proto-Oncogene Proteins c-akt/metabolism , Mice, Inbred NOD , Cell Movement/physiology , RNA, Small Interfering/pharmacology , Signal Transduction/physiology , Male , Female
7.
Cancer Res ; 84(9): 1426-1442, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38588409

ABSTRACT

Desmoplastic small round cell tumors (DSRCT) are a type of aggressive, pediatric sarcoma characterized by the EWSR1::WT1 fusion oncogene. Targeted therapies for DSRCT have not been developed, and standard multimodal therapy is insufficient, leading to a 5-year survival rate of only 15% to 25%. Here, we depleted EWSR1::WT1 in DSRCT and established its essentiality in vivo. Transcriptomic analysis revealed that EWSR1::WT1 induces unique transcriptional alterations compared with WT1 and other fusion oncoproteins and that EWSR1::WT1 binding directly mediates gene upregulation. The E-KTS isoform of EWSR1::WT1 played a dominant role in transcription, and it bound to the CCND1 promoter and stimulated DSRCT growth through the cyclin D-CDK4/6-RB axis. Treatment with the CDK4/6 inhibitor palbociclib successfully reduced growth in two DSRCT xenograft models. As palbociclib has been approved by the FDA for the treatment of breast cancer, these findings demonstrate the sensitivity of DSRCT to palbociclib and support immediate clinical investigation of palbociclib for treating this aggressive pediatric cancer. SIGNIFICANCE: EWSR1::WT1 is essential for desmoplastic small round cell tumors and upregulates the cyclin D-CDK4/6-RB axis that can be targeted with palbociclib, providing a targeted therapeutic strategy for treating this deadly tumor type.


Subject(s)
Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinase 6 , Desmoplastic Small Round Cell Tumor , Oncogene Proteins, Fusion , Piperazines , Pyridines , RNA-Binding Protein EWS , Xenograft Model Antitumor Assays , Animals , Humans , Mice , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Cyclin-Dependent Kinase 6/genetics , Desmoplastic Small Round Cell Tumor/genetics , Desmoplastic Small Round Cell Tumor/drug therapy , Desmoplastic Small Round Cell Tumor/pathology , Desmoplastic Small Round Cell Tumor/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Piperazines/pharmacology , Piperazines/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyridines/pharmacology , Pyridines/therapeutic use , RNA-Binding Protein EWS/genetics , RNA-Binding Protein EWS/metabolism , WT1 Proteins/genetics , WT1 Proteins/metabolism , Mice, Inbred NOD
8.
Int Immunopharmacol ; 133: 112166, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38678673

ABSTRACT

Dendritic cells (DCs) are specialized antigen-presenting cells that play an important role in inducing and maintaining immune tolerance. The altered distribution and/or function of DCs contributes to defective tolerance in autoimmune diseases such as type 1 diabetes (T1D). In human T1D and in NOD mouse models, DCs share some defects and are often described as less tolerogenic and excessively immunogenic. In the NOD mouse model, the autoimmune response is associated with a defect in the Stat5b signaling pathway. We have reported that expressing a constitutively active form of Stat5b in DCs of transgenic NOD mice (NOD.Stat5b-CA), re-established their tolerogenic function, restored autoimmune tolerance and conferred protection from diabetes. However, the role and molecular mechanisms of Stat5b signaling in regulating splenic conventional DCs tolerogenic signature remained unclear. In this study, we reported that, compared to immunogenic splenic DCs of NOD, splenic DCs of NOD.Stat5b-CA mice exhibited a tolerogenic profile marked by elevated PD-L1 and PD-L2 expression, reduced pro-inflammatory cytokine production, increased frequency of the cDC2 subset and decreased frequency of the cDC1 subset. This tolerogenic profile was associated with increased Ezh2 and IRF4 but decreased IRF8 expression. We also found an upregulation of PD-L1 in the cDC1 subset and high PD-L1 and PD-L2 expression in cDC2 of NOD.Stat5b-CA mice. Mechanistically, we demonstrated that Ezh2 plays an important role in the maintenance of high PD-L1 expression in cDC1 and cDC2 subsets and that Ezh2 inhibition resulted in PD-L1 but not PD-L2 downregulation which was more drastic in the cDC2 subset. Additionally, Ezh2 inhibition severely reduced the cDC2 subset and increased the cDC1 subset and Stat5b-CA.DC pro-inflammatory cytokine production. Together our data suggest that the Stat5b-Ezh2 axis is critical for the maintenance of tolerogenic high PD-L1-expressing cDC2 and autoimmune tolerance in NOD.Stat5b-CA mice.


Subject(s)
B7-H1 Antigen , Dendritic Cells , Diabetes Mellitus, Type 1 , Enhancer of Zeste Homolog 2 Protein , Immune Tolerance , Mice, Inbred NOD , STAT5 Transcription Factor , Animals , Dendritic Cells/immunology , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , STAT5 Transcription Factor/metabolism , STAT5 Transcription Factor/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Diabetes Mellitus, Type 1/immunology , Mice , Humans , Signal Transduction , Female , Mice, Transgenic , Cytokines/metabolism , Cells, Cultured
9.
Biochem Biophys Res Commun ; 715: 149984, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38688056

ABSTRACT

Epstein-Barr virus (EBV) and other viral infections are possible triggers of autoimmune diseases, such as rheumatoid arthritis (RA). To analyze the causative relationship between EBV infections and RA development, we performed experiment on humanized NOD/Shi-scid/IL-2RγCnull (hu-NOG) mice reconstituted human immune system components and infected with EBV. In EBV-infected hu-NOG mice, breakdown of knee joint bones was found to be accompanied by the accumulation of receptor activator of nuclear factor-κB (NF-κB) (RANK) ligand (RANKL), a key factor in osteoclastogenesis, human CD19 and EBV-encoded small RNA (EBER)-bearing cells. Accumulation of these cells expanded in the bone marrow adjacent to the bone breakage, showing a histological feature like to that in bone marrow edema. On the other hand, human RANK/human matrix metalloprotease-9 (MMP-9) positive, osteoclast-like cells were found at broken bone portion of EBV-infected mouse knee joint. In addition, human macrophage-colony stimulating factor (M-CSF), an essential factor in development of osteoclasts, evidently expressed in spleen and bone marrow of EBV-infected humanized mice. Furthermore, RANKL and M-CSF were identified at certain period of EBV-transformed B lymphoblastoid cells (BLBCs) derived from umbilical cord blood lymphocytes. Co-culturing bone marrow cells of hu-NOG mice with EBV-transformed BLBCs resulted in the induction of a multinucleated cell population positive for tartrate-resistant acid phosphatase and human MMP-9 which indicating human osteoclast-like cells. These findings suggest that EBV-infected BLBCs induce human aberrant osteoclastogenesis, which cause erosive arthritis in the joints.


Subject(s)
Epstein-Barr Virus Infections , Mice, Inbred NOD , Mice, SCID , Osteoclasts , Animals , Mice , Humans , Osteoclasts/metabolism , Osteoclasts/pathology , Osteoclasts/virology , Osteoclasts/immunology , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/pathology , RANK Ligand/metabolism , Herpesvirus 4, Human/immunology , Osteogenesis , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/pathology , Arthritis, Rheumatoid/virology , Arthritis, Rheumatoid/metabolism
10.
Int J Mol Sci ; 25(7)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38612760

ABSTRACT

IL-1α is a dual function cytokine that affects inflammatory and immune responses and plays a pivotal role in cancer. The effects of intracellular IL-1α on the development of triple negative breast cancer (TNBC) in mice were assessed using the CRISPR/Cas9 system to suppress IL-1α expression in 4T1 breast cancer cells. Knockout of IL-1α in 4T1 cells modified expression of multiple genes, including downregulation of cytokines and chemokines involved in the recruitment of tumor-associated pro-inflammatory cells. Orthotopical injection of IL-1α knockout (KO) 4T1 cells into BALB/c mice led to a significant decrease in local tumor growth and lung metastases, compared to injection of wild-type 4T1 (4T1/WT) cells. Neutrophils and myeloid-derived suppressor cells were abundant in tumors developing after injection of 4T1/WT cells, whereas more antigen-presenting cells were observed in the tumor microenvironment after injection of IL-1α KO 4T1 cells. This switch correlated with increased infiltration of CD3+CD8+ and NKp46+cells. Engraftment of IL-1α knockout 4T1 cells into immunodeficient NOD.SCID mice resulted in more rapid tumor growth, with increased lung metastasis in comparison to engraftment of 4T1/WT cells. Our results suggest that tumor-associated IL-1α is involved in TNBC progression in mice by modulating the interplay between immunosuppressive pro-inflammatory cells vs. antigen-presenting and cytotoxic cells.


Subject(s)
Lung Neoplasms , Triple Negative Breast Neoplasms , Animals , Mice , Humans , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Triple Negative Breast Neoplasms/genetics , Tumor Microenvironment , Lung Neoplasms/genetics , Interleukin-1alpha/genetics
11.
Sci Rep ; 14(1): 9100, 2024 04 20.
Article in English | MEDLINE | ID: mdl-38643275

ABSTRACT

Diabetes constitutes a major public health problem, with dramatic consequences for patients. Both genetic and environmental factors were shown to contribute to the different forms of the disease. The monogenic forms, found both in humans and in animal models, specially help to decipher the role of key genes in the physiopathology of the disease. Here, we describe the phenotype of early diabetes in a colony of NOD mice, with spontaneous invalidation of Akt2, that we called HYP. The HYP mice were characterised by a strong and chronic hyperglycaemia, beginning around the age of one month, especially in male mice. The phenotype was not the consequence of the acceleration of the autoimmune response, inherent to the NOD background. Interestingly, in HYP mice, we observed hyperinsulinemia before hyperglycaemia occurred. We did not find any difference in the pancreas' architecture of the NOD and HYP mice (islets' size and staining for insulin and glucagon) but we detected a lower insulin content in the pancreas of HYP mice compared to NOD mice. These results give new insights about the role played by Akt2 in glucose homeostasis and argue for the ß cell failure being the primary event in the course of diabetes.


Subject(s)
Diabetes Mellitus, Type 1 , Hyperglycemia , Islets of Langerhans , Animals , Humans , Male , Mice , Diabetes Mellitus, Type 1/genetics , Hyperglycemia/genetics , Insulin , Islets of Langerhans/pathology , Mice, Inbred NOD , Pancreas/pathology , Proto-Oncogene Proteins c-akt/genetics
12.
J Immunol ; 212(11): 1658-1669, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38587315

ABSTRACT

Chronic destruction of insulin-producing pancreatic ß cells by T cells results in autoimmune diabetes. Similar to other chronic T cell-mediated pathologies, a role for T cell exhaustion has been identified in diabetes in humans and NOD mice. The development and differentiation of exhausted T cells depends on exposure to Ag. In this study, we manipulated ß cell Ag presentation to target exhausted autoreactive T cells by inhibiting IFN-γ-mediated MHC class I upregulation or by ectopically expressing the ß cell Ag IGRP under the MHC class II promotor in the NOD8.3 model. Islet PD-1+TIM3+CD8+ (terminally exhausted [TEX]) cells were primary producers of islet granzyme B and CD107a, suggestive of cells that have entered the exhaustion program yet maintained cytotoxic capacity. Loss of IFN-γ-mediated ß cell MHC class I upregulation correlated with a significant reduction in islet TEX cells and diabetes protection in NOD8.3 mice. In NOD.TII/8.3 mice with IGRP expression induced in APCs, IGRP-reactive T cells remained exposed to high levels of IGRP in the islets and periphery. Consequently, functionally exhausted TEX cells, with reduced granzyme B expression, were significantly increased in these mice and this correlated with diabetes protection. These results indicate that intermediate Ag exposure in wild-type NOD8.3 islets allows T cells to enter the exhaustion program without becoming functionally exhausted. Moreover, Ag exposure can be manipulated to target this key cytotoxic population either by limiting the generation of cytotoxic TIM3+ cells or by driving their functional exhaustion, with both resulting in diabetes protection.


Subject(s)
CD8-Positive T-Lymphocytes , Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Mice, Inbred NOD , Animals , Mice , CD8-Positive T-Lymphocytes/immunology , Insulin-Secreting Cells/immunology , Diabetes Mellitus, Type 1/immunology , Granzymes/metabolism , Interferon-gamma/immunology , Interferon-gamma/metabolism , Antigen Presentation/immunology , Female
13.
Nat Commun ; 15(1): 3552, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38670972

ABSTRACT

Chimeric antigen receptor (CAR)-T cell therapy for solid tumors faces significant hurdles, including T-cell inhibition mediated by the PD-1/PD-L1 axis. The effects of disrupting this pathway on T-cells are being actively explored and controversial outcomes have been reported. Here, we hypothesize that CAR-antigen affinity may be a key factor modulating T-cell susceptibility towards the PD-1/PD-L1 axis. We systematically interrogate CAR-T cells targeting HER2 with either low (LA) or high affinity (HA) in various preclinical models. Our results reveal an increased sensitivity of LA CAR-T cells to PD-L1-mediated inhibition when compared to their HA counterparts by using in vitro models of tumor cell lines and supported lipid bilayers modified to display varying PD-L1 densities. CRISPR/Cas9-mediated knockout (KO) of PD-1 enhances LA CAR-T cell cytokine secretion and polyfunctionality in vitro and antitumor effect in vivo and results in the downregulation of gene signatures related to T-cell exhaustion. By contrast, HA CAR-T cell features remain unaffected following PD-1 KO. This behavior holds true for CD28 and ICOS but not 4-1BB co-stimulated CAR-T cells, which are less sensitive to PD-L1 inhibition albeit targeting the antigen with LA. Our findings may inform CAR-T therapies involving disruption of PD-1/PD-L1 pathway tailored in particular for effective treatment of solid tumors.


Subject(s)
B7-H1 Antigen , Immunotherapy, Adoptive , Programmed Cell Death 1 Receptor , Receptors, Chimeric Antigen , T-Lymphocytes , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/immunology , B7-H1 Antigen/metabolism , B7-H1 Antigen/immunology , Animals , Humans , Immunotherapy, Adoptive/methods , Mice , Cell Line, Tumor , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/immunology , Xenograft Model Antitumor Assays , Female , CRISPR-Cas Systems , Mice, Inbred NOD
14.
DNA Cell Biol ; 43(5): 207-218, 2024 May.
Article in English | MEDLINE | ID: mdl-38635961

ABSTRACT

Sjogren's syndrome (SS) is a complex systemic autoimmune disease. This study aims to elucidate a humanized NOD-PrkdcscidIl2rgem1/Smoc (NSG) murine model to better clarify the pathogenesis of SS. NSG female mice were adoptively transferred with 10 million peripheral blood mononuclear cells (PBMCs) through the tail vein from healthy controls (HCs), primary Sjogren's syndrome (pSS), and systemic lupus erythematosus (SLE) patients on D0. The mice were subcutaneously injected with C57/B6j submandibular gland (SG) protein or phosphate-buffered saline on D3, D17 and D31, respectively. NSG mice were successfully transplanted with human PBMCs. Compared with NSG-HC group, NSG-pSS and NSG-SLE mice exhibited a large number of lymphocytes infiltration in the SG, decreased salivary flow rate, lung involvement, decreased expression of genes related to salivary secretion, and the production of autoantibodies. Type I interferon-related genes were increased in the SG of NSG-pSS and NSG-SLE mice. The ratio of BAX/BCL2, BAX, cleaved caspase3, and TUNEL staining were increased in the SG of NSG-pSS and NSG-SLE mice. The expressions of p-MLKL and p-RIPK3 were increased in the SG of NSG-pSS and NSG-SLE mice. Increased expression of type I interferon-related genes, PANoptosis (apoptosis and necroptosis) were identified in the SG of this typical humanized NSG murine model of SS.


Subject(s)
Disease Models, Animal , Mice, Inbred NOD , Sjogren's Syndrome , Sjogren's Syndrome/pathology , Sjogren's Syndrome/immunology , Animals , Humans , Female , Mice , Apoptosis , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/transplantation , Submandibular Gland/pathology , Submandibular Gland/metabolism , Lupus Erythematosus, Systemic/pathology , Lupus Erythematosus, Systemic/immunology , Mice, Inbred C57BL , Autoantibodies/immunology , Interferon Type I/metabolism
15.
J Immunother Cancer ; 12(4)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38677881

ABSTRACT

BACKGROUND: A bidirectional promoter-driven chimeric antigen receptor (CAR) cassette provides the simultaneous expression of two CARs, which significantly enhances dual antigen-targeted CAR T-cell therapy. METHODS: We developed a second-generation CAR directing CD19 and CD20 antigens, incorporating them in a head-to-head orientation from a bidirectional promoter using a single Sleeping Beauty transposon system. The efficacy of bidirectional promoter-driven dual CD19 and CD20 CAR T cells was determined in vitro against cell lines expressing either, or both, CD19 and CD20 antigens. In vivo antitumor activity was tested in Raji lymphoma-bearing immunodeficient NOD-scid IL2Rgammanull (NSG) mice. RESULTS: Of all tested promoters, the bidirectional EF-1α promoter optimally expressed transcripts from both sense (CD19-CAR) and antisense (GFP.CD20-CAR) directions. Superior cytotoxicity, cytokine production and antigen-specific activation were observed in vitro in the bidirectional EF-1α promoter-driven CD19/CD20 CAR T cells. In contrast, a unidirectional construct driven by the EF-1α promoter, but using self-cleaving peptide-linked CD19 and CD20 CARs, showed inferior expression and in vitro function. Treatment of mice bearing advanced Raji lymphomas with bidirectional EF-1α promoter-driven CD19/CD20 CAR T cells effectively controlled tumor growth and extended the survival of mice compared with group treated with single antigen targeted CAR T cells. CONCLUSION: The use of bidirectional promoters in a single vector offers advantages of size and robust CAR expression with the potential to expand use in other forms of gene therapies like CAR T cells.


Subject(s)
Antigens, CD19 , Antigens, CD20 , DNA Transposable Elements , Immunotherapy, Adoptive , Promoter Regions, Genetic , Receptors, Chimeric Antigen , Antigens, CD19/immunology , Antigens, CD19/genetics , Humans , Animals , Antigens, CD20/genetics , Antigens, CD20/metabolism , Antigens, CD20/immunology , Mice , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/immunology , Immunotherapy, Adoptive/methods , Mice, Inbred NOD , Cell Line, Tumor , Mice, SCID , Xenograft Model Antitumor Assays
16.
Cell Biochem Funct ; 42(2): e3976, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38489223

ABSTRACT

Fluoride (F) has been employed worldwide to control dental caries. More recently, it has been suggested that the consumption of low doses of F in the drinking water may reduce blood glucose levels, introducing a new perspective for the use of F for the management of blood glucose. However, the exact mechanism by which F affects blood glucose levels remains largely unexplored. Given that the small gut plays a pivotal role in glucose homeostasis, the aim of this study was to investigate the proteomic changes induced by low doses of F in the ileum of female nonobese-diabetic (NOD) mice. Forty-two female NOD mice were divided into two groups based on the F concentration in their drinking water for 14 weeks: 0 (control) or 10 mgF/L. At the end of the experimental period, the ileum was collected for proteomic and Western blot analyses. Proteomic analysis indicated an increase in isoforms of actin, gastrotropin, several H2B histones, and enzymes involved in antioxidant processes, as well as a decrease in enzymes essential for energy metabolism. In summary, our data indicates an adaptive response of organism to preserve protein synthesis in the ileum, despite significant alterations in energy metabolism typically induced by F, therefore highlighting the safety of controlled fluoridation in water supplies.


Subject(s)
Dental Caries , Drinking Water , Mice , Animals , Female , Fluorides/pharmacology , Fluorides/analysis , Mice, Inbred NOD , Blood Glucose/analysis , Proteomics , Drinking Water/analysis , Ileum/chemistry , Ileum/metabolism
17.
J Immunol ; 212(7): 1094-1104, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38426888

ABSTRACT

Type 1 diabetes (T1D) is a prototypic T cell-mediated autoimmune disease. Because the islets of Langerhans are insulated from blood vessels by a double basement membrane and lack detectable lymphatic drainage, interactions between endocrine and circulating T cells are not permitted. Thus, we hypothesized that initiation and progression of anti-islet immunity required islet neolymphangiogenesis to allow T cell access to the islet. Combining microscopy and single cell approaches, the timing of this phenomenon in mice was situated between 5 and 8 wk of age when activated anti-insulin CD4 T cells became detectable in peripheral blood while peri-islet pathology developed. This "peri-insulitis," dominated by CD4 T cells, respected the islet basement membrane and was limited on the outside by lymphatic endothelial cells that gave it the attributes of a tertiary lymphoid structure. As in most tissues, lymphangiogenesis seemed to be secondary to local segmental endothelial inflammation at the collecting postcapillary venule. In addition to classic markers of inflammation such as CD29, V-CAM, and NOS, MHC class II molecules were expressed by nonhematopoietic cells in the same location both in mouse and human islets. This CD45- MHC class II+ cell population was capable of spontaneously presenting islet Ags to CD4 T cells. Altogether, these observations favor an alternative model for the initiation of T1D, outside of the islet, in which a vascular-associated cell appears to be an important MHC class II-expressing and -presenting cell.


Subject(s)
Diabetes Mellitus, Type 1 , Islets of Langerhans , Humans , Mice , Animals , Endothelial Cells , Histocompatibility Antigens Class II , Inflammation/pathology , Mice, Inbred NOD
18.
Ecotoxicol Environ Saf ; 273: 116161, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38430581

ABSTRACT

Di(2-ethylhexyl) phthalate (DEHP) is a worldwide common plasticizer. Nevertheless, DEHP is easily leached out to the environment due to the lack of covalent bonds with plastic. High dose of DEHP exposure is often observed in hemodialysis patients because of the continual usage of plastic medical devices. Although the liver is the major organ that catabolizes DEHP, the impact of long-term DEHP exposure on the sensitivity of liver cancer to chemotherapy remains unclear. In this study, we established long-term DEHP-exposed hepatocellular carcinoma (HCC) cells and two NOD/SCID mice models to investigate the effects and the underlying mechanisms of long-term DEHP exposure on chemosensitivity of HCC. The results showed long-term DEHP exposure potentially increased epithelial-mesenchymal transition (EMT) in HCC cells. Next generation sequencing showed that long-term DEHP exposure increased cell adhesion/migratory related genes expression and blunted sorafenib treatment induced genes alterations. Long-term exposure to DEHP reduced the sensitivity of HCC cells to sorafenib-induced anti-migratory effect by enhancing the EMT transcription factors (slug, twist, and ZEB1) and mesenchymal protein (vimentin) expression. In NOD/SCID mice model, we showed that long-term DEHP-exposed HCC cells exhibited higher growth rate. Regarding the anti-HCC effects of sorafenib, subcutaneous HuH7 tumor grew slowly in sorafenib-treated mice. Nonetheless, the anti-tumor growth effect of sorafenib was not observed in long-term DEHP-exposed mice. Higher mesenchymal markers and proliferating cell nuclear antigen (PCNA) expression were found in sorafenib-treated long-term DEHP-exposed mice. In conclusion, long-term DEHP exposure promoted migratory activity in HCC cells and decreased sorafenib sensitivity in tumor-bearing mice.


Subject(s)
Carcinoma, Hepatocellular , Diethylhexyl Phthalate , Liver Neoplasms , Phthalic Acids , Humans , Mice , Animals , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Sorafenib/pharmacology , Sorafenib/therapeutic use , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Diethylhexyl Phthalate/toxicity , Mice, SCID , Mice, Inbred NOD , Treatment Outcome
19.
Stem Cells Dev ; 33(9-10): 214-227, 2024 May.
Article in English | MEDLINE | ID: mdl-38445374

ABSTRACT

Cellular therapies provide promising options for inducing tolerance in transplantation of solid organs, bone marrow, and vascularized composite allografts. However, novel tolerance-inducing protocols remain limited, despite extensive research. We previously introduced and characterized a human multi-chimeric cell (HMCC) line, created through ex vivo fusion of human umbilical cord blood (UCB) cells derived from three unrelated donors. In this study, we assessed in vivo biodistribution and safety of HMCCs in the NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ NOD scid gamma (NSG) mouse model. Twenty-four NSG mice were randomly assigned to four groups (n = 6/group) and received intraosseous (IO.) or intravenous (IV.) injections of 0.6 × 106 donor UCB cells or fused HMCC: Group 1-UCB (IO.), Group 2-UCB (IV.), Group 3-HMCC (IO.), and Group 4-HMCC (IV.). Hematopoietic phenotype maintenance and presence of human leukocyte antigens (HLA), class I antigens, in the selected lymphoid and nonlymphoid organs were assessed by flow cytometry. Weekly evaluation and magnetic resonance imaging (MRI) assessed HMCC safety. Comparative analysis of delivery routes revealed significant differences in HLA class I percentages for IO.: 1.83% ± 0.79%, versus IV. delivery: 0.04% ± 0.01%, P < 0.01, and hematopoietic stem cell marker percentages of CD3 (IO.: 1.41% ± 0.04%, vs. IV.: 0.07% ± 0.01%, P < 0.05) and CD4 (IO.: 2.74% ± 0.31%, vs. IV.: 0.59% ± 0.11%, P < 0.01). Biodistribution analysis after IO. delivery confirmed HMCC presence in lymphoid organs and negligible presence in nonlymphoid organs, except for lung (IO.: 0.19% ± 0.06%, vs. IV.: 6.33% ± 0.56%, P < 0.0001). No evidence of tumorigenesis was observed by MRI at 90 days following IO. and IV. administration of HMCC. This study confirmed biodistribution and safety of HMCC therapy in the NSG mouse model, both following IO. and IV. administration. However, IO. delivery route confirmed higher efficacy of engraftment and safety profile, introducing HMCCs as a novel cell-based therapeutic approach with promising clinical applications in solid organ, bone marrow, and vascularized composite allotransplantation transplantation.


Subject(s)
Mice, Inbred NOD , Mice, SCID , Animals , Humans , Mice , Tissue Distribution , Administration, Intravenous , Fetal Blood/cytology , Infusions, Intraosseous/methods
20.
J Autoimmun ; 145: 103196, 2024 May.
Article in English | MEDLINE | ID: mdl-38458075

ABSTRACT

Type 1 diabetes (T1D) results from a breakdown in immunological tolerance, with pivotal involvement of antigen-presenting cells. In this context, antigen-specific immunotherapies have been developed to arrest autoimmunity, such as phosphatidylserine (PS)-liposomes. However, the role of certain antigen-presenting cells in immunotherapy, particularly human macrophages (Mφ) in T1D remains elusive. The aim of this study was to determine the role of Mφ in antigen-specific immune tolerance and T1D. To that end, we evaluated Mφ ability to capture apoptotic-body mimicking PS-liposomes in mice and conducted a phenotypic and functional characterisation of four human monocyte-derived Mφ (MoMφ) subpopulations (M0, M1, M2a and M2c) after PS-liposomes uptake. Our findings in mice identified Mφ as the most phagocytic cell subset in the spleen and liver. In humans, while phagocytosis rates were comparable between T1D and control individuals, PS-liposome capture dynamics differed among Mφ subtypes, favouring inflammatory (M1) and deactivated (M2c) Mφ. Notably, high nanoparticle concentrations did not affect macrophage viability. PS-liposome uptake by Mφ induced alterations in membrane molecule expression related to immunoregulation, reduced secretion of IL-6 and IL-12, and diminished autologous T-cell proliferation in the context of autoantigen stimulation. These results underscore the tolerogenic effects of PS-liposomes and emphasize their potential to target human Mφ, providing valuable insights into the mechanism of action of this preclinical immunotherapy.


Subject(s)
Autoantigens , Diabetes Mellitus, Type 1 , Immunotherapy , Liposomes , Macrophages , Phosphatidylserines , Diabetes Mellitus, Type 1/therapy , Diabetes Mellitus, Type 1/immunology , Animals , Humans , Phosphatidylserines/metabolism , Phosphatidylserines/immunology , Mice , Immunotherapy/methods , Macrophages/immunology , Macrophages/metabolism , Autoantigens/immunology , Female , Immune Tolerance , Phagocytosis/immunology , Male , Mice, Inbred NOD , Autoimmunity , Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...