Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.184
Filter
1.
Phys Rev Lett ; 132(20): 204002, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38829103

ABSTRACT

Many eukaryotic microorganisms propelled by multiple flagella can swim very rapidly with distinct gaits. Here, we model a three-dimensional mutiflagellate swimmer, resembling the microalgae. When the flagella are actuated synchronously, the swimming efficiency can be enhanced or reduced by interflagella hydrodynamic interactions (HIs), determined by the intrinsic tilting angle of the flagella. The asynchronous gait with a phase difference between neighboring flagella can reduce oscillatory motion via the basal mechanical coupling. In the presence of a spherical body, simulations taking into account the flagella-body interactions reveal the advantage of anterior configuration compared with posterior configuration, where in the latter case an optimal flagella number arises. Apart from understanding the role of HIs in the multiflagellate microorganisms, this work could also guide laboratory fabrications of novel microswimmers.


Subject(s)
Flagella , Hydrodynamics , Models, Biological , Swimming , Flagella/physiology , Swimming/physiology , Microalgae/physiology
2.
Water Sci Technol ; 89(10): 2732-2745, 2024 May.
Article in English | MEDLINE | ID: mdl-38822611

ABSTRACT

In this work, microalgae cultivation trials were carried out in a membrane bioreactor to investigate fouling when the cultures of Chlorellavulgaris were grown under mixotrophic, heterotrophic, and phototrophic cultivation regimes. The Chlorella cultures were cultivated in wastewater as a source of nutrients that contained a high concentration of ammonium. In mixotrophic cultivation trials, the results showed that the elevated contents of carbohydrates in the soluble microbial product and proteins in extracellular polymeric substances probably initiated membrane fouling. In this case, the highest protein content was also found in extracellular polymeric substances due to the high nitrogen removal rate. Consequently, transmembrane pressure significantly increased compared to the phototrophic and heterotrophic regimes. The data indicated that cake resistance was the main cause of fouling in all cultivations. Higher protein content in the cake layer made the membrane surface more hydrophobic, while carbohydrates had the opposite effect. Compared to a mixotrophic culture, a phototrophic culture had a larger cell size and higher hydrophobicity, leading to less membrane fouling. Based on our previous data, the highest ammonia removal rate was reached in the mixotrophic cultures; nevertheless, membrane fouling appeared to be the fundamental problem.


Subject(s)
Ammonium Compounds , Bioreactors , Membranes, Artificial , Microalgae , Wastewater , Microalgae/metabolism , Microalgae/growth & development , Wastewater/chemistry , Ammonium Compounds/metabolism , Heterotrophic Processes , Waste Disposal, Fluid/methods , Biofouling , Chlorella/growth & development , Chlorella/metabolism , Phototrophic Processes
3.
Nat Commun ; 15(1): 4842, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844786

ABSTRACT

Carbon capture and biochemical storage are some of the primary drivers of photosynthetic yield and productivity. To elucidate the mechanisms governing carbon allocation, we designed a photosynthetic light response test system for genetic and metabolic carbon assimilation tracking, using microalgae as simplified plant models. The systems biology mapping of high light-responsive photophysiology and carbon utilization dynamics between two variants of the same Picochlorum celeri species, TG1 and TG2 elucidated metabolic bottlenecks and transport rates of intermediates using instationary 13C-fluxomics. Simultaneous global gene expression dynamics showed 73% of the annotated genes responding within one hour, elucidating a singular, diel-responsive transcription factor, closely related to the CCA1/LHY clock genes in plants, with significantly altered expression in TG2. Transgenic P. celeri TG1 cells expressing the TG2 CCA1/LHY gene, showed 15% increase in growth rates and 25% increase in storage carbohydrate content, supporting a coordinating regulatory function for a single transcription factor.


Subject(s)
Carbon , Light , Photosynthesis , Transcription Factors , Carbon/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Microalgae/metabolism , Microalgae/genetics , Microalgae/growth & development , Gene Expression Regulation, Plant/radiation effects
4.
Food Res Int ; 186: 114321, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729691

ABSTRACT

Biogenic nanoparticles are promising carriers to deliver essential minerals. Here, calcium-enriched polyphosphate nanoparticles (CaPNPs) with a Ca/P molar ratio > 0.5 were produced by Synechococcus sp. PCC 7002 in the growth medium containing 1.08 g/L CaCl2, and had nearly spherical morphologies with a wide size distribution of 5-75 nm and strongly anionic surface properties with an average ζ-potential of -39 mV, according to dynamic light-scattering analysis, transmission and scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The ex-vivo ligated mouse ileal loop assays found that calcium in CaPNPs was readily available to intestinal absorption via both ion channel-mediated and endocytic pathways, specifically invoking macropinocytic internalization, lysosomal degradation, and transcytosis. Rat oral pharmacokinetics revealed that CaPNPs had a calcium bioavailability approximately 100 % relative to that of CaCl2 and more than 1.6 times of that of CaCO3. CaPNPs corrected the retinoic acid-induced increase in serum calcium, phosphorus, and bone-specific alkaline phosphatase, and decrease in serum osteocalcin, bone mineral content/density, and femoral geometric parameters with an efficacy equivalent to CaCl2 and markedly greater than CaCO3. In contrast to CaCl2, CaPNPs possessed desirable resistance against phytate's antagonistic action on calcium absorption in these ex vivo and in vivo studies. Overall, CaPNPs are attractive as a candidate agent for calcium supplementation, especially to populations on high-phytate diets.


Subject(s)
Biological Availability , Calcium , Microalgae , Nanoparticles , Phytic Acid , Polyphosphates , Animals , Polyphosphates/chemistry , Mice , Phytic Acid/chemistry , Calcium/metabolism , Male , Rats , Intestinal Absorption/drug effects , Rats, Sprague-Dawley
5.
Environ Monit Assess ; 196(6): 508, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38703265

ABSTRACT

To cope with the water shortage in Sous Massa region of Morocco, agricultural producers in the region have resorted to different types of water supply basins, known as "irrigation basins" but the phenomenon of eutrophication has hindered the continuity of agricultural productivity by altering the quality of the water used for irrigation on the one hand, and causing economic damage to agricultural producers due to the clogging of the water pumping network on the other. We began by characterising the physico-chemical quality of the water to determine the causes of its high nutrient content, then we determined the taxonomy of the algal species in the irrigation basins to which we had access. A qualitative study of the water in the irrigation basins in order to better explain the inventory obtained from the taxonomic identification of the algal biomass collected, which proved the existence of new species, not previously identified, characterising the freshwaters of the Moroccan region, is under the scope of this work. The species studied belong mainly to the following groups: green algae (11 genera of Chlorophyta and 7 genera of Charophyta), blue algae (7 genera of Cyanobacteria), brown algae (7 genera of Diatoms), and one genus of Euglenophyta.


Subject(s)
Agricultural Irrigation , Chlorophyta , Environmental Monitoring , Eutrophication , Environmental Monitoring/methods , Morocco , Cyanobacteria , Phaeophyceae , Diatoms , Water Supply , Microalgae , Fresh Water
6.
Environ Microbiol Rep ; 16(3): e13272, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692845

ABSTRACT

Native microbial consortia have been proposed for biological wastewater treatment, but their diversity and function remain poorly understood. This study investigated three native microalgae-bacteria consortia collected from the Amazon, Highlands, and Galapagos regions of Ecuador to assess their metagenomes and wastewater remediation potential. The consortia were evaluated for 12 days under light (LC) and continuous dark conditions (CDC) to measure their capacity for nutrient and organic matter removal from synthetic wastewater (SWW). Overall, all three consortia demonstrated higher nutrient removal efficiencies under LC than CDC, with the Amazon and Galapagos consortia outperforming the Highlands consortium in nutrient removal capabilities. Despite differences in α- and ß-diversity, microbial species diversity within and between consortia did not directly correlate with their nutrient removal capabilities. However, all three consortia were enriched with core taxonomic groups associated with wastewater remediation activities. Our analyses further revealed higher abundances for nutrient removing microorganisms in the Amazon and Galapagos consortia compared with the Highland consortium. Finally, this study also uncovered the contribution of novel microbial groups that enhance wastewater bioremediation processes. These groups have not previously been reported as part of the core microbial groups commonly found in wastewater communities, thereby highlighting the potential of investigating microbial consortia isolated from ecosystems of megadiverse countries like Ecuador.


Subject(s)
Bacteria , Metagenomics , Microbial Consortia , Wastewater , Ecuador , Wastewater/microbiology , Microbial Consortia/genetics , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Microalgae/classification , Microalgae/metabolism , Water Purification , Biodegradation, Environmental , Metagenome
7.
Harmful Algae ; 134: 102629, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38705615

ABSTRACT

Electrophysiological techniques, by measuring bioelectrical signals and ion channel activities in tissues and cells, are now widely utilized to study ion channel-related physiological functions and their underlying mechanisms. Electrophysiological techniques have been extensively employed in the investigation of animals, plants, and microorganisms; however, their application in marine algae lags behind that in other organisms. In this paper, we present an overview of current electrophysiological techniques applicable to algae while reviewing the historical usage of such techniques in this field. Furthermore, we explore the potential specific applications of electrophysiological technology in harmful algal bloom (HAB) research. The application prospects in the studies of stress tolerance, competitive advantage, nutrient absorption, toxin synthesis and secretion by HAB microalgae are discussed and anticipated herein with the aim of providing novel perspectives on HAB investigations.


Subject(s)
Harmful Algal Bloom , Microalgae , Microalgae/physiology , Harmful Algal Bloom/physiology , Electrophysiological Phenomena
8.
Proc Natl Acad Sci U S A ; 121(23): e2316206121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38805271

ABSTRACT

Rapid progress in algal biotechnology has triggered a growing interest in hydrogel-encapsulated microalgal cultivation, especially for the engineering of functional photosynthetic materials and biomass production. An overlooked characteristic of gel-encapsulated cultures is the emergence of cell aggregates, which are the result of the mechanical confinement of the cells. Such aggregates have a dramatic effect on the light management of gel-encapsulated photobioreactors and hence strongly affect the photosynthetic outcome. To evaluate such an effect, we experimentally studied the optical response of hydrogels containing algal aggregates and developed optical simulations to study the resultant light intensity profiles. The simulations are validated experimentally via transmittance measurements using an integrating sphere and aggregate volume analysis with confocal microscopy. Specifically, the heterogeneous distribution of cell aggregates in a hydrogel matrix can increase light penetration while alleviating photoinhibition more effectively than in a flat biofilm. Finally, we demonstrate that light harvesting efficiency can be further enhanced with the introduction of scattering particles within the hydrogel matrix, leading to a fourfold increase in biomass growth. Our study, therefore, highlights a strategy for the design of spatially efficient photosynthetic living materials that have important implications for the engineering of future algal cultivation systems.


Subject(s)
Hydrogels , Light , Microalgae , Photosynthesis , Hydrogels/chemistry , Microalgae/growth & development , Microalgae/metabolism , Biomass , Photobioreactors
9.
Food Funct ; 15(10): 5554-5565, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38712867

ABSTRACT

Obesity is one of the most important threats to human health. Besides existing pharmacological or clinical interventions, novel effective and largely available solutions are still necessary. Among diverse natural resources, microalgae are well known for their complexity in the production of novel secondary metabolites. At the same time, lactic acid bacteria (LAB) are known for their capacity to metabolize, through fermentation, different matrices, and consequently to modify or produce new compounds with potential bioactivity. This work aimed to study the production of fermented microalgae and cyanobacteria, and to analyse their extracts in the zebrafish Nile red fat metabolism assay. Three microalgal species (Chlorella vulgaris, Chlorococcum sp. and Arthrospira platensis) were fermented with seven strains of LAB from 4 species (Lacticaseibacillus rhamnosus, Lacticaseibacillus casei, Lactobacillus delbrueckii bulgaricus and Lacticaseibacillus paracasei), derived from the UPCCO - University of Parma Culture Collection, Parma, Italy). All the selected strains were able to ferment the selected species of microalgae, and the most suitable substrate for LAB growth was Arthrospira platensis. Extracts from fermented Chlorella vulgaris and Chlorococcum sp. reduced significantly the neutral lipid reservoirs, which was not observed without fermentations. The strongest lipid reducing effect was obtained with Arthrospira platensis fermented with Lactobacillus delbrueckii bulgaricus 1932. Untargeted metabolomics identified some compound families, which could be related to the observed bioactivity, namely fatty acids, fatty amides, triterpene saponins, chlorophyll derivatives and purine nucleotides. This work opens up the possibility of developing novel functional foods or food supplements based on microalgae, since lactic acid fermentation enhanced the production of bioactive compounds with lipid reducing activities.


Subject(s)
Fermentation , Lipid Metabolism , Metabolomics , Microalgae , Zebrafish , Animals , Microalgae/metabolism , Microalgae/chemistry , Lactic Acid/metabolism , Cyanobacteria/metabolism , Lactobacillales/metabolism , Oxazines , Spirulina
10.
Aquat Toxicol ; 271: 106937, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38728928

ABSTRACT

In aquaculture around the world, sulfamonomethoxine (SMM), a long-acting antibiotic that harms microalgae, is widely employed in combination with trimethoprim (TMP), a synergist. However, their combined toxicity to microalgae under long-term exposures at environmentally relevant concentrations remains poorly understood. Therefore, we studied the effects of SMM single-exposures and co-exposures (SMM:TMP=5:1) at concentrations of 5 µg/L and 500 µg/L on Chlorella pyrenoidosa within one aquacultural drainage cycle (15 days). Photosynthetic activity and N assimilating enzyme activities were employed to evaluate microalgal nutrient assimilation. Oxidative stress and flow cytometry analysis for microalgal proliferation and death jointly revealed mechanisms of inhibition and subsequent self-adaptation. Results showed that exposures at 5 µg/L significantly inhibited microalgal nutrient assimilation and induced oxidative stress on day 7, with a recovery to levels comparable to the control by day 15. This self-adaptation and over 95 % removal of antibiotics jointly contributed to promoting microalgal growth and proliferation while reducing membrane-damaged cells. Under 500 µg/L SMM single-exposure, microalgae self-adapted to interferences on nutrient assimilation, maintaining unaffected growth and proliferation. However, over 60 % of SMM remained, leading to sustained oxidative stress and apoptosis. Remarkably, under 500 µg/L SMM-TMP co-exposure, the synergistic toxicity of SMM and TMP significantly impaired microalgal nutrient assimilation, reducing the degradation efficiency of SMM to about 20 %. Consequently, microalgal growth and proliferation were markedly inhibited, with rates of 9.15 % and 17.7 %, respectively, and a 1.36-fold increase in the proportion of cells with damaged membranes was observed. Sustained and severe oxidative stress was identified as the primary cause of these adverse effects. These findings shed light on the potential impacts of antibiotic mixtures at environmental concentrations on microalgae, facilitating responsible evaluation of the ecological risks of antibiotics in aquaculture ponds.


Subject(s)
Microalgae , Oxidative Stress , Sulfamonomethoxine , Trimethoprim , Water Pollutants, Chemical , Trimethoprim/toxicity , Water Pollutants, Chemical/toxicity , Microalgae/drug effects , Oxidative Stress/drug effects , Sulfamonomethoxine/toxicity , Chlorella/drug effects , Chlorella/metabolism , Chlorella/growth & development , Nutrients/metabolism , Photosynthesis/drug effects , Anti-Bacterial Agents/toxicity
11.
Food Res Int ; 187: 114354, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763639

ABSTRACT

Carotenoids, versatile natural pigments with numerous health benefits, face environmental concerns associated with conventional petrochemical-based extraction methods and limitations of their synthetic equivalents. In this context, this study aims to introduce eco-friendly approaches using ultrasound-based strategies (probe and bath) for the extraction of carotenoids from microalgae, initially focusing on Microchloropsis gaditana and subsequently evaluating the versatility of the method by applying it to other microalgae species of interest (Tisochrysis lutea, Porphyridium cruentum, and Phaeodactylum tricornutum) and defatted microalgal residues. Among the approaches evaluated, the 5-min ultrasonic probe system with ethanol showed comparable carotenoid recovery efficiency to the reference method (agitation, 24 h, acetone) (9.4 ± 2.5 and 9.6 ± 3.2 mg g-1 carotenoids per dry biomass, for the green and the reference method, respectively). Moreover, the method's sustainability was demonstrated using the AGREEprep™ software (scored 0.62 out of 1), compared to the traditional method (0.22 out of 1). The developed method yielded high carotenoid contents across species with diverse cell wall compositions (3.1 ± 0.2, 2.1 ± 0.3, and 4.1 ± 0.1 mg g-1 carotenoid per dry biomass for T. lutea, P. cruentum, and P. tricornutum, respectively). Moreover, the application of the method to defatted biomass showed potential for microalgal valorization with carotenoid recovery rates of 41 %, 60 %, 61 %, and 100 % for M.gaditana, P. tricornutum, T. lutea, and P. cruentum, compared to the original biomass, respectively. Furthermore, by using high-performance liquid chromatography with a diode array detector (HPLC-DAD) and high-resolution mass spectrometry (HRMS), we reported the carotenoid and chlorophyll profiles of the different microalgae and evaluated the impact of the eco-friendly methods. The carotenoid and chlorophyll profiles varied depending on the species, biomass, and method used. In summary, this study advances a green extraction method with improved environmental sustainability and shorter extraction time, underscoring the potential of this approach as a valuable alternative for the extraction of microalgal pigments.


Subject(s)
Carotenoids , Microalgae , Carotenoids/analysis , Carotenoids/isolation & purification , Microalgae/chemistry , Mass Spectrometry , Ultrasonics/methods , Biomass , Green Chemistry Technology
12.
World J Microbiol Biotechnol ; 40(6): 189, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38702568

ABSTRACT

Rare Earth Elements (REEs) are indispensable in contemporary technologies, influencing various aspects of our daily lives and environmental solutions. The escalating demand for REEs has led to increased exploitation, resulting in the generation of diverse REE-bearing solid and liquid wastes. Recognizing the potential of these wastes as secondary sources of REEs, researchers are exploring microbial solutions for their recovery. This mini review provides insights into the utilization of microorganisms, with a particular focus on microalgae, for recovering REEs from sources such as ores, electronic waste, and industrial effluents. The review outlines the principles and distinctions of bioleaching, biosorption, and bioaccumulation, offering a comparative analysis of their potential and limitations. Specific examples of microorganisms demonstrating efficacy in REE recovery are highlighted, accompanied by successful methods, including advanced techniques for enhancing microbial strains to achieve higher REE recovery. Moreover, the review explores the environmental implications of bio-recovery, discussing the potential of these methods to mitigate REE pollution. By emphasizing microalgae as promising biotechnological candidates for REE recovery, this mini review not only presents current advances but also illuminates prospects in sustainable REE resource management and environmental remediation.


Subject(s)
Biodegradation, Environmental , Metals, Rare Earth , Microalgae , Microalgae/metabolism , Metals, Rare Earth/metabolism , Bacteria/metabolism , Bacteria/classification , Environmental Restoration and Remediation/methods , Biotechnology/methods , Industrial Waste/analysis , Bioaccumulation
13.
PLoS One ; 19(5): e0299780, 2024.
Article in English | MEDLINE | ID: mdl-38758755

ABSTRACT

Microalgae's ability to mitigate flue gas is an attractive technology that can valorize gas components through biomass conversion. However, tolerance and growth must be ideal; therefore, acclimation strategies are suggested. Here, we compared the transcriptome and lipidome of Desmodesmus abundans strains acclimated to high CO2 (HCA) and low CO2 (LCA) under continuous supply of model flue gas (MFG) and incomplete culture medium (BG11-N-S). Initial growth and nitrogen consumption from MFG were superior in strain HCA, reaching maximum productivity a day before strain LCA. However, similar productivities were attained at the end of the run, probably because maximum photobioreactor capacity was reached. RNA-seq analysis during exponential growth resulted in 16,435 up-regulated and 4,219 down-regulated contigs in strain HCA compared to LCA. Most differentially expressed genes (DEGs) were related to nucleotides, amino acids, C fixation, central carbon metabolism, and proton pumps. In all pathways, a higher number of up-regulated contigs with a greater magnitude of change were observed in strain HCA. Also, cellular component GO terms of chloroplast and photosystems, N transporters, and secondary metabolic pathways of interest, such as starch and triacylglycerols (TG), exhibited this pattern. RT-qPCR confirmed N transporters expression. Lipidome analysis showed increased glycerophospholipids in strain HCA, while LCA exhibited glycerolipids. Cell structure and biomass composition also revealed strains differences. HCA possessed a thicker cell wall and presented a higher content of pigments, while LCA accumulated starch and lipids, validating transcriptome and lipidome data. Overall, results showed significant differences between strains, where characteristic features of adaptation and tolerance to high CO2 might be related to the capacity to maintain a higher flux of internal C, regulate intracellular acidification, active N transporters, and synthesis of essential macromolecules for photosynthetic growth.


Subject(s)
Acclimatization , Carbon Dioxide , Lipidomics , Transcriptome , Carbon Dioxide/metabolism , Acclimatization/genetics , Lipidomics/methods , Microalgae/genetics , Microalgae/metabolism , Microalgae/growth & development , Gene Expression Profiling , Photosynthesis/genetics , Lipid Metabolism/genetics , Chlorophyceae/genetics , Chlorophyceae/metabolism
14.
Ecotoxicol Environ Saf ; 278: 116441, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38733805

ABSTRACT

Oxybenzone (OBZ; benzophenone-3, CAS# 131-57-7), as a new pollutant and ultraviolet absorbent, shows a significant threat to the survival of phytoplankton. This study aims to explore the acute toxic effects of OBZ on the growth of the microalga Selenastrum capricornutum, as well as the mechanisms for its damage to the primary metabolic pathways of photosynthesis and respiration. The results demonstrated that the concentrations for 50 % of maximal effect (EC50) of OBZ for S. capricornutum were 9.07 mg L-1 and 8.54 mg L-1 at 72 h and 96 h, respectively. A dosage of 4.56 mg L-1 OBZ significantly lowered the photosynthetic oxygen evolution rate of S. capricornutum in both light and dark conditions for a duration of 2 h, while it had no effect on the respiratory oxygen consumption rate under darkness. OBZ caused a significant decline in the efficiency of photosynthetic electron transport due to its damage to photosystem II (PSII), thereby decreasing the photosynthetic oxygen evolution rate. Over-accumulated H2O2 was produced under light due to the damage caused by OBZ to the donor and acceptor sides of PSII, resulting in increased peroxidation of cytomembranes and inhibition of algal respiration. OBZ's damage to photosynthesis and respiration will hinder the conversion and reuse of energy in algal cells, which is an important reason that OBZ has toxic effects on S. capricornutum. The present study indicated that OBZ has an acute toxic effect on the microalga S. capricornutum. In the two most important primary metabolic pathways in algae, photosynthesis is more sensitive to the toxicity of OBZ than respiration, especially in the dark.


Subject(s)
Benzophenones , Microalgae , Photosynthesis , Sunscreening Agents , Photosynthesis/drug effects , Benzophenones/toxicity , Microalgae/drug effects , Sunscreening Agents/toxicity , Water Pollutants, Chemical/toxicity , Hydrogen Peroxide/metabolism , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/drug effects , Ultraviolet Rays , Electron Transport/drug effects
15.
Plant Physiol Biochem ; 211: 108729, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754177

ABSTRACT

Microalgae, recognized as sustainable and eco-friendly photosynthetic microorganisms, play a pivotal role in converting CO2 into value-added products. Among these, Nannochloropsis salina (Microchloropsis salina) stands out, particularly for its ability to produce eicosapentaenoic acid (EPA), a crucial omega-3 fatty acid with significant health benefits such as anti-inflammatory properties and cardiovascular health promotion. This study focused on optimizing the cultivation conditions of Nannochloropsis salina to maximize EPA production. We thoroughly investigated the effects of varying temperatures and nitrogen (NaNO3) concentrations on biomass, total lipid content, and EPA proportions. We successfully identified optimal conditions at an initial NaNO3 concentration of 1.28 g.L-1 and a temperature of 21 °C. This condition was further validated by response surface methodology, which resulted in the highest EPA productivity reported in batch systems (14.4 mg.L-1.day-1). Quantitative real-time PCR and transcriptomic analysis also demonstrated a positive correlation between specific gene expressions and enhanced EPA production. Through a comprehensive lipid analysis and photosynthetic pigment analysis, we deduced that the production of EPA in Nannochloropsis salina seemed to be produced by the remodeling of chloroplast membrane lipids. These findings provide crucial insights into how temperature and nutrient availability influence fatty acid composition in N. salina, offering valuable guidance for developing strategies to improve EPA production in various microalgae species.


Subject(s)
Eicosapentaenoic Acid , Microalgae , Nitrogen , Photosynthesis , Stramenopiles , Temperature , Eicosapentaenoic Acid/metabolism , Eicosapentaenoic Acid/biosynthesis , Nitrogen/metabolism , Microalgae/metabolism , Stramenopiles/metabolism , Stramenopiles/genetics , Biomass
16.
Mar Drugs ; 22(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38786599

ABSTRACT

The purpose of this study was to examine the influence of 10 and 20 nm nanoparticles (AgNPs) on the growth and biochemical composition of microalga Porphyridium purpureum CNMN-AR-02 in two media which differ by the total amount of mineral salts (MM1 with 33.02 g/L and MM2 with 21.65 g/L). Spectrophotometric methods were used to estimate the amount of biomass and its biochemical composition. This study provides evidence of both stimulatory and inhibitory effects of AgNPs on different parameters depending on the concentration, size, and composition of the nutrient medium. In relation to the mineral medium, AgNPs exhibited various effects on the content of proteins (an increase up to 20.5% in MM2 and a decrease up to 36.8% in MM1), carbohydrates (a decrease up to 35.8% in MM1 and 39.6% in MM2), phycobiliproteins (an increase up to 15.7% in MM2 and 56.8% in MM1), lipids (an increase up to 197% in MM1 and no changes found in MM2), antioxidant activity (a decrease in both media). The composition of the cultivation medium has been revealed as one of the factors influencing the involvement of nanoparticles in the biosynthetic activity of microalgae.


Subject(s)
Antioxidants , Culture Media , Metal Nanoparticles , Microalgae , Porphyridium , Silver , Porphyridium/drug effects , Porphyridium/metabolism , Metal Nanoparticles/chemistry , Culture Media/chemistry , Silver/chemistry , Silver/pharmacology , Microalgae/drug effects , Antioxidants/pharmacology , Antioxidants/chemistry , Biomass
17.
Mar Drugs ; 22(5)2024 May 09.
Article in English | MEDLINE | ID: mdl-38786607

ABSTRACT

Microalgal lipids hold significant potential for the production of biodiesel and dietary supplements. To enhance their cost-effectiveness and commercial competitiveness, it is imperative to improve microalgal lipid productivity. Metabolic engineering that targets the key enzymes of the fatty acid synthesis pathway, along with transcription factor engineering, are effective strategies for improving lipid productivity in microalgae. This review provides a summary of the advancements made in the past 5 years in engineering the fatty acid biosynthetic pathway in eukaryotic microalgae. Furthermore, this review offers insights into transcriptional regulatory mechanisms and transcription factor engineering aimed at enhancing lipid production in eukaryotic microalgae. Finally, the review discusses the challenges and future perspectives associated with utilizing microalgae for the efficient production of lipids.


Subject(s)
Fatty Acids , Metabolic Engineering , Microalgae , Microalgae/metabolism , Metabolic Engineering/methods , Fatty Acids/biosynthesis , Fatty Acids/metabolism , Biofuels , Biosynthetic Pathways , Transcription Factors/metabolism , Animals , Humans
18.
Mar Drugs ; 22(5)2024 May 17.
Article in English | MEDLINE | ID: mdl-38786620

ABSTRACT

Heart disease is one of the leading causes of death worldwide, and it is estimated that 17.9 million people die of it each year. The risk factors for cardiovascular diseases are attributable to an unhealthy and sedentary lifestyle, poor nutrition, stress, genetic predisposition, diabetes, obesity, and aging. Marine microalgae have been the subject of numerous studies for their potential activity against several human diseases. They produce a plethora of primary and secondary metabolites such as essential nutrients, vitamins, pigments, and omega-3 fatty acid. Many of these molecules have antioxidant properties and have been shown to play a role in the prevention of heart diseases. The aim of this review is to summarize recent studies on the discovery of marine microalgal compounds and bioactivities for cardiovascular diseases, including in vitro and in vivo studies, showing and discussing recent discoveries and trends. The most promising results were found for microalgal polysaccharides, peptides and carotenoids. In conclusion, the overall data summarized here show that microalgae-based supplementation has the potential to improve age-related cardiovascular diseases and we expect more clinical studies in the future.


Subject(s)
Cardiovascular Diseases , Microalgae , Humans , Cardiovascular Diseases/drug therapy , Animals , Aging/drug effects , Antioxidants/pharmacology , Biological Products/pharmacology , Aquatic Organisms , Dietary Supplements
19.
Ultrason Sonochem ; 106: 106891, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701549

ABSTRACT

Microalgae are new and sustainable sources of starch with higher productivity and flexible production modes than conventional terrestrial crops, but the downstream processes need further development. Here, ultrasonication (with power of 200 W or 300 W and duration of 10, 15, 20, or 25 min) was applied to simultaneously extract and modify starch from a marine microalga Tetraselmis subcordiformis for reducing the digestibility, and an aqueous two-phase system (ATPS) of ethanol/NaH2PO4 was then used to isolate the starches with varied properties. Increasing ultrasonic duration facilitated the partition of starch into the bottom pellet, while enhancing the ultrasonic power was conducive to the allocation in the interphase of the ATPS. The overall starch recovery yield reached 73 âˆ¼ 87 % and showed no significant difference among the ultrasonic conditions tested. The sequential ultrasonication-ATPS process successfully enriched the starch with purities up to 65 % âˆ¼ 88 %, which was among the top levels reported in microalgal starch isolated. Ultrasonication produced more amylose which was mainly fractionated into the interface of the ATPS. The digestibility of the starch was altered under different ultrasonic conditions and varied from different ATPS phases as well, with the one under the ultrasonic power of 200 W for 15 min at the bottom pellet having the highest resistant starch content (RS, 39.7 %). The structural and compositional analysis evidenced that the ultrasonication-ATPS process could exert impacts on the digestibility through altering the surface roughness and fissures of the starch granules, modulating the impurity compositions (protein and lipid) that could interact with starch, and modifying the long- and short-range ordered structures. The developed ultrasonication-ATPS process provided novel insights into the mechanism and strategy for efficient production of functional starch from microalgae with a potential in industrial application.


Subject(s)
Microalgae , Sonication , Starch , Starch/chemistry , Starch/isolation & purification , Microalgae/chemistry , Sonication/methods , Water/chemistry , Chemical Fractionation/methods
20.
Pak J Biol Sci ; 27(4): 210-218, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38812112

ABSTRACT

<b>Background and Objective:</b> The remarkable surface-to-volume ratio and efficient particle interaction capabilities of nanoparticles have garnered significant attention among researchers. Microalgal synthesis presents a sustainable and cost-effective approach to nanoparticle production, particularly noteworthy for its high metal uptake and ion reduction capabilities. This study focuses on the eco-friendly and straightforward synthesis of Silver (AgNPs) and Iron (FeNPs) nanoparticles by utilizing Spirulina (<i>Arthrospira platensis</i>) and <i>Chlorella pyrenoidosa</i> extract, devoid of any chemical reducing or capping agents. <b>Materials and Methods:</b> Following the mixing of 1 mM AgNO<sub>3</sub> and 1 mM iron oxide solution with the algal extract, the resulting filtrated solution underwent comprehensive characterization, including UV-visible absorption spectra analysis, observation of particle morphology, Zetasizer measurements and Scanning Electron Microscope-Energy Dispersive X-Ray (SEM-EDX) analysis. <b>Results:</b> The UV-visible spectroscopy revealed a maximum absorbance peak at 430-440 nm, confirming the successful green synthesis of AgNPs and FeNPs, as indicated by the distinct color change from transparent to dark reddish-yellow and brown to reddish-brown, respectively. The SEM-EDX analysis further elucidated the spherical morphology of the nanoparticles, with an average diameter of 93.71 nm for AgNPs and 6198 nm for FeNPs. The Zeta potential measurements indicated average values of -56.68 mV for AgNPs and 29.73 mV for FeNPs, with conductivities of 0.1764 and 0.6786 mS/cm, respectively. <b>Conclusion:</b> The observed bioaccumulation of silver and iron nanoparticles within the algal extract underscores its potential as an environmentally friendly and cost-effective method for nanoparticle synthesis. These findings suggested a promising avenues for the application of silver and iron nanoparticles in the field of nanobiotechnology. Future research endeavors could focus on optimizing preparation conditions and controlling nanoparticle size to further enhance their utility and effectiveness.


Subject(s)
Iron , Metal Nanoparticles , Microalgae , Silver , Spirulina , Silver/chemistry , Microalgae/metabolism , Metal Nanoparticles/chemistry , Iron/chemistry , Spirulina/metabolism , Spirulina/chemistry , Green Chemistry Technology/methods , Chlorella/metabolism , Nanotechnology/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...