Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.328
Filter
1.
PeerJ ; 12: e17421, 2024.
Article in English | MEDLINE | ID: mdl-38827308

ABSTRACT

Background: Rainfall-induced coastal runoff represents an important environmental impact in near-shore coral reefs that may affect coral-associated bacterial microbiomes. Shifts in microbiome community composition and function can stress corals and ultimately cause mortality and reef declines. Impacts of environmental stress may be site specific and differ between coral microbiome compartments (e.g., tissue versus mucus). Coastal runoff and associated water pollution represent a major stressor for near-shore reef-ecosystems in Guam, Micronesia. Methods: Acropora pulchra colonies growing on the West Hagåtña reef flat in Guam were sampled over a period of 8 months spanning the 2021 wet and dry seasons. To examine bacterial microbiome diversity and composition, samples of A. pulchra tissue and mucus were collected during late April, early July, late September, and at the end of December. Samples were collected from populations in two different habitat zones, near the reef crest (farshore) and close to shore (nearshore). Seawater samples were collected during the same time period to evaluate microbiome dynamics of the waters surrounding coral colonies. Tissue, mucus, and seawater microbiomes were characterized using 16S DNA metabarcoding in conjunction with Illumina sequencing. In addition, water samples were collected to determine fecal indicator bacteria (FIB) concentrations as an indicator of water pollution. Water temperatures were recorded using data loggers and precipitation data obtained from a nearby rain gauge. The correlation structure of environmental parameters (temperature and rainfall), FIB concentrations, and A. pulchra microbiome diversity was evaluated using a structural equation model. Beta diversity analyses were used to investigate spatio-temporal trends of microbiome composition. Results: Acropora pulchra microbiome diversity differed between tissues and mucus, with mucus microbiome diversity being similar to the surrounding seawater. Rainfall and associated fluctuations of FIB concentrations were correlated with changes in tissue and mucus microbiomes, indicating their role as drivers of A. pulchra microbiome diversity. A. pulchra tissue microbiome composition remained relatively stable throughout dry and wet seasons; tissues were dominated by Endozoicomonadaceae, coral endosymbionts and putative indicators of coral health. In nearshore A. pulchra tissue microbiomes, Simkaniaceae, putative obligate coral endosymbionts, were more abundant than in A. pulchra colonies growing near the reef crest (farshore). A. pulchra mucus microbiomes were more diverse during the wet season than the dry season, a distinction that was also associated with drastic shifts in microbiome composition. This study highlights the seasonal dynamics of coral microbiomes and demonstrates that microbiome diversity and composition may differ between coral tissues and the surface mucus layer.


Subject(s)
Anthozoa , Coral Reefs , Microbiota , Seasons , Animals , Anthozoa/microbiology , Microbiota/physiology , Microbiota/genetics , Mucus/microbiology , Seawater/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification
2.
Nat Commun ; 15(1): 4708, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830853

ABSTRACT

Critical illness can significantly alter the composition and function of the human microbiome, but few studies have examined these changes over time. Here, we conduct a comprehensive analysis of the oral, lung, and gut microbiota in 479 mechanically ventilated patients (223 females, 256 males) with acute respiratory failure. We use advanced DNA sequencing technologies, including Illumina amplicon sequencing (utilizing 16S and ITS rRNA genes for bacteria and fungi, respectively, in all sample types) and Nanopore metagenomics for lung microbiota. Our results reveal a progressive dysbiosis in all three body compartments, characterized by a reduction in microbial diversity, a decrease in beneficial anaerobes, and an increase in pathogens. We find that clinical factors, such as chronic obstructive pulmonary disease, immunosuppression, and antibiotic exposure, are associated with specific patterns of dysbiosis. Interestingly, unsupervised clustering of lung microbiota diversity and composition by 16S independently predicted survival and performed better than traditional clinical and host-response predictors. These observations are validated in two separate cohorts of COVID-19 patients, highlighting the potential of lung microbiota as valuable prognostic biomarkers in critical care. Understanding these microbiome changes during critical illness points to new opportunities for microbiota-targeted precision medicine interventions.


Subject(s)
COVID-19 , Dysbiosis , Gastrointestinal Microbiome , Lung , Microbiota , Humans , Female , Male , Dysbiosis/microbiology , Middle Aged , Lung/microbiology , COVID-19/microbiology , COVID-19/virology , Aged , Microbiota/genetics , Gastrointestinal Microbiome/genetics , Host Microbial Interactions/genetics , Longitudinal Studies , RNA, Ribosomal, 16S/genetics , Respiratory Insufficiency/microbiology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Adult , Respiration, Artificial , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Critical Illness , Metagenomics/methods
3.
Nat Commun ; 15(1): 4725, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830879

ABSTRACT

Non-genetic sources of phenotypic variation, such as the epigenome and the microbiome, could be important contributors to adaptive variation for species with low genetic diversity. However, little is known about the complex interaction between these factors and the genetic diversity of the host, particularly in wild populations. Here, we examine the skin microbiome composition of two closely-related mangrove killifish species with different mating systems (self-fertilising and outcrossing) under sympatric and allopatric conditions. This allows us to partition the influence of the genotype and the environment on their microbiome and (previously described) epigenetic profiles. We find the diversity and community composition of the skin microbiome are strongly shaped by the environment and, to a lesser extent, by species-specific influences. Heterozygosity and microbiome alpha diversity, but not epigenetic variation, are associated with the fluctuating asymmetry of traits related to performance (vision) and behaviour (aggression). Our study identifies that a proportion of the epigenetic diversity and microbiome differentiation is unrelated to genetic variation, and we find evidence for an associative relationship between microbiome and epigenetic diversity in these wild populations. This suggests that both mechanisms could potentially contribute to variation in species with low genetic diversity.


Subject(s)
Epigenesis, Genetic , Genetic Variation , Microbiota , Animals , Microbiota/genetics , Skin/microbiology , Cyprinodontiformes/genetics , Cyprinodontiformes/microbiology , Male , Genotype , Species Specificity , Female
4.
Nat Commun ; 15(1): 4694, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824157

ABSTRACT

Engineering natural microbiomes for biotechnological applications remains challenging, as metabolic interactions within microbiomes are largely unknown, and practical principles and tools for microbiome engineering are still lacking. Here, we present a combinatory top-down and bottom-up framework to engineer natural microbiomes for the construction of function-enhanced synthetic microbiomes. We show that application of herbicide and herbicide-degrader inoculation drives a convergent succession of different natural microbiomes toward functional microbiomes (e.g., enhanced bioremediation of herbicide-contaminated soils). We develop a metabolic modeling pipeline, SuperCC, that can be used to document metabolic interactions within microbiomes and to simulate the performances of different microbiomes. Using SuperCC, we construct bioremediation-enhanced synthetic microbiomes based on 18 keystone species identified from natural microbiomes. Our results highlight the importance of metabolic interactions in shaping microbiome functions and provide practical guidance for engineering natural microbiomes.


Subject(s)
Biodegradation, Environmental , Herbicides , Microbiota , Microbiota/genetics , Herbicides/metabolism , Soil Microbiology , Soil Pollutants/metabolism , Models, Biological , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification
5.
PeerJ ; 12: e17412, 2024.
Article in English | MEDLINE | ID: mdl-38827283

ABSTRACT

Modern microbial mats are relictual communities mostly found in extreme environments worldwide. Despite their significance as representatives of the ancestral Earth and their important roles in biogeochemical cycling, research on microbial mats has largely been localized, focusing on site-specific descriptions and environmental change experiments. Here, we present a global comparative analysis of non-lithifying microbial mats, integrating environmental measurements with metagenomic data from 62 samples across eight sites, including two new samples from the recently discovered Archaean Domes from Cuatro Ciénegas, Mexico. Our results revealed a notable influence of environmental filtering on both taxonomic and functional compositions of microbial mats. Functional redundancy appears to confer resilience to mats, with essential metabolic pathways conserved across diverse and highly contrasting habitats. We identified six highly correlated clusters of taxa performing similar ecological functions, suggesting niche partitioning and functional specialization as key mechanisms shaping community structure. Our findings provide insights into the ecological principles governing microbial mats, and lay the foundation for future research elucidating the intricate interplay between environmental factors and microbial community dynamics.


Subject(s)
Metagenomics , Archaea/genetics , Archaea/classification , Mexico , Bacteria/genetics , Bacteria/classification , Ecosystem , Microbiota/genetics , Metagenome , Geologic Sediments/microbiology
6.
Elife ; 132024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832759

ABSTRACT

Large-scale microbiome studies are progressively utilizing multiomics designs, which include the collection of microbiome samples together with host genomics and metabolomics data. Despite the increasing number of data sources, there remains a bottleneck in understanding the relationships between different data modalities due to the limited number of statistical and computational methods for analyzing such data. Furthermore, little is known about the portability of general methods to the metagenomic setting and few specialized techniques have been developed. In this review, we summarize and implement some of the commonly used methods. We apply these methods to real data sets where shotgun metagenomic sequencing and metabolomics data are available for microbiome multiomics data integration analysis. We compare results across methods, highlight strengths and limitations of each, and discuss areas where statistical and computational innovation is needed.


Subject(s)
Computational Biology , Genomics , Metabolomics , Metagenomics , Microbiota , Metabolomics/methods , Microbiota/genetics , Computational Biology/methods , Metagenomics/methods , Genomics/methods , Humans
7.
Methods Cell Biol ; 186: 91-106, 2024.
Article in English | MEDLINE | ID: mdl-38705607

ABSTRACT

It has become evident, that the microbes colonizing the human body have a great impact on health and disease. Investigations of microbiota currently primarily rely on culturomics, high-throughput sequencing and metaproteomics which have considerably advanced our knowledge regarding the role of the microbiota in our environment and for our health. While single-cell phenotyping of immune cells and other somatic cells by flow cytometry has become widely used, the detailed analysis of bacterial cells such as the human microbiota on the single-cell level, is lagging behind. Here, we outline a protocol for the single-cell characterization of bacterial cells from complex microbiota samples, such as stool, by multi-parametric flow cytometry. Our protocol describes the isotype-specific detection of host-antibody coating of intestinal bacteria ex vivo, which together with quantitative DNA staining and light scatter detection comprise an individual's microbiota fingerprint. Cryoconservation and appropriate staining controls ensure reliable, reproducible data generation and analysis. We have automated the analysis of the multi-dimensional data using a segmentation approach by self-organizing map (SOM) algorithm for downstream comparative analyses. Our protocol can be adapted to integrate further phenotypic markers and uses the power of analytical cytometry for the characterization of bacteria on the single-cell level.


Subject(s)
Flow Cytometry , Single-Cell Analysis , Flow Cytometry/methods , Humans , Single-Cell Analysis/methods , Microbiota/genetics , Bacteria/genetics , Gastrointestinal Microbiome , Feces/microbiology
8.
Appl Microbiol Biotechnol ; 108(1): 319, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709303

ABSTRACT

Shotgun metagenomics sequencing experiments are finding a wide range of applications. Nonetheless, there are still limited guidelines regarding the number of sequences needed to acquire meaningful information for taxonomic profiling and antimicrobial resistance gene (ARG) identification. In this study, we explored this issue in the context of oral microbiota by sequencing with a very high number of sequences (~ 100 million), four human plaque samples, and one microbial community standard and by evaluating the performance of microbial identification and ARGs detection through a downsampling procedure. When investigating the impact of a decreasing number of sequences on quantitative taxonomic profiling in the microbial community standard datasets, we found some discrepancies in the identified microbial species and their abundances when compared to the expected ones. Such differences were consistent throughout downsampling, suggesting their link to taxonomic profiling methods limitations. Overall, results showed that the number of sequences has a great impact on metagenomic samples at the qualitative (i.e., presence/absence) level in terms of loss of information, especially in experiments having less than 40 million reads, whereas abundance estimation was minimally affected, with only slight variations observed in low-abundance species. The presence of ARGs was also assessed: a total of 133 ARGs were identified. Notably, 23% of them inconsistently resulted as present or absent across downsampling datasets of the same sample. Moreover, over half of ARGs were lost in datasets having less than 20 million reads. This study highlights the importance of carefully considering sequencing aspects and suggests some guidelines for designing shotgun metagenomics experiments with the final goal of maximizing oral microbiome analyses. Our findings suggest varying optimized sequence numbers according to different study aims: 40 million for microbiota profiling, 50 million for low-abundance species detection, and 20 million for ARG identification. KEY POINTS: • Forty million sequences are a cost-efficient solution for microbiota profiling • Fifty million sequences allow low-abundance species detection • Twenty million sequences are recommended for ARG identification.


Subject(s)
Bacteria , Dental Plaque , Metagenomics , Microbiota , Humans , Metagenomics/methods , Dental Plaque/microbiology , Microbiota/genetics , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Drug Resistance, Bacterial/genetics , Sequence Analysis, DNA/methods , Metagenome
9.
Food Res Int ; 186: 114318, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729711

ABSTRACT

The microbiome of surfaces along the beef processing chain represents a critical nexus where microbial ecosystems play a pivotal role in meat quality and safety of end products. This study offers a comprehensive analysis of the microbiome along beef processing using whole metagenomics with a particular focus on antimicrobial resistance and virulence-associated genes distribution. Our findings highlighted that microbial communities change dynamically in the different steps along beef processing chain, influenced by the specific conditions of each micro-environment. Brochothrix thermosphacta, Carnobacterium maltaromaticum, Pseudomonas fragi, Psychrobacter cryohalolentis and Psychrobacter immobilis were identified as the key species that characterize beef processing environments. Carcass samples and slaughterhouse surfaces exhibited a high abundance of antibiotic resistance genes (ARGs), mainly belonging to aminoglycosides, ß-lactams, amphenicols, sulfonamides and tetracyclines antibiotic classes, also localized on mobile elements, suggesting the possibility to be transmitted to human pathogens. We also evaluated how the initial microbial contamination of raw beef changes in response to storage conditions, showing different species prevailing according to the type of packaging employed. We identified several genes leading to the production of spoilage-associated compounds, and highlighted the different genomic potential selected by the storage conditions. Our results suggested that surfaces in beef processing environments represent a hotspot for beef contamination and evidenced that mapping the resident microbiome in these environments may help in reducing meat microbial contamination, increasing shelf-life, and finally contributing to food waste restraint.


Subject(s)
Food Microbiology , Microbiota , Red Meat , Microbiota/genetics , Red Meat/microbiology , Animals , Cattle , Food Handling/methods , Bacteria/genetics , Bacteria/classification , Metagenomics/methods , Drug Resistance, Bacterial/genetics , Abattoirs , Anti-Bacterial Agents/pharmacology , Food Contamination/analysis , Drug Resistance, Microbial/genetics , Food Packaging
10.
Sci Rep ; 14(1): 10584, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719878

ABSTRACT

This study aimed to evaluate the blood bacterial microbiota in healthy and febrile cats. High-quality sequencing reads from the 16S rRNA gene variable region V3-V4 were obtained from genomic blood DNA belonging to 145 healthy cats, and 140 febrile cats. Comparisons between the blood microbiota of healthy and febrile cats revealed dominant presence of Actinobacteria, followed by Firmicutes and Proteobacteria, and a lower relative abundance of Bacteroidetes. Upon lower taxonomic levels, the bacterial composition was significantly different between healthy and febrile cats. The families Faecalibacterium and Kineothrix (Firmicutes), and Phyllobacterium (Proteobacteria) experienced increased abundance in febrile samples. Whereas Thioprofundum (Proteobacteria) demonstrated a significant decrease in abundance in febrile. The bacterial composition and beta diversity within febrile cats was different according to the affected body system (Oral/GI, systemic, skin, and respiratory) at both family and genus levels. Sex and age were not significant factors affecting the blood microbiota of febrile cats nor healthy ones. Age was different between young adult and mature adult healthy cats. Alpha diversity was unaffected by any factors. Overall, the findings suggest that age, health status and nature of disease are significant factors affecting blood microbiota diversity and composition in cats, but sex is not.


Subject(s)
Microbiota , RNA, Ribosomal, 16S , Animals , Cats , RNA, Ribosomal, 16S/genetics , Microbiota/genetics , Fever/microbiology , Fever/blood , Female , Male , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Cat Diseases/microbiology , Cat Diseases/blood
11.
Sci Rep ; 14(1): 10525, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38720057

ABSTRACT

The narrow zone of soil around the plant roots with maximum microbial activity termed as rhizosphere. Rhizospheric bacteria promote the plant growth directly or indirectly by providing the nutrients and producing antimicrobial compounds. In this study, the rhizospheric microbiota of peanut plants was characterized from different farms using an Illumina-based partial 16S rRNA gene sequencing to evaluate microbial diversity and identify the core microbiome through culture-independent (CI) approach. Further, all rhizospheric bacteria that could grow on various nutrient media were identified, and the diversity of those microbes through culture-dependent method (CD) was then directly compared with their CI counterparts. The microbial population profiles showed a significant correlation with organic carbon and concentration of phosphate, manganese, and potassium in the rhizospheric soil. Genera like Sphingomicrobium, Actinoplanes, Aureimonas _A, Chryseobacterium, members from Sphingomonadaceae, Burkholderiaceae, Pseudomonadaceae, Enterobacteriaceae family, and Bacilli class were found in the core microbiome of peanut plants. As expected, the current study demonstrated more bacterial diversity in the CI method. However, a higher number of sequence variants were exclusively present in the CD approach compared to the number of sequence variants shared between both approaches. These CD-exclusive variants belonged to organisms that are more typically found in soil. Overall, this study portrayed the changes in the rhizospheric microbiota of peanuts in different rhizospheric soil and environmental conditions and gave an idea about core microbiome of peanut plant and comparative bacterial diversity identified through both approaches.


Subject(s)
Arachis , Bacteria , Metagenomics , Microbiota , RNA, Ribosomal, 16S , Rhizosphere , Soil Microbiology , Arachis/microbiology , India , Microbiota/genetics , RNA, Ribosomal, 16S/genetics , Metagenomics/methods , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Farms , Plant Roots/microbiology , Phylogeny , Metagenome , Biodiversity
12.
Arch Microbiol ; 206(6): 248, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713383

ABSTRACT

Describing the microbial community within the tumour has been a key aspect in understanding the pathophysiology of the tumour microenvironment. In head and neck cancer (HNC), most studies on tissue samples have only performed 16S rRNA short-read sequencing (SRS) on V3-V5 region. SRS is mostly limited to genus level identification. In this study, we compared full-length 16S rRNA long-read sequencing (FL-ONT) from Oxford Nanopore Technology (ONT) to V3-V4 Illumina SRS (V3V4-Illumina) in 26 HNC tumour tissues. Further validation was also performed using culture-based methods in 16 bacterial isolates obtained from 4 patients using MALDI-TOF MS. We observed similar alpha diversity indexes between FL-ONT and V3V4-Illumina. However, beta-diversity was significantly different between techniques (PERMANOVA - R2 = 0.131, p < 0.0001). At higher taxonomic levels (Phylum to Family), all metrics were more similar among sequencing techniques, while lower taxonomy displayed more discrepancies. At higher taxonomic levels, correlation in relative abundance from FL-ONT and V3V4-Illumina were higher, while this correlation decreased at lower levels. Finally, FL-ONT was able to identify more isolates at the species level that were identified using MALDI-TOF MS (75% vs. 18.8%). FL-ONT was able to identify lower taxonomic levels at a better resolution as compared to V3V4-Illumina 16S rRNA sequencing.


Subject(s)
Bacteria , Head and Neck Neoplasms , Nanopore Sequencing , RNA, Ribosomal, 16S , Humans , RNA, Ribosomal, 16S/genetics , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/microbiology , Nanopore Sequencing/methods , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Microbiota/genetics , High-Throughput Nucleotide Sequencing , Middle Aged , Sequence Analysis, DNA , Male , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Female , Aged , Adult , Phylogeny
13.
Cancer Biol Ther ; 25(1): 2350249, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38722731

ABSTRACT

Head and Neck Squamous Cell Carcinoma (HNSCC) comprises a diverse group of tumors with variable treatment response and prognosis. The tumor microenvironment (TME), which includes microbiome and immune cells, can impact outcomes. Here, we sought to relate the presence of specific microbes, gene expression, and tumor immune infiltration using tumor transcriptomics from The Cancer Genome Atlas (TCGA) and associate these with overall survival (OS). RNA sequencing (RNAseq) from HNSCC tumors in TCGA was processed through the exogenous sequences in tumors and immune cells (exotic) pipeline to identify and quantify low-abundance microbes. The detection of the Papillomaviridae family of viruses assessed HPV status. All statistical analyses were performed using R. A total of 499 RNAseq samples from TCGA were analyzed. HPV was detected in 111 samples (22%), most commonly Alphapapillomavirus 9 (90.1%). The presence of Alphapapillomavirus 9 was associated with improved OS [HR = 0.60 (95%CI: 0.40-0.89, p = .01)]. Among other microbes, Yersinia pseudotuberculosis was associated with the worst survival (HR = 3.88; p = .008), while Pseudomonas viridiflava had the best survival (HR = 0.05; p = .036). Microbial species found more abundant in HPV- tumors included several gram-negative anaerobes. HPV- tumors had a significantly higher abundance of M0 (p < .001) and M2 macrophages (p = .035), while HPV+ tumors had more T regulatory cells (p < .001) and CD8+ T-cells (p < .001). We identified microbes in HNSCC tumor samples significantly associated with survival. A greater abundance of certain anaerobic microbes was seen in HPV tumors and pro-tumorigenic macrophages. These findings suggest that TME can be used to predict patient outcomes and may help identify mechanisms of resistance to systemic therapies.


Subject(s)
Head and Neck Neoplasms , Microbiota , Papillomavirus Infections , Squamous Cell Carcinoma of Head and Neck , Tumor Microenvironment , Humans , Head and Neck Neoplasms/virology , Head and Neck Neoplasms/mortality , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/microbiology , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/genetics , Female , Papillomavirus Infections/virology , Papillomavirus Infections/immunology , Papillomavirus Infections/complications , Male , Microbiota/genetics , Tumor Microenvironment/immunology , Squamous Cell Carcinoma of Head and Neck/virology , Squamous Cell Carcinoma of Head and Neck/microbiology , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/mortality , Prognosis , Middle Aged , Papillomaviridae/genetics , Aged
14.
PLoS One ; 19(5): e0302569, 2024.
Article in English | MEDLINE | ID: mdl-38709734

ABSTRACT

Osteomyelitis of the jaw is a severe inflammatory disorder that affects bones, and it is categorized into two main types: chronic bacterial and nonbacterial osteomyelitis. Although previous studies have investigated the association between these diseases and the oral microbiome, the specific taxa associated with each disease remain unknown. In this study, we conducted shotgun metagenome sequencing (≥10 Gb from ≥66,395,670 reads per sample) of bulk DNA extracted from saliva obtained from patients with chronic bacterial osteomyelitis (N = 5) and chronic nonbacterial osteomyelitis (N = 10). We then compared the taxonomic composition of the metagenome in terms of both taxonomic and sequence abundances with that of healthy controls (N = 5). Taxonomic profiling revealed a statistically significant increase in both the taxonomic and sequence abundance of Mogibacterium in cases of chronic bacterial osteomyelitis; however, such enrichment was not observed in chronic nonbacterial osteomyelitis. We also compared a previously reported core saliva microbiome (59 genera) with our data and found that out of the 74 genera detected in this study, 47 (including Mogibacterium) were not included in the previous meta-analysis. Additionally, we analyzed a core-genome tree of Mogibacterium from chronic bacterial osteomyelitis and healthy control samples along with a reference complete genome and found that Mogibacterium from both groups was indistinguishable at the core-genome and pan-genome levels. Although limited by the small sample size, our study provides novel evidence of a significant increase in Mogibacterium abundance in the chronic bacterial osteomyelitis group. Moreover, our study presents a comparative analysis of the taxonomic and sequence abundances of all genera detected using deep salivary shotgun metagenome data. The distinct enrichment of Mogibacterium suggests its potential as a marker to distinguish between patients with chronic nonbacterial osteomyelitis and chronic bacterial osteomyelitis, particularly at the early stages when differences are unclear.


Subject(s)
Metagenomics , Microbiota , Osteomyelitis , Saliva , Humans , Saliva/microbiology , Osteomyelitis/microbiology , Female , Microbiota/genetics , Male , Middle Aged , Metagenomics/methods , Chronic Disease , Adult , Metagenome , Aged
15.
Ann Clin Microbiol Antimicrob ; 23(1): 39, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702796

ABSTRACT

BACKGROUND: Non-surgical chronic wounds, including diabetes-related foot diseases (DRFD), pressure injuries (PIs) and venous leg ulcers (VLU), are common hard-to-heal wounds. Wound evolution partly depends on microbial colonisation or infection, which is often confused by clinicians, thereby hampering proper management. Current routine microbiology investigation of these wounds is based on in vitro culture, focusing only on a limited panel of the most frequently isolated bacteria, leaving a large part of the wound microbiome undocumented. METHODS: A literature search was conducted on original studies published through October 2022 reporting metagenomic next generation sequencing (mNGS) of chronic wound samples. Studies were eligible for inclusion if they applied 16 S rRNA metagenomics or shotgun metagenomics for microbiome analysis or diagnosis. Case reports, prospective, or retrospective studies were included. However, review articles, animal studies, in vitro model optimisation, benchmarking, treatment optimisation studies, and non-clinical studies were excluded. Articles were identified in PubMed, Google Scholar, Web of Science, Microsoft Academic, Crossref and Semantic Scholar databases. RESULTS: Of the 3,202 articles found in the initial search, 2,336 articles were removed after deduplication and 834 articles following title and abstract screening. A further 14 were removed after full text reading, with 18 articles finally included. Data were provided for 3,628 patients, including 1,535 DRFDs, 956 VLUs, and 791 PIs, with 164 microbial genera and 116 species identified using mNGS approaches. A high microbial diversity was observed depending on the geographical location and wound evolution. Clinically infected wounds were the most diverse, possibly due to a widespread colonisation by pathogenic bacteria from body and environmental microbiota. mNGS data identified the presence of virus (EBV) and fungi (Candida and Aspergillus species), as well as Staphylococcus and Pseudomonas bacteriophages. CONCLUSION: This study highlighted the benefit of mNGS for time-effective pathogen genome detection. Despite the majority of the included studies investigating only 16 S rDNA, ignoring a part of viral, fungal and parasite colonisation, mNGS detected a large number of bacteria through the included studies. Such technology could be implemented in routine microbiology for hard-to-heal wound microbiota investigation and post-treatment wound colonisation surveillance.


Subject(s)
Bacteria , High-Throughput Nucleotide Sequencing , Metagenomics , Humans , Metagenomics/methods , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/classification , Wound Healing , Microbiota/genetics , Pressure Ulcer/microbiology , Diabetic Foot/microbiology , Wound Infection/microbiology , Varicose Ulcer/microbiology
16.
Sci Rep ; 14(1): 11202, 2024 05 16.
Article in English | MEDLINE | ID: mdl-38755262

ABSTRACT

Measuring the dynamics of microbial communities results in high-dimensional measurements of taxa abundances over time and space, which is difficult to analyze due to complex changes in taxonomic compositions. This paper presents a new method to investigate and visualize the intrinsic hierarchical community structure implied by the measurements. The basic idea is to identify significant intersection sets, which can be seen as sub-communities making up the measured communities. Using the subset relationship, the intersection sets together with the measurements form a hierarchical structure visualized as a Hasse diagram. Chemical organization theory (COT) is used to relate the hierarchy of the sets of taxa to potential taxa interactions and to their potential dynamical persistence. The approach is demonstrated on a data set of community data obtained from bacterial 16S rRNA gene sequencing for samples collected monthly from four groundwater wells over a nearly 3-year period (n = 114) along a hillslope area. The significance of the hierarchies derived from the data is evaluated by showing that they significantly deviate from a random model. Furthermore, it is demonstrated how the hierarchy is related to temporal and spatial factors; and how the idea of a core microbiome can be extended to a set of interrelated core microbiomes. Together the results suggest that the approach can support developing models of taxa interactions in the future.


Subject(s)
Bacteria , Microbiota , RNA, Ribosomal, 16S , Microbiota/genetics , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Bacteria/classification , Groundwater/microbiology
17.
Nat Commun ; 15(1): 4089, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744831

ABSTRACT

Dominant microorganisms of the Sargasso Sea are key drivers of the global carbon cycle. However, associated viruses that shape microbial community structure and function are not well characterised. Here, we combined short and long read sequencing to survey Sargasso Sea phage communities in virus- and cellular fractions at viral maximum (80 m) and mesopelagic (200 m) depths. We identified 2,301 Sargasso Sea phage populations from 186 genera. Over half of the phage populations identified here lacked representation in global ocean viral metagenomes, whilst 177 of the 186 identified genera lacked representation in genomic databases of phage isolates. Viral fraction and cell-associated viral communities were decoupled, indicating viral turnover occurred across periods longer than the sampling period of three days. Inclusion of long-read data was critical for capturing the breadth of viral diversity. Phage isolates that infect the dominant bacterial taxa Prochlorococcus and Pelagibacter, usually regarded as cosmopolitan and abundant, were poorly represented.


Subject(s)
Bacteriophages , Metagenome , Metagenomics , Oceans and Seas , Seawater , Metagenomics/methods , Bacteriophages/genetics , Bacteriophages/isolation & purification , Bacteriophages/classification , Seawater/virology , Seawater/microbiology , Metagenome/genetics , Genome, Viral/genetics , Phylogeny , Prochlorococcus/virology , Prochlorococcus/genetics , Microbiota/genetics , Bacteria/genetics , Bacteria/virology , Bacteria/classification , Bacteria/isolation & purification
18.
BMC Bioinformatics ; 25(1): 189, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745271

ABSTRACT

BACKGROUND: The selection of primer pairs in sequencing-based research can greatly influence the results, highlighting the need for a tool capable of analysing their performance in-silico prior to the sequencing process. We therefore propose PrimerEvalPy, a Python-based package designed to test the performance of any primer or primer pair against any sequencing database. The package calculates a coverage metric and returns the amplicon sequences found, along with information such as their average start and end positions. It also allows the analysis of coverage for different taxonomic levels. RESULTS: As a case study, PrimerEvalPy was used to test the most commonly used primers in the literature against two oral 16S rRNA gene databases containing bacteria and archaea. The results showed that the most commonly used primer pairs in the oral cavity did not match those with the highest coverage. The best performing primer pairs were found for the detection of oral bacteria and archaea. CONCLUSIONS: This demonstrates the importance of a coverage analysis tool such as PrimerEvalPy to find the best primer pairs for specific niches. The software is available under the MIT licence at https://gitlab.citius.usc.es/lara.vazquez/PrimerEvalPy .


Subject(s)
Archaea , Bacteria , DNA Primers , Microbiota , RNA, Ribosomal, 16S , Software , Microbiota/genetics , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Bacteria/classification , Archaea/genetics , DNA Primers/metabolism , DNA Primers/genetics , Humans , Mouth/microbiology , Computer Simulation
19.
Front Cell Infect Microbiol ; 14: 1384809, 2024.
Article in English | MEDLINE | ID: mdl-38774631

ABSTRACT

Introduction: Sharing microbiome data among researchers fosters new innovations and reduces cost for research. Practically, this means that the (meta)data will have to be standardized, transparent and readily available for researchers. The microbiome data and associated metadata will then be described with regards to composition and origin, in order to maximize the possibilities for application in various contexts of research. Here, we propose a set of tools and protocols to develop a real-time FAIR (Findable. Accessible, Interoperable and Reusable) compliant database for the handling and storage of human microbiome and host-associated data. Methods: The conflicts arising from privacy laws with respect to metadata, possible human genome sequences in the metagenome shotgun data and FAIR implementations are discussed. Alternate pathways for achieving compliance in such conflicts are analyzed. Sample traceable and sensitive microbiome data, such as DNA sequences or geolocalized metadata are identified, and the role of the GDPR (General Data Protection Regulation) data regulations are considered. For the construction of the database, procedures have been realized to make data FAIR compliant, while preserving privacy of the participants providing the data. Results and discussion: An open-source development platform, Supabase, was used to implement the microbiome database. Researchers can deploy this real-time database to access, upload, download and interact with human microbiome data in a FAIR complaint manner. In addition, a large language model (LLM) powered by ChatGPT is developed and deployed to enable knowledge dissemination and non-expert usage of the database.


Subject(s)
Microbiota , Humans , Microbiota/genetics , Databases, Factual , Metadata , Metagenome , Information Dissemination , Computational Biology/methods , Metagenomics/methods , Databases, Genetic
20.
BMC Microbiol ; 24(1): 176, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778276

ABSTRACT

BACKGROUND: Mangrove sediment microbes are increasingly attracting scientific attention due to their demonstrated capacity for diverse bioremediation activities, encompassing a wide range of environmental contaminants. MATERIALS AND METHODS: The microbial communities of five Avicennia marina mangrove sediment samples collected from Al Rayyis White Head, Red Sea (KSA), were characterized using Illumina amplicon sequencing of the 16S rRNA genes. RESULTS: Our study investigated the microbial composition and potential for organohalide bioremediation in five mangrove sediments from the Red Sea. While Proteobacteria dominated four microbiomes, Bacteroidetes dominated the fifth. Given the environmental concerns surrounding organohalides, their bioremediation is crucial. Encouragingly, we identified phylogenetically diverse organohalide-respiring bacteria (OHRB) across all samples, including Dehalogenimonas, Dehalococcoides, Anaeromyxobacter, Desulfuromonas, Geobacter, Desulfomonile, Desulfovibrio, Shewanella and Desulfitobacterium. These bacteria are known for their ability to dechlorinate organohalides through reductive dehalogenation. PICRUSt analysis further supported this potential, predicting the presence of functional biomarkers for organohalide respiration (OHR), including reductive dehalogenases targeting tetrachloroethene (PCE) and 3-chloro-4-hydroxyphenylacetate in most sediments. Enrichment cultures studies confirmed this prediction, demonstrating PCE dechlorination by the resident microbial community. PICRUSt also revealed a dominance of anaerobic metabolic processes, suggesting the microbiome's adaptation to the oxygen-limited environment of the sediments. CONCLUSION: This study provided insights into the bacterial community composition of five mangrove sediments from the Red Sea. Notably, diverse OHRB were detected across all samples, which possess the metabolic potential for organohalide bioremediation through reductive dehalogenation pathways. Furthermore, PICRUSt analysis predicted the presence of functional biomarkers for OHR in most sediments, suggesting potential intrinsic OHR activity by the enclosed microbial community.


Subject(s)
Bacteria , Biodegradation, Environmental , Geologic Sediments , Microbiota , Phylogeny , RNA, Ribosomal, 16S , Geologic Sediments/microbiology , RNA, Ribosomal, 16S/genetics , Microbiota/genetics , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Indian Ocean , Metagenomics , DNA, Bacterial/genetics , Wetlands , Metagenome
SELECTION OF CITATIONS
SEARCH DETAIL
...