Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.359
Filter
1.
Biomaterials ; 313: 122775, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39241549

ABSTRACT

Acute Myocardial Infarction (AMI) has seen rising cases, particularly in younger people, leading to public health concerns. Standard treatments, like coronary artery recanalization, often don't fully repair the heart's microvasculature, risking heart failure. Advances show that Mesenchymal Stromal Cells (MSCs) transplantation improves cardiac function after AMI, but the harsh microenvironment post-AMI impacts cell survival and therapeutic results. MSCs aid heart repair via their membrane proteins and paracrine extracellular vesicles that carry microRNA-125b, which regulates multiple targets, preventing cardiomyocyte death, limiting fibroblast growth, and combating myocardial remodeling after AMI. This study introduces ultrasound-responsive phase-change bionic nanoparticles, leveraging MSCs' natural properties. These particles contain MSC membrane and microRNA-125b, with added macrophage membrane for stability. Using Ultrasound Targeted Microbubble Destruction (UTMD), this method targets the delivery of MSC membrane proteins and microRNA-125b to AMI's inflamed areas. This aims to enhance cardiac function recovery and provide precise, targeted AMI therapy.


Subject(s)
Mesenchymal Stem Cells , MicroRNAs , Myocardial Infarction , Nanoparticles , Myocardial Infarction/therapy , Animals , Nanoparticles/chemistry , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , MicroRNAs/metabolism , MicroRNAs/genetics , Male , Recovery of Function , Mesenchymal Stem Cell Transplantation/methods , Humans , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Mice , Microbubbles , Ultrasonic Waves
2.
Environ Sci Pollut Res Int ; 31(43): 55145-55157, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39222228

ABSTRACT

Ozone-based advanced oxidation processes (AOPs) have emerged a promising avenue for water treatment, offering effective removal of micropollutants. Recent research underscores the potential of ozone microbubbles to enhance ozone mass transfer during water treatment, particularly when combined with pre-treatment steps. This study aimed to evaluate the efficacy of three different combined processes (chlorine/KMnO4/PAC pre-treatment followed by ozonation) in removing atrazine, a common micropollutant from natural source water. Results revealed that all combined processes achieved higher atrazine removal rates compared to individual pre-treatment or ozonation methods. Notably, the highest atrazine removal rates were observed under alkaline pH conditions, with treatment outcomes influenced by oxidant dose and pH levels. Among the combined processes, chlorine pre-treatment followed by ozonation emerged as the most effective approach, achieving a removal rate of 59.7% that exceeded the sum of individual treatments. However, this treatment efficacy was affected by water quality parameters, particularly the presence of organic matter and elevated ammonia nitrogen concentration (> 0.5 mg/L). This study highlights the potential for utilizing ozone micro/nanobubbles to enhance ozone mass transfer and offers valuable insights for optimizing the combined application of pre-treatment and ozonation strategies for efficient atrazine removal from natural water sources.


Subject(s)
Atrazine , Ozone , Water Pollutants, Chemical , Water Purification , Atrazine/chemistry , Ozone/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Microbubbles , Oxidation-Reduction
3.
Biomed Microdevices ; 26(4): 39, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39287824

ABSTRACT

Microbubbles are widely used for biomedical applications, ranging from imagery to therapy. In these applications, microbubbles can be functionalized to allow targeted drug delivery or imaging of the human body. However, functionalization of the microbubbles is quite difficult, due to the unstable nature of the gas/liquid interface. In this paper, we describe a simple protocol for rapid functionalization of microbubbles and show how to use them inside a microfluidic chip to develop a novel type of biosensor. The microbubbles are functionalized with biochemical ligand directly at their generation inside the microfluidic chip using a DSPE-PEG-Biotin phospholipid. The microbubbles are then organized inside a chamber before injecting the fluid with the bioanalyte of interest through the static bubbles network. In this proof-of-concept demonstration, we use streptavidin as the bioanalyte of interest. Both functionalization and capture are assessed using fluorescent microscopy thanks to fluorescent labeled chemicals. The main advantages of the proposed technique compared to classical ligand based biosensor using solid surface is its ability to rapidly regenerate the functionalized surface, with the complete functionalization/capture/measurement cycle taking less than 10 min.


Subject(s)
Biosensing Techniques , Lab-On-A-Chip Devices , Microbubbles , Biosensing Techniques/instrumentation , Streptavidin/chemistry
4.
J Nanobiotechnology ; 22(1): 531, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39218878

ABSTRACT

Ferroptosis, triggered by iron overload and excessive lipid peroxidation, plays a pivotal role in the progression of DOX-induced cardiomyopathy (DIC), and thus limits the use of doxorubicin (DOX) in clinic. Here, we further showed that cardiac ferroptosis induced by DOX in mice was attributed to up-regulation of Hmox1, as knockdown of Hmox1 effectively inhibited cardiomyocyte ferroptosis. To targeted delivery of siRNA into cardiomyocytes, siRNA-encapsulated exosomes were injected followed by ultrasound microbubble targeted destruction (UTMD) in the heart region. UTMD greatly facilitated exosome delivery into heart. Consistently, UTMD assisted exosomal delivery of siHomox1 nearly blocked the ferroptosis and the subsequent cardiotoxicity induced by doxorubicin. In summary, our findings reveal that the upregulation of HMOX1 induces ferroptosis in cardiomyocytes and UTMD-assisted exosomal delivery of siHmox1 can be used as a potential therapeutic strategy for DIC.


Subject(s)
Doxorubicin , Exosomes , Ferroptosis , Heme Oxygenase-1 , Microbubbles , Myocytes, Cardiac , RNA, Small Interfering , Ferroptosis/drug effects , Animals , Doxorubicin/pharmacology , Exosomes/metabolism , Mice , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Heme Oxygenase-1/metabolism , RNA, Small Interfering/pharmacology , Mice, Inbred C57BL , Male , Drug Delivery Systems , Cardiomyopathies/metabolism , Membrane Proteins
5.
J Nanobiotechnology ; 22(1): 528, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39218888

ABSTRACT

Molecular ultrasound imaging with actively targeted microbubbles (MB) proved promising in preclinical studies but its clinical translation is limited. To achieve this, it is essential that the actively targeted MB can be produced with high batch-to-batch reproducibility with a controllable and defined number of binding ligands on the surface. In this regard, poly (n-butyl cyanoacrylate) (PBCA)-based polymeric MB have been used for US molecular imaging, however, ligand coupling was mostly done via hydrolysis and carbodiimide chemistry, which is a multi-step procedure with poor reproducibility and low MB yield. Herein, we developed a single-step coupling procedure resulting in high MB yields with minimal batch-to-batch variation. Actively targeted PBCA-MB were generated using an aminolysis protocol, wherein amine-containing cRGD was added to the MB using lithium methoxide as a catalyst. We confirmed the successful conjugation of cRGD on the MB surface, while preserving their structure and acoustic signal. Compared to the conventional hydrolysis protocol, aminolysis resulted in higher MB yields and better reproducibility of coupling efficiency. Optical imaging revealed that under flow conditions, cRGD- and rhodamine-labelled MB, generated by aminolysis, specifically bind to tumor necrosis factor-alpha (TNF-α) activated endothelial cells in vitro. Furthermore, US molecular imaging demonstrated a markedly higher binding of the cRGD-MB than of control MB in TNF-α activated mouse aortas and 4T1 tumors in mice. Thus, using the aminolysis based conjugation approach, important refinements on the production of cRGD-MB could be achieved that will facilitate the production of clinical-scale formulations with excellent binding and ultrasound imaging performance.


Subject(s)
Enbucrilate , Microbubbles , Molecular Imaging , Ultrasonography , Animals , Enbucrilate/chemistry , Mice , Molecular Imaging/methods , Ultrasonography/methods , Humans , Contrast Media/chemistry , Female , Human Umbilical Vein Endothelial Cells , Mice, Inbred BALB C , Cell Line, Tumor , Tumor Necrosis Factor-alpha/metabolism
6.
Sci Rep ; 14(1): 20455, 2024 09 03.
Article in English | MEDLINE | ID: mdl-39227382

ABSTRACT

Intratumoral injections have the potential for enhanced cancer treatment efficacy while reducing costs and systemic exposure. However, intratumoral drug injections can result in substantial off-target leakage and are invisible under standard imaging modalities like ultrasound (US) and x-ray. A thermosensitive poloxamer-based gel for drug delivery was developed that is visible using x-ray imaging (computed tomography (CT), cone beam CT, fluoroscopy), as well as using US by means of integrating perfluorobutane-filled microbubbles (MBs). MBs content was optimized using tissue mimicking phantoms and ex vivo bovine livers. Gel formulations less than 1% MBs provided gel depositions that were clearly identifiable on US and distinguishable from tissue background and with minimal acoustic artifacts. The cross-sectional areas of gel depositions obtained with US and CT imaging were similar in studies using ex vivo bovine liver and postmortem in situ swine liver. The gel formulation enhanced multimodal image-guided navigation, enabling fusion of ultrasound and x-ray/CT imaging, which may enhance targeting, definition of spatial delivery, and overlap of tumor and gel. Although speculative, such a paradigm for intratumoral drug delivery might streamline clinical workflows, reduce radiation exposure by reliance on US, and boost the precision and accuracy of drug delivery targeting during procedures. Imageable gels may also provide enhanced temporal and spatial control of intratumoral conformal drug delivery.


Subject(s)
Drug Delivery Systems , Hydrogels , Liver , Poloxamer , Ultrasonography , Poloxamer/chemistry , Animals , Hydrogels/chemistry , Liver/diagnostic imaging , Liver/metabolism , Cattle , Ultrasonography/methods , Drug Delivery Systems/methods , Microbubbles , Swine , Phantoms, Imaging , Tomography, X-Ray Computed/methods , Cone-Beam Computed Tomography/methods
7.
Ultrasonics ; 144: 107449, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39217855

ABSTRACT

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is marked by the deterioration of both cortical and spinal cord motor neurons. Despite the underlying causes of the disease remain elusive, there has been a growing attention on the well-being of cortical motor neurons in recent times. Focused ultrasound combined with microbubbles (FUS/MB) for opening the blood-brain barrier (BBB) provides a means for drug delivery to specific brain regions, holding significant promise for the treatment of neurological disorders. OBJECTIVES: We aim to explore the outcomes of FUS/MB-mediated delivery of arctiin (Arc), a natural compound with anti-inflammatory activities, to the cerebral motor cortex area by using a transgenic ALS mouse model. METHODS: The ALS mouse model with the SOD1G93A mutation was used and subjected to daily Arc administration with FUS/MB treatment twice a week. After six-week treatments, the motor performance was assessed by grip strength, wire hanging, and climbing-pole tests. Mouse brains, spinal cords and gastrocnemius muscle were harvested for histological staining. RESULTS: Compared with the mice given Arc administration only, the combined treatments of FUS/MB with Arc induced further mitigation of the motor function decline, accompanied by improved health of the gastrocnemius muscle. Furthermore, notable neuroprotective effect was evidenced by the amelioration of motor neuron failure in the cortex and lumbar spinal cord. CONCLUSION: These preliminary results indicated that the combined treatment of FUS/MB and arctiin exerted a potentially beneficial effect on neuromuscular function in the ALS disease.


Subject(s)
Amyotrophic Lateral Sclerosis , Disease Models, Animal , Mice, Transgenic , Motor Cortex , Animals , Mice , Motor Cortex/drug effects , Motor Cortex/physiopathology , Glucosides/pharmacology , Glucosides/administration & dosage , Microbubbles , Drug Delivery Systems , Ultrasonic Therapy/methods , Superoxide Dismutase-1/genetics , Furans/pharmacology , Furans/administration & dosage , Male , Mutation
8.
Sci Rep ; 14(1): 20929, 2024 09 09.
Article in English | MEDLINE | ID: mdl-39251665

ABSTRACT

Transarterial chemoembolization (TACE) is an image-guided minimally invasive treatment for liver cancer which involves delivery of chemotherapy and embolic material into tumor-supplying arteries to block blood flow to a liver tumor and to deliver chemotherapy directly to the tumor. However, the released drug diffuses only less than a millimeter away from the beads. To enhance the efficacy of TACE, the development of microbubbles electrostatically bound to the surface of drug-eluting beads loaded with different amounts of doxorubicin (0-37.5 mg of Dox/mL of beads) is reported. Up to 400 microbubbles were bound to Dox-loaded beads (70-150 microns). This facilitated ultrasound imaging of the beads and increased the release rate of Dox upon exposure to high intensity focused ultrasound (HIFU). Furthermore, ultrasound exposure (1 MPa peak negative pressure) increased the distance at which Dox could be detected from beads embedded in a tissue-mimicking phantom, compared with a no ultrasound control.


Subject(s)
Chemoembolization, Therapeutic , Doxorubicin , Drug Delivery Systems , Microbubbles , Ultrasonography , Doxorubicin/administration & dosage , Doxorubicin/chemistry , Drug Delivery Systems/methods , Chemoembolization, Therapeutic/methods , Ultrasonography/methods , Humans , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/drug therapy , Liver Neoplasms/therapy , Phantoms, Imaging , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/chemistry , Microspheres
9.
Nat Commun ; 15(1): 8021, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39271721

ABSTRACT

Microbubble-enhanced ultrasound provides a noninvasive physical method to locally overcome major obstacles to the accumulation of blood-borne therapeutics in the brain, posed by the blood-brain barrier (BBB). However, due to the highly nonlinear and coupled behavior of microbubble dynamics in brain vessels, the impact of microbubble resonant effects on BBB signaling and function remains undefined. Here, combined theoretical and prospective experimental investigations reveal that microbubble resonant effects in brain capillaries can control the enrichment of inflammatory pathways that are sensitive to wall shear stress and promote differential expression of a range of transcripts in the BBB, supporting the notion that microbubble dynamics exerted mechanical stress can be used to establish molecular, in addition to spatial, therapeutic windows to target brain diseases. Consistent with these findings, a robust increase in cytotoxic T-cell accumulation in brain tumors was observed, demonstrating the functional relevance and potential clinical significance of the observed immuno-mechano-biological responses.


Subject(s)
Blood-Brain Barrier , Brain , Microbubbles , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/radiation effects , Animals , Brain/metabolism , Brain/blood supply , Brain/diagnostic imaging , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Inflammation/metabolism , Mice , Humans , Stress, Mechanical , Ultrasonic Waves , Male , Capillaries/metabolism , Female
10.
Adv Cancer Res ; 164: 191-240, 2024.
Article in English | MEDLINE | ID: mdl-39306366

ABSTRACT

Focused ultrasound (FUS) combined with microbubble (MB) treatment is a promising strategy capable of accurately delivering molecular medicines and gene therapy to treat various disease states. The rapid progression and use of FUS technology, from its inception to applications in contemporary medicine, exemplifies the significance and expanding potential of this technology. FUS for drug delivery in the brain can overcome challenging obstacles posed by the blood-brain barrier (BBB) in treating central nervous system (CNS) disorders. Both FUS and magnetic resonance imaging-guided FUS are non-invasive techniques for effectively opening the BBB and enhancing the transportation of molecular medicines and imaging agents into the brain. By integrating MBs into this process, it is possible to disrupt the BBB, facilitating delivery of therapeutic compounds including neuropeptides, proteins, antibodies, chemotherapeutic drugs and recently viruses accurately into the CNS. The safety and versatility of ultrasound makes it an attractive approach for administering molecular medicines, with potential applications extending beyond neurological disorders to include cancer treatment and other medical fields. Preclinical and clinical studies confirm that FUS is safe and efficient in enhancing drug administration, particularly where delivery to a precise location in the CNS is required. Combination therapies that utilize FUS and MBs also provide synergistic responses in cancer therapy. Further refining FUS and MB approaches both from a mechanical and reagent perspective will be forthcoming in the future and prove valuable in precisely defining targets and broadening therapeutic applications. Continued development and applications of FUS and MB technologies will improve therapeutic outcomes and advance patient care in multiple diseases states. This will elevate FUS and MBs from infrequently used medical options to mainstream medical applications.


Subject(s)
Blood-Brain Barrier , Drug Delivery Systems , Microbubbles , Precision Medicine , Humans , Microbubbles/therapeutic use , Precision Medicine/methods , Drug Delivery Systems/methods , Animals , Blood-Brain Barrier/metabolism , Central Nervous System/metabolism , Central Nervous System/diagnostic imaging , Central Nervous System Diseases/drug therapy , Central Nervous System Diseases/therapy , Central Nervous System Diseases/diagnostic imaging
11.
ACS Appl Mater Interfaces ; 16(37): 49069-49082, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39236665

ABSTRACT

Transdermal drug delivery systems are highly appealing as a convenient drug delivery manner applicable to a wide variety of drugs. While most delivery relies on only passive diffusion and suffers low transdermal efficiencies. Ultrasound motivation promotes drug transdermal penetration but still calls for improvement, because only a thin proportion of the ultrasound energy is applied on the drug delivery patch and most ultrasound energy is wasted in deeper portions of biotissues. In this work, we develop a transdermal patch for enhanced drug delivery. The combination of microsized air pockets and the piezoelectric soft structure enable the conversion of an intended proportion of ultrasound energy into electric energy. The intensified drug flow and synergistic ultrasound pressure and electric field function simultaneously to enhance drug transdermal delivery. The delivery efficacy is related to the power of the ultrasound motivation, the size of the microscopic air pockets, and the chemical structure of the drug molecules. The temperature of the patch within the delivery process remains in the safe range, and the mild temperature elevation causes color changes of the thermochromic patch, used to indicate effective ultrasound-patch matching. A model delivery patch for pain release is constructed, and animal experiments indicate that the drug blood concentrations are 100% higher than the delivery using only ultrasound and even more remarkably enhanced when compared to only electric-field-motivated delivery or static delivery without external motivations.


Subject(s)
Administration, Cutaneous , Drug Delivery Systems , Microbubbles , Animals , Transdermal Patch , Skin/metabolism , Mice , Ultrasonic Waves
12.
Sci Rep ; 14(1): 22295, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39333771

ABSTRACT

Pulsed high-intensity focused ultrasound (pHIFU) has the capability to induce de novo cavitation bubbles, offering potential applications for enhancing drug delivery and modulating tissue microenvironments. However, imaging and monitoring these cavitation bubbles during the treatment presents a challenge due to their transient nature immediately following pHIFU pulses. A planewave bubble Doppler technique demonstrated its potential, yet this Doppler technique used conventional clutter filter that was originally designed for blood flow imaging. Our recent study introduced a new approach employing dynamic mode decomposition (DMD) to address this in an ex vivo setting. This study demonstrates the feasibility of the application of DMD for in vivo Doppler monitoring of the cavitation bubbles in porcine liver and identifies the candidate monitoring metrics for pHIFU treatment. We propose a fully automated bubble mode identification method using k-means clustering and an image contrast-based algorithm, leading to the generation of DMD-filtered bubble images and corresponding Doppler power maps after each HIFU pulse. These power Doppler maps are then correlated with the extent of tissue damage determined by histological analysis. The results indicate that DMD-enhanced power Doppler map can effectively visualize the bubble distribution with high contrast, and the Doppler power level correlates with the severity of tissue damage by cavitation. Further, the temporal characteristics of the bubble modes, specifically the decay rates derived from DMD, provide information of the bubble dissolution rate, which are correlated with tissue damage level-slower rates imply more severe tissue damage.


Subject(s)
Feasibility Studies , High-Intensity Focused Ultrasound Ablation , Liver , Animals , Swine , Liver/diagnostic imaging , High-Intensity Focused Ultrasound Ablation/methods , Microbubbles , Algorithms , Ultrasonography, Doppler/methods
13.
Ultrason Sonochem ; 110: 107051, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39232288

ABSTRACT

Acoustic cavitation plays a critical role in various biomedical applications. However, uncontrolled cavitation can lead to undesired damage to healthy tissues. Therefore, real-time monitoring and quantitative evaluation of cavitation dynamics is essential for understanding underlying mechanisms and optimizing ultrasound treatment efficiency and safety. The current research addressed the limitations of traditionally used cavitation detection methods by developing introduced an adaptive time-division multiplexing passive cavitation imaging (PCI) system integrated into a commercial diagnostic ultrasound platform. This new method combined real-time cavitation monitoring with B-mode imaging, allowing for simultaneous visualization of treatment progress and 2D quantitative evaluation of cavitation dosage within targeted area. An improved delay-and-sum (DAS) algorithm, optimized with a minimum variance (MV) beamformer, is utilized to minimize the side lobe effect and improve the axial resolution typically associated with PCI. In additional to visualize and quantitatively assess the cavitation activities generated under varied acoustic pressures and microbubble concentrations, this system was specifically applied to perform 2D cavitation evaluation for ultrasound thrombolysis mediated by different solutions, e.g., saline, nanodiamond (ND) and nitrogen-annealed nanodiamond (N-AND). This research aims to bridge the gap between laboratory-based research systems and real-time spatiotemporal cavitation evaluation demands in practical uses. Results indicate that this improved 2D cavitation monitoring and evaluation system could offer a useful tool for comprehensive evaluating cavitation-mediated effects (e.g., ultrasound thrombolysis), providing valuable insights into in-depth understanding of cavitation mechanisms and optimization of cavitation applications.


Subject(s)
Ultrasonography , Ultrasonography/methods , Microbubbles , Thrombolytic Therapy/methods , Ultrasonic Therapy/methods
14.
Theranostics ; 14(11): 4519-4535, 2024.
Article in English | MEDLINE | ID: mdl-39113808

ABSTRACT

Background : Focused ultrasound (FUS) in combination with microbubbles has recently shown great promise in facilitating blood-brain barrier (BBB) opening for drug delivery and immunotherapy in Alzheimer's disease (AD). However, it is currently limited to systems integrated within the MRI suites or requiring post-surgical implants, thus restricting its widespread clinical adoption. In this pilot study, we investigate the clinical safety and feasibility of a portable, non-invasive neuronavigation-guided FUS (NgFUS) system with integrated real-time 2-D microbubble cavitation mapping. Methods : A phase 1 clinical study with mild to moderate AD patients (N = 6) underwent a single session of microbubble-mediated NgFUS to induce transient BBB opening (BBBO). Microbubble activity under FUS was monitored with real-time 2-D cavitation maps and dosing to ensure the efficacy and safety of the NgFUS treatment. Post-operative MRI was used for BBB opening and closure confirmation as well as safety assessment. Changes in AD biomarker levels in both blood serum and extracellular vesicles (EVs) were evaluated, while changes in amyloid-beta (Aß) load in the brain were assessed through 18F-florbetapir PET. Results : BBBO was achieved in 5 out of 6 subjects with an average volume of 983 ± 626 mm3 following FUS at the right frontal lobe both in white and gray matter regions. The outpatient treatment was completed within 34.8 ± 10.7 min. Cavitation dose significantly correlated with the BBBO volume (R 2 > 0.9, N = 4), demonstrating the portable NgFUS system's capability of predicting opening volumes. The cavitation maps co-localized closely with the BBBO location, representing the first report of real-time transcranial 2-D cavitation mapping in the human brain. Larger opening volumes correlated with increased levels of AD biomarkers, including Aß42 (R 2 = 0.74), Tau (R 2 = 0.95), and P-Tau181 (R 2 = 0.86), assayed in serum-derived EVs sampled 3 days after FUS (N = 5). From PET scans, subjects showed a lower Aß load increase in the treated frontal lobe region compared to the contralateral region. Reduction in asymmetry standardized uptake value ratios (SUVR) correlated with the cavitation dose (R 2 > 0.9, N = 3). Clinical changes in the mini-mental state examination over 6 months were within the expected range of cognitive decline with no additional changes observed as a result of FUS. Conclusion : We showed the safety and feasibility of this cost-effective and time-efficient portable NgFUS treatment for BBBO in AD patients with the first demonstration of real-time 2-D cavitation mapping. The cavitation dose correlated with BBBO volume, a slowed increase in pathology, and serum detection of AD proteins. Our study highlights the potential for accessible FUS treatment in AD, with or without drug delivery.


Subject(s)
Alzheimer Disease , Blood-Brain Barrier , Magnetic Resonance Imaging , Microbubbles , Humans , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/diagnostic imaging , Alzheimer Disease/therapy , Alzheimer Disease/diagnostic imaging , Male , Aged , Female , Pilot Projects , Magnetic Resonance Imaging/methods , Amyloid beta-Peptides/metabolism , Middle Aged , Biomarkers/metabolism , Drug Delivery Systems/methods , Aged, 80 and over
15.
Biomed Pharmacother ; 179: 117339, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39216448

ABSTRACT

Ultrasound-mediated cell membrane permeabilization - sonoporation, enhances drug delivery directly to tumor sites while reducing systemic side effects. The potential of ultrasound to augment intracellular calcium uptake - a critical regulator of cell death and proliferation - offers innovative alternative to conventional chemotherapy. However, calcium therapeutic applications remain underexplored in sonoporation studies. This research provides a comprehensive analysis of calcium sonoporation (CaSP), which combines ultrasound treatment with calcium ions and SonoVue microbubbles, on gastrointestinal cancer cells LoVo and HPAF-II. Initially, optimal sonoporation parameters were determined: an acoustic wave of 1 MHz frequency with a 50 % duty cycle at intensity of 2 W/cm2. Subsequently, various cellular bioeffects, such as viability, oxidative stress, metabolism, mitochondrial function, proliferation, and cell death, were assessed following CaSP treatment. CaSP significantly impaired cancer cell function by inducing oxidative and metabolic stress, evidenced by increased mitochondrial depolarization, decreased ATP levels, and elevated glucose uptake in a Ca2+ dose-dependent manner, leading to activation of the intrinsic apoptotic pathway. Cellular response to CaSP depended on the TP53 gene's mutational status: colon cancer cells were more susceptible to CaSP-induced apoptosis and G1 phase cell cycle arrest, whereas pancreatic cancer cells showed a higher necrotic response and G2 cell cycle arrest. These promising results encourage future research to optimize sonoporation parameters for clinical use, investigate synergistic effects with existing treatments, and assess long-term safety and efficacy in vivo. Our study highlights CaSP's clinical potential for improved safety and efficacy in cancer therapy, offering significant implications for the pharmaceutical and biomedical fields.


Subject(s)
Apoptosis , Calcium , Gastrointestinal Neoplasms , Microbubbles , Humans , Calcium/metabolism , Cell Line, Tumor , Apoptosis/drug effects , Gastrointestinal Neoplasms/pathology , Gastrointestinal Neoplasms/drug therapy , Gastrointestinal Neoplasms/metabolism , Gastrointestinal Neoplasms/therapy , Cell Death/drug effects , Oxidative Stress/drug effects , Drug Delivery Systems/methods , Cell Survival/drug effects , Cell Proliferation/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Ultrasonic Waves , Tumor Suppressor Protein p53/metabolism
16.
J Acoust Soc Am ; 156(2): 1004-1016, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39136631

ABSTRACT

Contrast ultrasound (CUS) has received much interest because of its sensitivity enhancement for blood flow imaging. However, there is still a lack of nonlinear simulation method for CUS, as conventional simulators cannot deal with the microbubble acoustic nonlinearity. In this paper, a nonlinear simulation method of CUS is developed based on a combination strategy of the k-space pseudospectral method and Rayleigh-Plesset Marmottant model. Different contrast pulse sequence strategies as well as the radial modulation imaging are simulated and compared using the proposed method. For blood flow imaging, simulations under different scenarios such as power Doppler and ultrasound localization microscopy are also carried out. Furthermore, a face-to-face comparison is performed between simulations and phantom experiments to validate the proposed method.


Subject(s)
Computer Simulation , Contrast Media , Nonlinear Dynamics , Phantoms, Imaging , Ultrasonography , Contrast Media/administration & dosage , Ultrasonography/methods , Microbubbles , Humans
17.
PLoS One ; 19(8): e0308075, 2024.
Article in English | MEDLINE | ID: mdl-39088581

ABSTRACT

Nitric oxide (NO) regulates vascular homeostasis and plays a key role in revascularization and angiogenesis. The endothelial nitric oxide synthase (eNOS) enzyme catalyzes NO production in endothelial cells. Overexpression of the eNOS gene has been implicated in pathologies with dysfunctional angiogenic processes, such as cancer. Therefore, modulating eNOS gene expression using small interfering RNAs (siRNAs) represents a viable strategy for antitumor therapy. siRNAs are highly specific to the target gene, thus reducing off-target effects. Given the widespread distribution of endothelium and the crucial physiological role of eNOS, localized delivery of nucleic acid to the affected area is essential. Therefore, the development of an efficient eNOS-siRNA delivery carrier capable of controlled release is imperative for targeting specific vascular regions, particularly those associated with tumor vascular growth. Thus, this study aims to utilize ultrasound-mediated microbubble destruction (UMMD) technology with cationic microbubbles loaded with eNOS-siRNA to enhance transfection efficiency and improve siRNA delivery, thereby preventing sprouting angiogenesis. The efficiency of eNOS-siRNA transfection facilitated by UMMD was assessed using bEnd.3 cells. Synthesis of nitric oxide and eNOS protein expression were also evaluated. The silencing of eNOS gene in a model of angiogenesis was assayed using the rat aortic ring assay. The results showed that from 6 to 24 h, the transfection of fluorescent siRNA with UMMD was twice as high as that of lipofection. Moreover, transfection of eNOS-siRNA with UMMD enhanced the knockdown level (65.40 ± 4.50%) compared to lipofectamine (40 ± 1.70%). Silencing of eNOS gene with UMMD required less amount of eNOS-siRNA (42 ng) to decrease the level of eNOS protein expression (52.30 ± 0.08%) to the same extent as 79 ng of eNOS-siRNA using lipofectamine (56.30 ± 0.10%). NO production assisted by UMMD was reduced by 81% compared to 67% reduction transfecting with lipofectamine. This diminished NO production led to higher attenuation of aortic ring outgrowth. Three-fold reduction compared to lipofectamine transfection. In conclusion, we propose the combination of eNOS-siRNA and UMMD as an efficient, safe, non-viral nucleic acid transfection strategy for inhibition of tumor progression.


Subject(s)
Aorta , Microbubbles , Nitric Oxide Synthase Type III , Nitric Oxide , RNA, Small Interfering , Transfection , Animals , Nitric Oxide Synthase Type III/metabolism , Nitric Oxide Synthase Type III/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Rats , Transfection/methods , Aorta/metabolism , Nitric Oxide/metabolism , Mice , Male , Cell Line , Neovascularization, Physiologic/genetics
18.
Cardiovasc Ultrasound ; 22(1): 10, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39118073

ABSTRACT

From its inception as a two-dimensional snapshot of the beating heart, echocardiography has become an indelible part of cardiovascular diagnostics. The integration of ultrasound enhancing agents (UEAs) marks a pivotal transition, enhancing its diagnostic acumen beyond myocardial perfusion. These agents have refined echocardiography's capacity to visualize complex cardiac anatomy and pathology with unprecedented clarity, especially in non-coronary artery disease contexts. UEAs aid in detailed assessments of myocardial viability, endocardial border delineation in left ventricular opacification, and identification of intracardiac masses. Recent innovations in UEAs, accompanied by advancements in echocardiographic technology, offer clinicians a more nuanced view of cardiac function and blood flow dynamics. This review explores recent developments in these applications and future contemplated studies.


Subject(s)
Contrast Media , Echocardiography , Humans , Echocardiography/methods , Cardiovascular Diseases/diagnostic imaging , Cardiovascular Diseases/diagnosis , Coronary Vessels/diagnostic imaging , Coronary Vessels/physiopathology , Image Enhancement/methods , Microbubbles
19.
Article in English | MEDLINE | ID: mdl-39088497

ABSTRACT

Tracking and controlling microbubble (MB) dynamics in the human brain through acoustic emission (AE) monitoring during transcranial focused ultrasound (tFUS) therapy are critical for attaining safe and effective treatments. The low-amplitude MB emissions have harmonic and ultra-harmonic components, necessitating a broad bandwidth and low-noise system for monitoring transcranial MB activity. Capacitive micromachined ultrasonic transducers (CMUTs) offer high sensitivity and low noise over a broad bandwidth, especially when they are tightly integrated with electronics, making them a good candidate technology for monitoring the MB activity through human skull. In this study, we designed a 16-channel analog front-end (AFE) electronics with a low-noise transimpedance amplifier (TIA), a band-gap reference circuit, and an output buffer stage. To assess AFE performance and ability to detect MB AE, we combined it with a commercial CMUT array. The integrated system has 12.3 - [Formula: see text] receive sensitivity with 0.085 - [Formula: see text] minimum detectable pressure (MDP) up to 3 MHz for a single element CMUT with 3.78 [Formula: see text] area. Experiments with free MBs in a microfluidic channel demonstrate that our system is able to capture key spectral components of MBs' harmonics when sonicated at clinically relevant frequencies (0.5 MHz) and pressures (250 kPa). Together our results demonstrate that the proposed CMUT system can support the development of novel passive cavitation detectors (PCD) to track MB activity for attaining safe and effective focused ultrasound (FUS) treatments.


Subject(s)
Equipment Design , Microbubbles , Transducers , Humans , High-Intensity Focused Ultrasound Ablation/instrumentation , High-Intensity Focused Ultrasound Ablation/methods , Signal Processing, Computer-Assisted/instrumentation , Phantoms, Imaging
20.
Comput Biol Med ; 181: 109061, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39186904

ABSTRACT

Sonothrombolysis is a technique that employs the ultrasound waves to break down the clot. Recent studies have demonstrated significant improvement in the treatment efficacy when combining two ultrasound waves of different frequencies. Nevertheless, the findings remain conflicted on the ideal frequency pairing that leads to an optimal treatment outcome. Existing experimental studies are constrained by the limited range of frequencies that can be investigated, while numerical studies are typically confined to spherical microbubble dynamics, thereby restricting the scope of the analysis. To overcome this, the present study investigated the microbubble dynamics caused by the different combinations of ultrasound frequencies. This was carried out using computational modelling as it enables the visualisation of the microbubble behaviour, which is difficult in experimental studies due to the opacity of blood. The results showed that the pairings of two ultrasound waves with low frequencies generally produced stronger cavitation and higher flow-induced shear stress on the clot surface. However, one should avoid the frequency pairings that are integer multipliers of each other, i.e., frequency ratio of 1/3, 1/2 and 2, as they led to resultant wave with low pressure amplitude that weakened the cavitation. At 0.5 + 0.85 MHz, the microbubble caused the highest shear stress of 60.5 kPa, due to its large translational distance towards the clot. Although the pressure threshold for inertial cavitation was reduced using dual-frequency ultrasound, the impact of the high-speed jet can only be realised when the microbubble travelled close to the clot. The results obtained from the present study provide groundwork for deeper understanding on the microbubble dynamics during dual-frequency sonothrombolysis, which is of paramount importance for its optimisations and the subsequent clinical translation.


Subject(s)
Computer Simulation , Microbubbles , Ultrasonic Therapy , Humans , Ultrasonic Therapy/methods , Models, Cardiovascular , Thrombosis/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL