Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.234
Filter
1.
Molecules ; 29(9)2024 May 06.
Article in English | MEDLINE | ID: mdl-38731651

ABSTRACT

The main objective of this study was to investigate the metabolism of miconazole, an azole antifungal drug. Miconazole was subjected to incubation with human liver microsomes (HLM) to mimic phase I metabolism reactions for the first time. Employing a combination of an HLM assay and UHPLC-HRMS analysis enabled the identification of seven metabolites of miconazole, undescribed so far. Throughout the incubation with HLM, miconazole underwent biotransformation reactions including hydroxylation of the benzene ring and oxidation of the imidazole moiety, along with its subsequent degradation. Additionally, based on the obtained results, screen-printed electrodes (SPEs) were optimized to simulate the same biotransformation reactions, by the use of a simple, fast, and cheap electrochemical method. The potential toxicity of the identified metabolites was assessed using various in silico models.


Subject(s)
Mass Spectrometry , Miconazole , Microsomes, Liver , Miconazole/chemistry , Miconazole/metabolism , Humans , Chromatography, High Pressure Liquid/methods , Microsomes, Liver/metabolism , Mass Spectrometry/methods , Electrochemical Techniques/methods , Antifungal Agents/chemistry , Antifungal Agents/metabolism , Biotransformation
2.
Int J Mol Sci ; 25(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791121

ABSTRACT

Melanoma, arguably the deadliest form of skin cancer, is responsible for the majority of skin-cancer-related fatalities. Innovative strategies concentrate on new therapies that avoid the undesirable effects of pharmacological or medical treatment. This article discusses the chemical structures of [(MTZ)2AgNO3], [(MTZ)2Ag]2SO4, [Ag(MCZ)2NO3], [Ag(MCZ)2BF4], [Ag(MCZ)2SbF6] and [Ag(MCZ)2ClO4] (MTZ-metronidazole; MCZ-miconazole) silver(I) compounds and the possible relationship between the molecules and their cytostatic activity against melanoma cells. Molecular Hirshfeld surface analysis and computational methods were used to examine the possible association between the structure and anticancer activity of the silver(I) complexes and compare the cytotoxicity of the silver(I) complexes of metronidazole and miconazole with that of silver(I) nitrate, cisplatin, metronidazole and miconazole complexes against A375 and BJ cells. Additionally, these preliminary biological studies found the greatest IC50 values against the A375 line were demonstrated by [Ag(MCZ)2NO3] and [(MTZ)2AgNO3]. The compound [(MTZ)2AgNO3] was three-fold more toxic to the A375 cells than the reference (cisplatin) and 15 times more cytotoxic against the A375 cells than the normal BJ cells. Complexes of metronidazole with Ag(I) are considered biocompatible at a concentration below 50 µmol/L.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Melanoma , Metronidazole , Miconazole , Silver , Humans , Melanoma/drug therapy , Melanoma/metabolism , Melanoma/pathology , Miconazole/pharmacology , Miconazole/chemistry , Silver/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Metronidazole/chemistry , Metronidazole/pharmacology , Cell Line, Tumor , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Cell Survival/drug effects , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology
3.
BMJ Open ; 14(5): e081914, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702077

ABSTRACT

OBJECTIVES: To evaluate the efficacy of topical miconazole or amorolfine compared to placebo for mild to moderately severe onychomycosis. DESIGN: Randomised, double-blind, placebo-controlled trial, with computer-generated treatment allocation at a 1:1:1 ratio. SETTING: Primary care, recruitment from February 2020 to August 2022. PARTICIPANTS: 193 patients with suspected mild to moderately severe onychomycosis were recruited via general practices and from the general public, 111 of whom met the study criteria. The mean age of participants was 51 (SD 13.1), 51% were female and onychomycosis was moderately severe (mean OSI 12.1 (SD 8.0)). INTERVENTIONS: Once-daily miconazole 20 mg/g or once-weekly amorolfine 5% nail lacquer solution was compared with placebo (denatonium benzoate solution). MAIN OUTCOME MEASURES: Complete, clinical and mycological cure at 6 months. Secondary outcomes were clinical improvement, symptom burden, quality of life, adverse effects, compliance, patient-perceived improvement and treatment acceptability. RESULTS: Based on intention-to-treat analysis, none of the participants receiving miconazole or amorolfine reached complete cure compared with two in the placebo group (OR not estimable (n.e.), p=0.493 and OR n.e., p=0.240, respectively). There was no evidence of a significant difference between groups regarding clinical cure (OR n.e., p=0.493 and OR 0.47, 95% CI 0.04 to 5.45, p=0.615) while miconazole and amorolfine were less effective than placebo at reaching both mycological cure (OR 0.25, 95% CI 0.06 to 0.98, p=0.037 and OR 0.23, 95% CI 0.06 to 0.92, p=0.029, respectively) and clinical improvement (OR 0.26, 95% CI 0.08 to 0.91, p=0.028 and OR 0.25, 95% CI 0.07 to 0.85, p=0.021, respectively). There was no evidence of a significant difference in disease burden, quality of life, adverse reactions, compliance, patient-perceived improvement or treatment acceptability. CONCLUSIONS: Topical miconazole and amorolfine were not effective in achieving a complete, clinical or mycological cure of mild to moderately severe onychomycosis, nor did they significantly alleviate the severity or symptom burden. These treatments should, therefore, not be advised as monotherapy to treat onychomycosis. TRIAL REGISTRATION NUMBER: WHO ICTRP NL8193.


Subject(s)
Administration, Topical , Antifungal Agents , Miconazole , Morpholines , Onychomycosis , Humans , Miconazole/administration & dosage , Miconazole/therapeutic use , Onychomycosis/drug therapy , Female , Double-Blind Method , Male , Middle Aged , Antifungal Agents/administration & dosage , Antifungal Agents/therapeutic use , Treatment Outcome , Adult , Primary Health Care , Quality of Life , Aged , Severity of Illness Index
4.
Pak J Pharm Sci ; 37(1): 95-105, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38741405

ABSTRACT

Hydrophilic drugs could be incorporated into the skin surface by manes of Lipogel. This study aimed to prepare miconazole lipogel with natural ingredients to enhance drug permeability using dimethyl Sulfoxide (DMSO). The miconazole lipogels, A1 (without DMSO) and A2 (with DMSO) were formulated and evaluated for organoleptic evaluation, pH, viscosity, stability studies, freeze-thawing, drug release profile and drug permeation enhancement. Results had stated that prepared lipogel's pH falls within the acceptable range required for topical delivery (4 to 6) while both formulations show good results in organoleptic evaluation. The A2 formulation containing DMSO shows better permeation of miconazole (84.76%) on the artificial skin membrane as compared to A1 lipogel formulation (50.64%). In in-vitro drug release studies, A2 for-mulation showed 87.48% drug release while A1 showed just 60.1% drug release from lipogel. Stability studies were performed on model formulations under environmental conditions and both showed good spreadibility, stable pH, free of grittiness and good consistency in formulation. The results concluded that A2 formulation containing DMSO shows better results as compared to DMSO-free drug lipogel.


Subject(s)
Dimethyl Sulfoxide , Drug Liberation , Gels , Miconazole , Permeability , Miconazole/administration & dosage , Miconazole/chemistry , Miconazole/pharmacokinetics , Dimethyl Sulfoxide/chemistry , Viscosity , Drug Stability , Hydrogen-Ion Concentration , Skin Absorption/drug effects , Chemistry, Pharmaceutical , Drug Compounding , Antifungal Agents/administration & dosage , Antifungal Agents/chemistry , Antifungal Agents/pharmacokinetics , Administration, Cutaneous
5.
Eur J Pharm Sci ; 197: 106773, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38641124

ABSTRACT

Cytochrome P450 (CYP) system is a critical elimination route to most pharmaceuticals in human, but also prone to drug-drug interactions arising from the fact that concomitantly administered pharmaceuticals inhibit one another's CYP metabolism. The most severe form of CYP interactions is irreversible inhibition, which results in permanent inactivation of the critical CYP pathway and is only restored by de novo synthesis of new functional enzymes. In this study, we conceptualize a microfluidic approach to mechanistic CYP inhibition studies using human liver microsomes (HLMs) immobilized onto the walls of a polymer micropillar array. We evaluated the feasibility of these HLM chips for CYP inhibition studies by establishing the stability and the enzyme kinetics for a CYP2C9 model reaction under microfluidic flow and determining the half-maximal inhibitory concentrations (IC50) of three human CYP2C9 inhibitors (sulfaphenazole, tienilic acid, miconazole), including evaluation of their inhibition mechanisms and nonspecific microsomal binding on chip. Overall, the enzyme kinetics of CYP2C9 metabolism on the HLM chip (KM = 127 ± 55 µM) was shown to be similar to that of static HLM incubations (KM = 114 ± 14 µM) and the IC50 values toward CYP2C9 derived from the microfluidic assays (sulfaphenazole 0.38 ± 0.09 µM, tienilic acid 3.4 ± 0.6 µM, miconazole 0.54 ± 0.09 µM) correlated well with those determined using current standard IC50 shift assays. Most importantly, the HLM chip could distinguish between reversible (sulfaphenazole) and irreversible (tienilic acid) enzyme inhibitors in a single, automated experiment, indicating the great potential of the HLM chip to simplify current workflows used in mechanistic CYP inhibition studies. Furthermore, the results suggest that the HLM chip can also identify irreversible enzyme inhibitors, which are not necessarily resulting in a time-dependent inhibition (like suicide inhibitors), but whose inhibition mechanism is based on other kind of covalent or irreversible interaction with the CYP system. With our HLM chip approach, we could identify miconazole as such a compound that nonselectively inhibits the human CYP system with a prolonged, possibly irreversible impact in vitro, even if it is not a time-dependent inhibitor according to the IC50 shift assay.


Subject(s)
Microsomes, Liver , Humans , Microsomes, Liver/metabolism , Cytochrome P-450 CYP2C9/metabolism , Kinetics , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Miconazole/pharmacology , Enzymes, Immobilized/metabolism , Cytochrome P-450 CYP2C9 Inhibitors/pharmacology , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/methods , Sulfaphenazole/pharmacology , Microfluidics/methods
6.
Int J Mol Sci ; 25(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38612401

ABSTRACT

Miconazole is an antimycotic drug showing anti-cancer effects in several cancers. However, little is known on its effects in melanoma. A375 and SK-MEL-28 human melanoma cell lines were exposed to miconazole and clotrimazole (up to 100 mM). Proliferation, viability with MTT assay and vascular mimicry were assayed at 24 h treatment. Molecular effects were measured at 6 h, namely, ATP-, ROS-release and mitochondria-related cytofluorescence. A metabolomic profile was also investigated at 6 h treatment. Carnitine was one of the most affected metabolites; therefore, the expression of 29 genes involved in carnitine metabolism was investigated in the public platform GEPIA2 on 461 melanoma patients and 558 controls. After 24 h treatments, miconazole and clotrimazole strongly and significantly inhibited proliferation in the presence of 10% serum on either melanoma cell lines; they also strongly reduced viability and vascular mimicry. After 6 h treatment, ATP reduction and ROS increase were observed, as well as a significant reduction in mitochondria-related fluorescence. Further, in A375, miconazole strongly and significantly altered expression of several metabolites including carnitines, phosphatidyl-cholines, all amino acids and several other small molecules, mostly metabolized in mitochondria. The expression of 12 genes involved in carnitine metabolism was found significantly modified in melanoma patients, 6 showing a significant impact on patients' survival. Finally, miconazole antiproliferation activity on A375 was found completely abrogated in the presence of carnitine, supporting a specific role of carnitine in melanoma protection toward miconazole effect, and was significantly reversed in the presence of caspases inhibitors such as ZVAD-FMK and Ac-DEVD-CHO, and a clear pro-apoptotic effect was observed in miconazole-treated cells, by FACS analysis of Annexin V-FITC stained cells. Miconazole strongly affects proliferation and other biological features in two human melanoma cell lines, as well as mitochondria-related functions such as ATP- and ROS-release, and the expression of several metabolites is largely dependent on mitochondria function. Miconazole, likely acting via carnitine and mitochondria-dependent apoptosis, is therefore suggested as a candidate for further investigations in melanoma treatments.


Subject(s)
Melanoma , Humans , Melanoma/drug therapy , Miconazole/pharmacology , Clotrimazole , Reactive Oxygen Species , Mitochondria , Carnitine/pharmacology , Adenosine Triphosphate
7.
BMC Oral Health ; 24(1): 196, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38321454

ABSTRACT

BACKGROUND: Oral thrush is the most common occurring fungal infection in the oral cavity in uncontrolled diabetic patients, it is treated by various antifungal drugs according to each case. This study aimed to evaluate the therapeutic effects of topical application of miconazole and miconazole-loaded chitosan nanoparticles in treatment of diabetic patients with oral candidiasis. METHODS: In this randomized controlled clinical trial. A total of 80 diabetic patients presenting with symptomatic oral candidiasis were randomly assigned into two treatment groups: miconazole and miconazole-loaded chitosan nanoparticles. The patients were treated for 28 days, and clinical assessments were conducted at baseline, 7, 14, 21 and 28 days. Clinical parameters, including signs and symptoms of oral candidiasis were evaluated and microbiological analysis was performed to determine the Candida species and assess their susceptibility to the antifungal agents. Statistical analysis was done to the categorical and numerical data using chi-square test and Kruskal Wallis test. RESULTS: The antifungal efficacy between the miconazole and miconazole-loaded chitosan nanoparticles (CS-MCZ) groups insignificant difference (P >  0.05) was observed. Both treatment modalities exhibited comparable effectiveness in controlling oral candidiasis symptoms and reducing Candida colonization as miconazole-loaded chitosan nanoparticles group showed a significant difference in the clinical improvement in respect of both signs and symptoms from baseline (70%) until the end of study at 28 days (5%) (P <  0.05) Moreover, miconazole-loaded chitosan nanoparticles, there was a significant reduction in the number of colonies forming units of Candida albicans from baseline until the end of the study at 28-day with P value <  0.000. CONCLUSIONS: This randomized controlled clinical trial and microbiological analysis demonstrate that both miconazole and miconazole-loaded chitosan nanoparticles are effective in the treatment of oral candidiasis in diabetic patients with no adverse reactions. TRIAL REGISTRATION: NCT06072716 with first registration first registration in 10/10/2023.


Subject(s)
Candidiasis, Oral , Chitosan , Diabetes Mellitus , Nanoparticles , Humans , Miconazole/pharmacology , Miconazole/therapeutic use , Antifungal Agents/pharmacology , Candidiasis, Oral/drug therapy , Candida , Gels/therapeutic use
8.
Eur Rev Med Pharmacol Sci ; 28(1): 384-391, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38235890

ABSTRACT

OBJECTIVE: To investigate the non-inferiority of efficacy and tolerability of Lactobacillus plantarum P 17630 soft vaginal capsules compared to the antifungal therapy with miconazole nitrate 400 mg soft vaginal capsules in patients with symptomatic vulvovaginal infection due to Candida. PATIENTS AND METHODS: Adult women with vulvovaginal candidiasis were randomized to either L. plantarum P17630 100,000,000 CFU soft vaginal capsules by vaginal route each day for 3 or 6 consecutive days or miconazole nitrate 400 mg soft vaginal capsule. Visual Analog Scale (VAS) scores for vaginitis symptoms were used, and vaginal fluid interleukin 6 (IL6) was dosed. The study was registered in EudraCT database (code LPP17630-C-018; number: 2018-003095-12). RESULTS: 200 patients were included in the study. The mean VAS scores for vaginitis symptoms were progressively reduced in both treatment groups at each visit, without significant difference between groups (p>0.05 for each symptom, at each time point). The efficacy of L. plantarum and the reference medicinal product was maintained at follow-up (day 21). The mean concentration of IL-6 decreased from visit 1 to visit 3 in both groups without a significant difference (p>0.05). No adverse events were reported. CONCLUSIONS: L. plantarum P17630 100,000,000 CFU soft vaginal capsules are effective and safe for treating vaginal candidiasis without the concomitant use of an antifungal product, which rules out the risk of antimicrobic resistance. The long-term effect on vaginal microflora may add the possibility of reducing the risk of recurrences.


Subject(s)
Candidiasis, Vulvovaginal , Lactobacillus plantarum , Vulvovaginitis , Adult , Female , Humans , Antifungal Agents/adverse effects , Candidiasis, Vulvovaginal/drug therapy , Miconazole/adverse effects , Vagina/microbiology , Vulvovaginitis/drug therapy
9.
J Med Chem ; 66(24): 17059-17073, 2023 12 28.
Article in English | MEDLINE | ID: mdl-38085955

ABSTRACT

Developing drugs for brain infection by Naegleria fowleri is an unmet medical need. We used a combination of cheminformatics, target-, and phenotypic-based drug discovery methods to identify inhibitors that target an essential N. fowleri enzyme, sterol 14-demethylase (NfCYP51). A total of 124 compounds preselected in silico were tested against N. fowleri. Nine primary hits with EC50 ≤ 10 µM were phenotypically identified. Cocrystallization with NfCYP51 focused attention on one primary hit, miconazole-like compound 2a. The S-enantiomer of 2a produced a 1.74 Å cocrystal structure. A set of analogues was then synthesized and evaluated to confirm the superiority of the S-configuration over the R-configuration and the advantage of an ether linkage over an ester linkage. The two compounds, S-8b and S-9b, had an improved EC50 and KD compared to 2a. Importantly, both were readily taken up into the brain. The brain-to-plasma distribution coefficient of S-9b was 1.02 ± 0.12, suggesting further evaluation as a lead for primary amoebic meningoencephalitis.


Subject(s)
Miconazole , Naegleria fowleri , 14-alpha Demethylase Inhibitors/pharmacology , Drug Discovery
10.
Int J Pharm ; 648: 123593, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37956722

ABSTRACT

Based on our previous report, the study was extended to investigate the impact of miconazole nitrate (MCN) loaded cationic/anionic nanoemulsions and nanoemulsion gels on permeation behaviour across artificial-membrane, EpiDerm, and rat skin. Nanoemulsions and gels were evaluated for size, charge, viscosity, size-distribution, pH, and percent entrapment efficiency (%EE). In vitro drug diffusion across artificial membrane and EpiDerm were conducted to get diffusion coefficients. Permeation profiles were studied using rat skin to investigate mechanistic insight of formulated mediated permeation followed by CLSM (confocal laser scanning microscopy), SEM (scanning electron microscopy), AFM (atomic force microscopy), and irritation studies. Results showed that MCNE11-Rh (probed cationic nanoemulsion at pH âˆ¼ 7.2) and MNE11-Rh (probed anionic nanoemulsion at pH âˆ¼ 7.2) showed size values of 158 nm and 145 nm, respectively whereas MCNE11-GR (probed cationic nanoemulsion gel at pH âˆ¼ 6.8) and MNE11-GR (probed anionic nanoemulsion gel at pH âˆ¼ 6.8) exhibited size values 257 nm and 243 nm, respectively. The %EE values were found to be as 91.5 % and 89.6 % for MCNE11-Rh and MNE11-Rh, respectively. The gels (∼6000 cP) elicited relatively high viscosity than nanoemulsions (∼3300 - 3500 cP). MCNE11-GR showed the highest values of permeation flux, diffusion rate, diffusion coefficient (D), and permeation coefficient (P) across artificial membrane, EpiDerm, and rat skin which may be attributed to three potential factors (cationic charge, composition, and hydration by the hydrophilic gel) working in tandem. Transepidermal water loss (TEWL) by the MCNE11-GR was maximum (14.4 g/m2h) than control (6.1 g/m2h) indicating augmented interaction of MCNE11-Rh with skin components. Conclusively, cationic nanoemulsion gel was promising carrier for enhanced permeation and the drug access to the dermal region to treat deep seated fungal infections.


Subject(s)
Membranes, Artificial , Miconazole , Rats , Animals , Administration, Cutaneous , Skin , Gels/chemistry , Emulsions/chemistry , Particle Size
11.
BMC Oral Health ; 23(1): 802, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37884914

ABSTRACT

OBJECTIVE: To evaluate the clinical efficacy of photodynamic therapy (PDT) as an adjunct or alternative to traditional antifungal drugs in the treatment of oral candidiasis, and to provide evidence-based medical evidence for its use in the treatment of oral candidiasis. METHODS: Computer combined with manual retrieval of China Academic Journals Full-text Database (CNKI), China Biomedical Literature Database (CBM), Chinese Science and Technology Journal Database (VIP), Wanfang Database, PubMed, Web of Science, Cochrane Library, Embase, Scopus retrieval for articles published before January 2023, basic information and required data were extracted according to the inclusion and exclusion criteria, and the Revman V5.4 software was used to conduct Meta-analysis of the included literature. RESULTS: A total of 11 articles were included, 7 of which used nystatin as an antifungal drug, 2 of which were combined treatment of PDT and nystatin, 2 of the remaining 4 articles were treated with fluconazole, and 2 were treated with miconazole. Meta results showed that PDT was superior to nystatin in reducing the number of oral candida colonies in the palate of patients MD = -0.87, 95%CI = (-1.52,-0.23), P = 0.008, the difference was statistically significant, and the denture site MD = -1.03, 95%CI = (-2.21, -0.15), P = 0.09, the difference was not statistically significant; compared with the efficacy of fluconazole, RR = 1.01, 95%CI = (0.56,1.83), P = 0.96; compared with miconazole RR = 0.55, 95%CI = (0.38, 0.81), P = 0.002; PDT combined with nystatin RR = 1.27, 95%CI = (1.06, 1.52), P = 0.01; recurrence rate RR = 0.28, 95%CI = (0.09, 0.88), P = 0.03. CONCLUSIONS: PDT was effective in the treatment of oral candidiasis; PDT was more effective than nystatin for the treatment of denture stomatitis in the palate, while there was no significant difference between the two for the denture site; The efficacy of PDT for oral candidiasis was similar to that of fluconazole; PDT was less effective than miconazole for oral candidiasis; Compared with nystatin alone, the combination of PDT and nystatin is more effective in treating oral candidiasis with less risk of recurrence.


Subject(s)
Candidiasis, Oral , Photochemotherapy , Humans , Candidiasis, Oral/drug therapy , Candidiasis, Oral/microbiology , Antifungal Agents/therapeutic use , Nystatin/therapeutic use , Fluconazole/therapeutic use , Miconazole/therapeutic use , Photochemotherapy/methods
12.
Int J Pharm ; 647: 123563, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-37907141

ABSTRACT

This study aimed to fabricate Miconazole Nitrate transethosomes (MCZN TESs) embedded in chitosan-based gel for the topical treatment of Cutaneous Candidiasis. A thin film hydration method was employed to formulate MCZN TESs. The prepared MCZN TESs were optimized and analyzed for their physicochemical properties including particle size (PS), polydispersity index (PDI), zeta potential (ZP), entrapment efficiency (%EE), Fourier transform infrared spectroscopy (FTIR), Differential scanning calorimetry (DSC), deformability, and Transmission electron microscopy (TEM). In vitro release, skin permeation and deposition, skin irritation, antifungal assay, and in vivo efficacy against infected rats were evaluated. The optimized MCZN TESs showed PS of 224.8 ± 5.1 nm, ZP 21.1 ± 1.10 mV, PDI 0.207 ± 0.009, and % EE 94.12 ± 0.101 % with sustained drug release profile. Moreover, MCZN TESs Gel exhibited desirable pH, spreadability, and viscosity. Notably, the penetration and deposition capabilities of MCZN TESs Gel showed a 4-fold enhancement compared to MCZN TESs. Importantly, in vitro antifungal assay elaborated MCZN TESs Gel anti-fungal activity was 2.38-fold more compared to MCZN Gel. In vivo, studies showed a 1.5 times reduction in the duration of treatment MCZN TESs Gel treated animal group. Therefore, studies demonstrated that MCZN TESs could be a suitable drug delivery system with higher penetration and good antifungal potential.


Subject(s)
Candidiasis , Miconazole , Rats , Animals , Antifungal Agents/chemistry , Administration, Cutaneous , Skin , Candidiasis/drug therapy , Particle Size
13.
Genes (Basel) ; 14(9)2023 09 12.
Article in English | MEDLINE | ID: mdl-37761931

ABSTRACT

5-methylcytosine (5mC) is one of the most important epigenetic modifications. Its increased occurrence in regulatory sequences of genes, such as promoters and enhancers, is associated with the inhibition of their expression. Methylation patterns are not stable but are sensitive to factors such as the environment, diet, and age. In the present study, we investigated the effects of fungicide miconazole, both alone and in combination with the insecticide Mospilan 20SP, on the methylation status of bovine GSTP1, GSTA4, and AChE genes in bovine lymphocytes cultured in vitro. The methylation-specific PCR technique was used for the objectives of this study. We found that miconazole alone at concentrations of 1.25, 2.5, 5, 10, 25, and 50 µg/mL after 24 h exposure probably did not induce changes in methylation for all three genes analysed. The same results were found for the combination of pesticides at 24 h exposure and the following concentrations for each of them: 0.625, 1.25, 2.5, 5, and 12.5 µg/mL. Thus, we can conclude that the fungicide miconazole alone, as well as in combination with the insecticide Mospilan 20SP, was unlikely to cause changes to the methylation of bovine GSTP1, GSTA4, and AChE genes.


Subject(s)
Fungicides, Industrial , Insecticides , Animals , Cattle , Insecticides/pharmacology , Lymphocytes , Methylation , Miconazole , Glutathione S-Transferase pi/drug effects , Glutathione S-Transferase pi/genetics , Glutathione Transferase/drug effects , Glutathione Transferase/genetics , Acetylcholinesterase/drug effects , Acetylcholinesterase/genetics
14.
Microb Pathog ; 184: 106312, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37652266

ABSTRACT

People with immune deficiency are at risk of developing infections caused by several bacterial and fungal species. In this work, chitosan-coated miconazole was developed by a simple sol-gel method. Miconazole is considered an effective drug to treat vaginal infection-causing bacteria and fungi. The coating of chitosan with miconazole nitrate showed the highest drug loading efficiency (62.43%) and mean particle size (2 µm). FTIR spectroscopic analysis confirmed the entrapment of miconazole nitrate into chitosan polymer. The antifungal result demonstrated that MN@CS microgel possessed notable anti-Aspergillus fumigatus and Candida albicans activity in lower doses. Antibacterial activity results revealed excellent bacterial growth inhibition of MN@CS microgel towards human skin infectious pathogens Escherichia coli and Staphylococcus aureus. The biocompatibility studies of In vitro cell viability and Artemia salina lethality assay suggested that MN@CS microgel is more biosafe and suitable for human external applications. In the future, it will be an efficient anti-inflammatory agent for the treatment of vaginal infections.


Subject(s)
Candidiasis, Vulvovaginal , Chitosan , Microgels , Female , Humans , Miconazole/pharmacology , Miconazole/chemistry , Miconazole/therapeutic use , Candidiasis, Vulvovaginal/drug therapy , Chitosan/chemistry , Microgels/therapeutic use , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Antifungal Agents/chemistry , Candida albicans , Postoperative Complications
15.
World J Microbiol Biotechnol ; 39(10): 273, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37553519

ABSTRACT

Drug repositioning is an alternative to overcome the complexity of the drug discovery and approval procedures for the treatment of Mycobacterium abscessus Complex (MABSC) infections that are increasing globally due to the emergency of antimicrobial resistance mechanisms. Here, an in silico chemogenomics approach was performed to compare the sequences from 4942 M. abscessus subsp. abscessus (M. abscessus) proteins with 5258 or 3473 therapeutic targets registered in the DrugBank or Therapeutic Target Database, respectively. This comparison identified 446 drugs or drug candidates whose targets were homologous to M. abscessus proteins. These identified drugs were considered potential inhibitors of MABSC (anti-MABSC activity). Further screening and inspection resulted in the selection of ezetimibe, furosemide, itraconazole, miconazole (MCZ), tamoxifen (TAM), and thiabendazole (THI) for experimental validation. Among them, MCZ and TAM showed minimum inhibitory concentrations (MIC) of 32 and 24 µg mL-1 against M. abscessus, respectively. For M. bolletii and M. massiliense strains, MCZ and TAM showed MICs of 16 and 24 µg mL-1, in this order. Subsequently, the antibacterial activity of MCZ was confirmed in vivo, indicating its potential to reduce the bacterial load in the lungs of infected mice. These results show that MCZ and TAM can serve as molecular scaffolds for the prospective hit-2-lead optimization of new analogs with greater potency, selectivity, and permeability.


Subject(s)
Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Animals , Mice , Mycobacterium abscessus/genetics , Miconazole/pharmacology , Tamoxifen/pharmacology , Tamoxifen/therapeutic use , Drug Repositioning , Prospective Studies , Mycobacterium Infections, Nontuberculous/drug therapy , Mycobacterium Infections, Nontuberculous/microbiology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests
16.
Clin Drug Investig ; 43(7): 565-574, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37462803

ABSTRACT

BACKGROUND AND OBJECTIVE: Naftifine, an allylamine, is highly effective against tinea pedis and exhibits relatively greater affinity to skin and nail beds, possibly due to its high lipophilicity. To study the efficacy and safety of naftifine 2% gel in an Indian population, a phase III multicentre double-blind, comparative, parallel-group study was conducted in comparison with miconazole 2% gel in patients with interdigital tinea pedis, with mild to moderate symptoms. PATIENTS AND METHODS: Patients presenting with mild to moderate signs and symptoms of interdigital tinea pedis and mycologically confirmed tinea infection were randomised to either naftifine hydrochloride 2% gel (n = 112) or miconazole 2% gel (n = 112) in 1:1 ratio. All patients were treated for 2 weeks with a follow-up of up to 12 weeks. Study evaluations were done at the end of 2, 6, and 12 weeks. The primary efficacy endpoint was the proportion of patients achieving clinical cure at week 6 (± 4 days) and secondary endpoints were the mycological cure at week 6 and week 12 and complete cure at week 12. RESULTS: At the end of week 6, clinical cure was 54.55% and 50.00% in the naftifine and miconazole groups (p = 0.4960), respectively, and it was increased to 78.18% and 76.36% in the naftifine and miconazole group (p = 0.7455) at the end of week 12. Mycological and clinical cure were similar in the naftifine and miconazole groups at week 6 and week 12. The safety and tolerability profiles of both treatments were similar. CONCLUSIONS: Naftifine 2% gel was efficacious and safe for the treatment of mild to moderate interdigital tinea pedis. Its clinical effectiveness was comparable to that of miconazole 2% gel. TRIAL REGISTRATION: Clinical Trials Registry of India: CTRI/2021/01/030753.


Subject(s)
Antifungal Agents , Tinea Pedis , Humans , Adult , Tinea Pedis/diagnosis , Tinea Pedis/drug therapy , Tinea Pedis/chemically induced , Antifungal Agents/adverse effects , Miconazole/therapeutic use , Administration, Cutaneous , Treatment Outcome , Double-Blind Method
17.
Pol J Vet Sci ; 26(2): 257-263, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37389413

ABSTRACT

Yeast infections such as otitis externa and seborrheic dermatitis in dogs and cats are frequently associated with Malassezia pachydermatis secondary infection. It is part of the normal cutaneous microflora of most warm-blooded vertebrates, however, under certain conditions, it can become a causative agent of infection that needs to be treated pharmacologically. Azole derivatives are the drugs of the first choice. An interesting trend in developing resistance is the use of natural substances, which include manuka honey with confirmed antimicrobial properties. The main intention of this research was to evaluate the mutual effect of manuka honey in combination with four conventional azole antifungals - clotrimazole, fluconazole, itraconazole, and miconazole - on 14 Malassezia pachydermatis isolates obtained from dogs and 1 reference strain. A slightly modified M27-A3 method (CLSI 2008) and the checkerboard test (Nikolic et al. 2017) were used for this purpose. Our results show an additive effect of all 4 antifungals with manuka honey concurrent use. Based on the determined values of fractional inhibitory concentration index (FICI - 0.74±0.03 when manuka honey combined with clotrimazole, 0.96±0.08 with fluconazole, 1.0±0 with miconazole and 1.16±0.26 with itraconazole), it was found in all cases that the effect of substances used is more pronounced in mutual combination than when used separately.


Subject(s)
Cat Diseases , Dog Diseases , Honey , Animals , Cats , Dogs , Antifungal Agents/pharmacology , Fluconazole , Itraconazole , Miconazole/pharmacology , Clotrimazole/pharmacology , Azoles
18.
Eur J Pharm Sci ; 188: 106508, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37379779

ABSTRACT

Miconazole-loaded nanoparticles coated with hyaluronic acid (miconazole-loaded nanoparticles/HA) were developed to overcome the limitations of the conventional therapy of the vulvovaginal candidiasis (VVC). They were synthesized by emulsification and solvent evaporation techniques, characterized by diameter, polydispersity index, zeta potential, encapsulation efficiency, atomic force microscopy (AFM), evaluated in terms of efficacy against C. albicans in vitro, and tested in a murine VVC model. Nanoparticles showed 211nm of diameter with a 0.32 polydispersity index, -53mV of zeta potential, and 90% miconazole encapsulation efficiency. AFM evidenced nanoparticles with a spherical shape. They inhibited the proliferation of C. albicans in vitro and in vivo after a single administration. Nanoparticles released the miconazole directly in the site of action at low therapeutic doses, which was enough to eliminate the fungal burden in the murine VVC model. These systems were rationally designed since the existence of the HA induces their adhesion on the vaginal mucus and their internalization via CD44 receptors, inhibiting the C. albicans. Therefore, miconazole-loaded nanoparticles/HA represent an innovative non-conventional pharmaceutical dosage form to treat the VVC and recurrent VVC.


Subject(s)
Candidiasis, Vulvovaginal , Nanoparticles , Humans , Female , Mice , Animals , Miconazole/therapeutic use , Candidiasis, Vulvovaginal/drug therapy , Hyaluronic Acid , Antifungal Agents , Candida albicans
19.
Folia Microbiol (Praha) ; 68(6): 835-842, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37145224

ABSTRACT

The rising number of invasive fungal infections caused by drug-resistant Candida strains is one of the greatest challenges for the development of novel antifungal strategies. The scarcity of available antifungals has drawn attention to the potential of natural products as antifungals and in combinational therapies. One of these is catechins-polyphenolic compounds-flavanols, found in a variety of plants. In this work, we evaluated the changes in the susceptibility of Candida glabrata strain characterized at the laboratory level and clinical isolates using the combination of catechin and antifungal azoles. Catechin alone had no antifungal activity within the concentration range tested. Its use in combination with miconazole resulted in complete inhibition of growth in the sensitive C. glabrata isolate and a significant growth reduction in the azole resistant C. glabrata clinical isolate. Simultaneous use of catechin and miconazole leads to increased intracellular ROS generation. The enhanced susceptibility of C. glabrata clinical isolates to miconazole by catechin was accompanied with the intracellular accumulation of ROS and changes in the plasma membrane permeability, as measured using fluorescence anisotropy, affecting the function of plasma membrane proteins.


Subject(s)
Antifungal Agents , Catechin , Antifungal Agents/pharmacology , Miconazole/pharmacology , Candida glabrata , Catechin/pharmacology , Reactive Oxygen Species , Microbial Sensitivity Tests , Drug Resistance, Fungal , Azoles/pharmacology
20.
Eur J Med Chem ; 256: 115436, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37146343

ABSTRACT

This work describes the design, synthesis and antifungal activity of new imidazoles and 1,2,4-triazoles derived from eugenol and dihydroeugenol. These new compounds were fully characterized by spectroscopy/spectrometric analyses and the imidazoles 9, 10, 13 e 14 showed relevant antifungal activity against Candida sp. and Cryptococcus gattii in the range of 4.6-75.3 µM. Although no compound has shown a broad spectrum of antifungal activity against all evaluated strains, some azoles were more active than either reference drugs employed against specific strains. Eugenol-imidazole 13 was the most promising azole (MIC: 4.6 µM) against Candida albicans being 32 times more potent than miconazole (MIC: 150.2 µM) with no relevant cytotoxicity (selectivity index >28). Notably, dihydroeugenol-imidazole 14 was twice as potent (MIC: 36.4 µM) as miconazole (MIC: 74.9 µM) and more than 5 times more active than fluconazole (MIC: 209.0 µM) against alarming multi-resistant Candida auris. Furthermore, in vitro assays showed that most active compounds 10 and 13 altered the fungal ergosterol biosynthesis, reducing its content as fluconazole does, suggesting the enzyme lanosterol 14α-demethylase (CYP51) as a possible target for these new compounds. Docking studies with CYP51 revealed an interaction between the imidazole ring of the active substances with the heme group, as well as insertion of the chlorinated ring into a hydrophobic cavity at the binding site, consistent with the behavior observed with control drugs miconazole and fluconazole. The increase of azoles-resistant isolates of Candida species and the impact that C. auris has had on hospitals around the world reinforces the importance of discovery of azoles 9, 10, 13 e 14 as new bioactive compounds for further chemical optimization to afford new clinically antifungal agents.


Subject(s)
Antifungal Agents , Cryptococcus gattii , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Azoles/pharmacology , Azoles/chemistry , Miconazole/pharmacology , Candida , Fluconazole , Eugenol/pharmacology , Eugenol/chemistry , Microbial Sensitivity Tests , Candida albicans , Imidazoles/pharmacology , Ergosterol
SELECTION OF CITATIONS
SEARCH DETAIL
...