Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.740
Filter
1.
Microbes Environ ; 39(2)2024.
Article in English | MEDLINE | ID: mdl-38763742

ABSTRACT

Microcystins (MCs) produced by Microcystis aeruginosa are harmful to animal and human health, and there is currently no effective method for their removal. Therefore, the development of biological approaches that inhibit cyanobacteria and remove MCs is needed. We identified strain MB1, confirmed as Morchella, using morphological and mole-cular evolution methods. To assess the impact of strain MB1 on M. aeruginosa, we conducted an experiment in which we inoculated M. aeruginosa with Morchella strain MB1. After their co-cultivation for 4| |d, the inoculation with 0.9696| |g MB1 completely inhibited and removed M. aeruginosa while concurrently removing up to 95% of the MC content. Moreover, within 3| |d of their co-cultivation, MB1 removed more than 50% of nitrogen and phosphorus from the M. aeruginosa solution. Therefore, the development of effective biological techniques for MC removal is paramount in safeguarding both the environment and human well-being. We herein successfully isolated MB1 from its natural habitat. This strain effectively inhibited and removed M. aeruginosa and also reduced the content of nitrogen and phosphorus in the M. aeruginosa solution. Most importantly, it exhibited a robust capability to eliminate MCs. The present results offer a new method and technical reference for mitigating harmful algal blooms.


Subject(s)
Harmful Algal Bloom , Microcystins , Microcystis , Nitrogen , Phosphorus , Microcystins/metabolism , Microcystis/metabolism , Microcystis/growth & development , Microcystis/chemistry , Phosphorus/metabolism , Nitrogen/metabolism
2.
Sci Rep ; 14(1): 10934, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740841

ABSTRACT

Cyanobacteria bloom and the secondary metabolites released by the microorganism are extremely harmful to aquatic animals, yet study on their adverse effects in zoobenthos is rare. Corbicula fluminea widely distributed in freshwater environment with algal blooms. It is a typical filter feeding zoobenthos that may be affected by the secondary metabolites of cyanobacteria due to its high filtering rate. In this study, C. fluminea was exposed to Microcystis aeruginosa exudates (MaE) for 96 h, which was obtained from 5 × 105 cells/mL and 2.5 × 106 cells/mL exponential stage M. aeruginosa culture solution that represented cyanobacteria cell density needs environmental risk precaution control and emergent control, respectively. The responses of C. fluminea critical organs to MaE were analyzed and evaluated based on histopathological sections, antitoxicity biomarkers, and organ function biomarkers. The results showed that all the organs underwent structural disorders, cell vacuolization, apoptosis, and necrosis, and the damage levels increased as MaE concentration increased. The detoxification and antioxidant defense systems biomarkers in each organ response to MaE exposure differently and the level of reaction improved when MaE concentration increased. The siphon rate and acetylcholinesterase activity showed that the filtration function decreased significantly as the MaE concentration increased. Increased activity of glutathione S-transferase and amylase in the digestive gland indicate that it is the major detoxification organ of C. fluminea. Increased vitellogenin concentration and enlarged oocytes in the gonad indicate that MaE may have an estrogenic effect on C. fluminea. This study demonstrates that cyanobacteria threat benthic bivalves by inducing oxidative stress, inhibiting filtering feeding system, and disturbing digestion system and reproduction potential of C. fluminea.


Subject(s)
Corbicula , Microcystis , Reproduction , Animals , Microcystis/metabolism , Corbicula/metabolism , Corbicula/microbiology , Filtration , Biomarkers/metabolism
3.
Sci Total Environ ; 932: 172878, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38697541

ABSTRACT

Excessive phosphorus (P) in eutrophic water induces cyanobacterial blooms that aggravate the burden of in-situ remediation measures. In order to ensure better ecological recovery, Flock & Lock technique has been developed to simultaneously sink cyanobacteria and immobilize P but requires a combination of flocculent and P inactivation agent. Here we synthesized a novel lanthanum-modified pyroaurite (LMP), as an alternative for Flock & Lock of cyanobacteria and phosphorus at the background of rich humic acid and suspended solids. LMP shows a P adsorption capacity of 36.0 mg/g and nearly 100 % removal of chlorophyll-a (Chl-a), turbidity, UV254 and P at a dosage (0.3 g/L) much lower than the commercial analogue (0.5 g/L). The resultant sediment (98.2 % as immobile P) exhibits sound stability without observable release of P or re-growth of cyanobacteria over a 50-day incubation period. The use of LMP also constrains the release of toxic microcystins to 1.4 µg/L from the sunk cyanobacterial cells, outperforming the commonly used polyaluminum chloride (PAC). Similar Flock & Lock efficiency could also be achieved in real eutrophic water. The outstanding Flock & Lock performance of LMP is attributable to the designed La modification. During LMP treatment, La acts as not only a P binder by formation of LaPO4, but also a coagulant to create a synergistic effect with pyroaurite. The controlled hydrolysis of surface La(III) over pyroaurite aided the possible formation of La(III)-pyroaurite networking structure, which significantly enhanced the Flock & Lock process through adsorption, charge neutralization, sweep flocculation and entrapment. In the end, the preliminary economic analysis is performed. The results demonstrate that LMP is a versatile and cost-effective agent for in-situ remediation of eutrophic waters.


Subject(s)
Eutrophication , Lanthanum , Microcystis , Phosphorus , Lanthanum/chemistry , Water Pollutants, Chemical/analysis , Aluminum Hydroxide/chemistry , Adsorption , Environmental Restoration and Remediation/methods
4.
Harmful Algae ; 134: 102623, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38705613

ABSTRACT

Microcystins release from bloom-forming cyanobacteria is considered a way to gain competitive advantage in Microcystis populations, which threaten water resources security and aquatic ecological balance. However, the effects of microcystins on microalgae are still largely unclear. Through simulated culture experiments and the use of UHPLC-MS-based metabolomics, the effects of two microcystin-LR (MC-LR) concentrations (400 and 1,600 µg/L) on the growth and antioxidant properties of three algae species, the toxic Microcystis aeruginosa, a non-toxic Microcystis sp., and Chlorella vulgaris, were studied. The MC-LR caused damage to the photosynthetic system and activated the protective mechanism of the photosynthetic system by decreasing the chlorophyll-a and carotenoid concentrations. Microcystins triggered oxidative stress in C. vulgaris, which was the most sensitive algae species studied, and secreted more glycolipids into the extracellular compartment, thereby destroying its cell structure. However, C. vulgaris eliminated reactive oxygen species (ROS) by secreting terpenoids, thereby resisting oxidative stress. In addition, two metabolic pathways, the vitamin B6 and the sphingolipid pathways, of C. vulgaris were significantly disturbed by microcystins, contributing to cell membrane and mitochondrial damage. Thus, both the low (400 µg/L) and the high (1,600 µg/L) MC-LR concentration inhibited algae growth within 3 to 7 days, and the inhibition rates increased with the increase in the MC-LR concentration. The above results indicate that the toxin-producing Microcystis species have a stronger toxin tolerance under longer-term toxin exposure in natural water environments. Thus, microcystins participates in interspecific interaction and phytoplankton population regulation and creates suitable conditions for the toxin-producing M. aeruginosa to become the dominant species in algae blooms.


Subject(s)
Antioxidants , Marine Toxins , Microcystins , Microcystis , Photosynthesis , Microcystins/metabolism , Photosynthesis/drug effects , Antioxidants/metabolism , Microcystis/drug effects , Microcystis/growth & development , Microcystis/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Chlorella vulgaris/drug effects , Chlorella vulgaris/growth & development , Chlorella vulgaris/metabolism , Chlorophyll A/metabolism
5.
Harmful Algae ; 134: 102627, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38705620

ABSTRACT

Due to climate changes and eutrophication, blooms of predominantly toxic freshwater cyanobacteria are intensifying and are likely to colonize estuaries, thus impacting benthic organisms and shellfish farming representing a major ecological, health and economic risk. In the natural environment, Microcystis form large mucilaginous colonies that influence the development of both cyanobacterial and embedded bacterial communities. However, little is known about the fate of natural colonies of Microcystis by salinity increase. In this study, we monitored the fate of a Microcystis dominated bloom and its microbiome along a French freshwater-marine gradient at different phases of a bloom. We demonstrated changes in the cyanobacterial genotypic composition, in the production of specific metabolites (toxins and compatible solutes) and in the heterotrophic bacteria structure in response to the salinity increase. In particular M. aeruginosa and M. wesenbergii survived salinities up to 20. Based on microcystin gene abundance, the cyanobacteria became more toxic during their estuarine transfer but with no selection of specific microcystin variants. An increase in compatible solutes occurred along the continuum with extensive trehalose and betaine accumulations. Salinity structured most the heterotrophic bacteria community, with an increased in the richness and diversity along the continuum. A core microbiome in the mucilage-associated attached fraction was highly abundant suggesting a strong interaction between Microcystis and its microbiome and a likely protecting role of the mucilage against an osmotic shock. These results underline the need to better determine the interactions between the Microcystis colonies and their microbiome as a likely key to their widespread success and adaptation to various environmental conditions.


Subject(s)
Fresh Water , Microbiota , Fresh Water/microbiology , Microcystis/physiology , Cyanobacteria/physiology , Cyanobacteria/metabolism , Cyanobacteria/genetics , Salinity , Microcystins/metabolism , Harmful Algal Bloom , Seawater/microbiology , Seawater/chemistry , France
6.
Harmful Algae ; 134: 102622, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38705618

ABSTRACT

Colony formation is a crucial characteristic of Microcystis, a cyanobacterium known for causing cyanobacterial harmful algal blooms (cyanoHABs). It has been observed that as Microcystis colonies grow larger, they often become less densely packed, which correlates with a decrease in light penetration. The objective of this study was to investigate the effects of light limitation on the morphological variations in Microcystis, particularly in relation to the crowded cellular environment. The results indicated that when there was sufficient light (transmittance = 100 %) to support a growth rate of 0.11±0.01 day-1, a significant increase in colony size was found, from 466±15 µm to 1030±111 µm. However, under light limitation (transmittance = 50 % - 1 %) where the growth rate was lower than 0, there was no significant improvement in colony size. Microcystis in the light limitation groups exhibited a loose cell arrangement and even the presence of holes or pores within the colony, confirming the negative correlation between colony size and cell arrangement. This pattern is driven by regional differences in growth within the colony, as internal cells have a significantly lower frequency of division compared to peripheral cells, due to intra-colony self-shading (ICSS). The research demonstrates that Microcystis can adjust its cell arrangement to avoid excessive self-shading, which has implications for predicting and controlling cyanoHABs. These findings also contribute to the understanding of cyanobacterial variations and can potentially inform future research on the diverse phycosphere.


Subject(s)
Harmful Algal Bloom , Light , Microcystis , Microcystis/physiology , Microcystis/growth & development
7.
Toxins (Basel) ; 16(5)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38787058

ABSTRACT

Cyanobacterial harmful algal blooms (cyanoHABs) occur in fresh water globally. These can degrade water quality and produce toxins, resulting in ecological and economic damages. Thus, short-term management methods (i.e., algaecides) are necessary to rapidly mitigate the negative impacts of cyanoHABs. In this study, we assess the efficacy of a hydrogen peroxide-based algaecide (PAK® 27) on a Microcystis dominated bloom which occurred within the Pahokee Marina on Lake Okeechobee, Florida, USA. We observed a significant reduction in chlorophyll a (96.81%), phycocyanin (93.17%), and Microcystis cell counts (99.92%), and a substantial reduction in microcystins (86.7%) 48 h after treatment (HAT). Additionally, there was a significant shift in bacterial community structure 48 HAT, which coincided with an increase in the relative abundance of photosynthetic protists. These results indicate that hydrogen peroxide-based algaecides are an effective treatment method for cyanoHAB control and highlight their effects on non-target microorganisms (i.e., bacteria and protists).


Subject(s)
Harmful Algal Bloom , Hydrogen Peroxide , Lakes , Florida , Hydrogen Peroxide/pharmacology , Lakes/microbiology , Microcystis/drug effects , Microcystis/growth & development , Cyanobacteria/drug effects , Microbiota/drug effects , Microcystins , Phycocyanin/pharmacology , Chlorophyll A/metabolism
8.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38718148

ABSTRACT

Nutrient-induced blooms of the globally abundant freshwater toxic cyanobacterium Microcystis cause worldwide public and ecosystem health concerns. The response of Microcystis growth and toxin production to new and recycled nitrogen (N) inputs and the impact of heterotrophic bacteria in the Microcystis phycosphere on these processes are not well understood. Here, using microbiome transplant experiments, cyanotoxin analysis, and nanometer-scale stable isotope probing to measure N incorporation and exchange at single cell resolution, we monitored the growth, cyanotoxin production, and microbiome community structure of several Microcystis strains grown on amino acids or proteins as the sole N source. We demonstrate that the type of organic N available shaped the microbial community associated with Microcystis, and external organic N input led to decreased bacterial colonization of Microcystis colonies. Our data also suggest that certain Microcystis strains could directly uptake amino acids, but with lower rates than heterotrophic bacteria. Toxin analysis showed that biomass-specific microcystin production was not impacted by N source (i.e. nitrate, amino acids, or protein) but rather by total N availability. Single-cell isotope incorporation revealed that some bacterial communities competed with Microcystis for organic N, but other communities promoted increased N uptake by Microcystis, likely through ammonification or organic N modification. Our laboratory culture data suggest that organic N input could support Microcystis blooms and toxin production in nature, and Microcystis-associated microbial communities likely play critical roles in this process by influencing cyanobacterial succession through either decreasing (via competition) or increasing (via biotransformation) N availability, especially under inorganic N scarcity.


Subject(s)
Microbiota , Microcystins , Microcystis , Nitrogen , Microcystis/metabolism , Microcystis/growth & development , Microcystins/metabolism , Nitrogen/metabolism , Amino Acids/metabolism
9.
Bioresour Technol ; 402: 130806, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718906

ABSTRACT

The study investigated the inactivation of Microcystis aeruginosa using a combined approach involving thermally activated peroxyacetic acid (Heat/PAA) and thermally activated persulfate (Heat/PDS). The Heat/PDS algal inactivation process conforms to first-order reaction kinetics. Both hydroxyl radical (•OH) and sulfate radical (SO4-•) significantly impact the disruption of cell integrity, with SO4-• assuming a predominant role. PAA appears to activate organic radicals (RO•), hydroxyl (•OH), and a minimal amount of singlet oxygen (1O2). A thorough analysis underscores persulfate's superior ability to disrupt algal cell membranes. Additionally, SO4-• can convert small-molecule proteins into aromatic hydrocarbons, accelerating cell lysis. PAA can accelerate cell death by diffusing into the cell membrane and triggering advanced oxidative reactions within the cell. This study validates the effectiveness of the thermally activated persulfate process and the thermally activated peroxyacetic acid as strategies for algae inactivation.


Subject(s)
Microcystis , Oxidation-Reduction , Reactive Oxygen Species , Microcystis/drug effects , Microcystis/metabolism , Reactive Oxygen Species/metabolism , Sulfates/metabolism , Sulfates/pharmacology , Sulfates/chemistry , Peracetic Acid/pharmacology , Hot Temperature , Hydroxyl Radical/metabolism , Kinetics
10.
Microbiome ; 12(1): 88, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741135

ABSTRACT

BACKGROUND: During the bloom season, the colonial cyanobacterium Microcystis forms complex aggregates which include a diverse microbiome within an exopolymer matrix. Early research postulated a simple mutualism existing with bacteria benefitting from the rich source of fixed carbon and Microcystis receiving recycled nutrients. Researchers have since hypothesized that Microcystis aggregates represent a community of synergistic and interacting species, an interactome, each with unique metabolic capabilities that are critical to the growth, maintenance, and demise of Microcystis blooms. Research has also shown that aggregate-associated bacteria are taxonomically different from free-living bacteria in the surrounding water. Moreover, research has identified little overlap in functional potential between Microcystis and members of its microbiome, further supporting the interactome concept. However, we still lack verification of general interaction and know little about the taxa and metabolic pathways supporting nutrient and metabolite cycling within Microcystis aggregates. RESULTS: During a 7-month study of bacterial communities comparing free-living and aggregate-associated bacteria in Lake Taihu, China, we found that aerobic anoxygenic phototrophic (AAP) bacteria were significantly more abundant within Microcystis aggregates than in free-living samples, suggesting a possible functional role for AAP bacteria in overall aggregate community function. We then analyzed gene composition in 102 high-quality metagenome-assembled genomes (MAGs) of bloom-microbiome bacteria from 10 lakes spanning four continents, compared with 12 complete Microcystis genomes which revealed that microbiome bacteria and Microcystis possessed complementary biochemical pathways that could serve in C, N, S, and P cycling. Mapping published transcripts from Microcystis blooms onto a comprehensive AAP and non-AAP bacteria MAG database (226 MAGs) indicated that observed high levels of expression of genes involved in nutrient cycling pathways were in AAP bacteria. CONCLUSIONS: Our results provide strong corroboration of the hypothesized Microcystis interactome and the first evidence that AAP bacteria may play an important role in nutrient cycling within Microcystis aggregate microbiomes. Video Abstract.


Subject(s)
Lakes , Microbiota , Microcystis , Microcystis/genetics , Microcystis/metabolism , Microcystis/growth & development , China , Lakes/microbiology , Nutrients/metabolism , Phototrophic Processes , Aerobiosis , Eutrophication , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Bacteria/isolation & purification , Nitrogen/metabolism , Carbon/metabolism
11.
Ecotoxicol Environ Saf ; 277: 116375, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38677071

ABSTRACT

Eco-friendly reagents derived from plants represent a promising strategy to mitigate the occurrence of toxic cyanobacterial blooms. The use of an amentoflavone-containing Selaginella tamariscina extract (STE) markedly decreased the number of Microcystis aeruginosa cells, thus demonstrating significant anti-cyanobacterial activity. In particular, the Microcystis-killing fraction obtained from pulverized S. tamariscina using hot-water-based extraction at temperatures of 40 °C induced cell disruption in both axenic and xenic M. aeruginosa. Liquid chromatographic analysis was also conducted to measure the concentration of amentoflavone in the STE, thus supporting the potential M. aeruginosa-specific killing effects of STE. Bacterial community analysis revealed that STE treatment led to a reduction in the relative abundance of Microcystis species while also increasing the 16S rRNA gene copy number in both xenic M. aeruginosa NIBR18 and cyanobacterial bloom samples isolated from a freshwater environment. Subsequent testing on bacteria, cyanobacteria, and algae isolated from freshwater revealed that STE was not toxic for other taxa. Furthermore, ecotoxicology assessment involving Aliivibrio fischeri, Daphnia magna, and Danio rerio found that high STE doses immobilized D. magna but did not impact the other organisms, while there was no change in the water quality. Overall, due to its effective Microcystis-killing capability and low ecotoxicity, aqueous STE represents a promising practical alternative for the management of Microcystis blooms.


Subject(s)
Microcystis , Plant Extracts , Selaginellaceae , Microcystis/drug effects , Selaginellaceae/chemistry , Animals , Plant Extracts/pharmacology , Daphnia/drug effects , Harmful Algal Bloom , RNA, Ribosomal, 16S , Fresh Water/microbiology
12.
Aquat Toxicol ; 271: 106918, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38598945

ABSTRACT

Antibiotics are commonly found in the aquatic environment, which can affect microbial community compositions and activities, and even have potential adverse impacts on human and ecosystem health. The current understanding of the effects of antibiotics on microalgae growth and algal dissolved organic matter (DOM) remains indistinct. To understand the toxic effects of antibiotics on the microalgae, Microcystis aeruginosa was exposed to clarithromycin (CLA) in this study. Cell density determination, chlorophyll content determination, and organic spectrum analysis were conducted to show the effect of CLA exposure on the growth, photosynthetic activity, and organic metabolic processes of Microcystis aeruginosa. The findings revealed that the physiological status of algae could be significantly influenced by CLA exposure in aquatic environments. Specifically, exposure to 1 µg/L CLA stimulated the growth and photosynthetic activity of algal cells. Conversely, CLA above 10 µg/L led to the inhibition of algal cell growth and photosynthesis. Notably, the inhibitory effects intensified with the increasing concentration of CLA. The molecular weight of DOM produced by Microcystis aeruginosa increased when exposed to CLA. Under the exposure of 60 µg/L CLA, a large number of algal cells ruptured and died, and the intracellular organic matter was released into the algal liquid. This resulted in an increase in high molecular weight substances and soluble microbial-like products in the DOM. Exposure to 1 and 10 µg/L CLA stimulated Microcystis aeruginosa to produce more humic acid-like substances, which may be a defense mechanism against CLA. The results were useful for assessing the effects of antibiotic pollution on the stability of the microalgae population and endogenous DOM characteristics in aquatic ecosystems.


Subject(s)
Clarithromycin , Microcystis , Photosynthesis , Water Pollutants, Chemical , Microcystis/drug effects , Microcystis/growth & development , Water Pollutants, Chemical/toxicity , Photosynthesis/drug effects , Clarithromycin/toxicity , Clarithromycin/pharmacology , Microalgae/drug effects , Chlorophyll/metabolism , Anti-Bacterial Agents/toxicity
13.
Sci Total Environ ; 928: 172482, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38621529

ABSTRACT

Various environmental factors play a role in the formation and collapse of Microcystis blooms. This study investigates the impact of heavy rainfall on cyanobacterial abundance, microbial community composition, and functional dynamics in the Nakdong River, South Korea, during typical and exceptionally rainy years. The results reveal distinct responses to rainfall variations, particularly in cyanobacterial dominance and physicochemical characteristics. In 2020, characterized by unprecedented rainfall from mid-July to August, Microcystis blooms were interrupted significantly, exhibiting lower cell densities and decreased water temperature, compared to normal bloom patterns in 2019. Moreover, microbial community composition varied, with increases in Gammaproteobacteria and notably in genera of Limnohabitans and Fluviicola. These alterations in environmental conditions and bacterial community were similar to those of the post-bloom period in late September 2019. It shows that heavy rainfall during summer leads to changes in environmental factors, consequently causing shifts in bacterial communities akin to those observed during the autumn-specific post-bloom period in typical years. These changes also accompany shifts in bacterial functions, primarily involved in the degradation of organic matter such as amino acids, fatty acids, and terpenoids, which are assumed to have been released due to the significant collapse of cyanobacteria. Our results demonstrate that heavy rainfall in early summer induces changes in the environmental factors and subsequently microbial communities and their functions, similar to those of the post-bloom period in autumn, leading to the earlier breakdown of Microcystis blooms.


Subject(s)
Microbiota , Microcystis , Rain , Rivers , Microcystis/growth & development , Republic of Korea , Rivers/microbiology , Eutrophication , Environmental Monitoring , Seasons
14.
Sci Total Environ ; 928: 172500, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38631630

ABSTRACT

The physical and chemical properties of silver nanoparticles (AgNPs) have led to their increasing use in various fields such as medicine, food, and industry. Evidence has proven that AgNPs cause adverse effects in aquatic ecosystems, especially when the release of Ag is prolonged in time. Several studies have shown short-term adverse effects of AgNPs on freshwater phytoplankton, but few studies have analysed the impact of long-term exposures on these populations. Our studies were carried out to assess the effects of AgNPs on growth rate, photosynthesis activity, and reactive oxygen species (ROS) generation on the freshwater green algae Scenedesmus armatus and the cyanobacteria Microcystis aeruginosa, and additionally on microcystin (MC-LR) generation from these cyanobacteria. The tests were conducted both in single-species cultures and in phytoplanktonic communities exposed to 1 ngL-1 AgNPs for 28 days. The results showed that cell growth rate of both single-species cultures decreased significantly at the beginning and progressively reached control-like values at 28 days post-exposure. This effect was similar for the community-cultured cyanobacteria, but not for the green algae, which maintained a sustained decrease in growth rate. While gross photosynthesis (Pg) increased in both strains exposed in single cultures, dark respiration (R) and net photosynthesis (Pn) decreased in S. armatus and M. aeruginosa, respectively. These effects were mitigated when both strains were exposed under community culture conditions. Similarly, the ROS generation shown by both strains exposed in single-species cultures was mitigated when exposure occurred in community cultures. MC-LR production and release were significantly decreased in both single-species and community exposures. These results can supply helpful information to further investigate the potential risks of AgNPs and ultimately help policymakers make better-informed decisions about their utilization for environmental restoration.


Subject(s)
Fresh Water , Metal Nanoparticles , Microcystis , Phytoplankton , Scenedesmus , Silver , Water Pollutants, Chemical , Metal Nanoparticles/toxicity , Silver/toxicity , Phytoplankton/drug effects , Microcystis/drug effects , Scenedesmus/drug effects , Water Pollutants, Chemical/toxicity , Microcystins/toxicity , Photosynthesis/drug effects , Reactive Oxygen Species/metabolism
15.
Appl Microbiol Biotechnol ; 108(1): 309, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38661971

ABSTRACT

An alpha-proteobacterial strain JXJ CY 53 T was isolated from the cyanosphere of Microcystis sp. FACHB-905 (MF-905) collected from Lake Dianchi, China. JXJ CY 53 T was observed to be an aerobic, Gram-stain-negative, oval shaped, and mucus-secreting bacterium. It had C18:1ω7c and C16:0 as the major cellular fatty acids, Q-10 as the predominant ubiquinone, and sphingoglycolipid, diphosphatidylglycerol, phosphatidylcholine, and phosphatidylmethylethanolamine as the polar lipids. The G + C content of DNA was 65.85%. The bacterium had 16S rRNA gene sequence identities of 98.9% and 98.7% with Sphingomonas panni DSM 15761 T and Sphingomonas hankookensis KCTC 22579 T, respectively, while less than 97.4% identities with other members of the genus. Further taxonomic analysis indicated that JXJ CY 53 T represented a new member of Sphingomonas, and the species epithet was proposed as Sphingomonas lacusdianchii sp. nov. (type strain JXJ CY 53 T = KCTC 72813 T = CGMCC 1.17657 T). JXJ CY 53 T promoted the growth of MF-905 by providing bio-available phosphorus and nitrogen, plant hormones, vitamins, and carotenoids. It could modulate the relative abundances of nonculturable bacteria associated with MF-905 and influence the interactions of MF-905 and other bacteria isolated from the cyanobacterium, in addition to microcystin production characteristics. Meanwhile, MF-905 could provide JXJ CY 53 T dissolved organic carbon for growth, and control the growth of JXJ CY 53 T by secreting specific chemicals other than microcystins. Overall, these results suggest that the interactions between Microcystis and its attached bacteria are complex and dynamic, and may influence the growth characteristics of the cyanobacterium. This study provided new ideas to understand the interactions between Microcystis and its attached bacteria. KEY POINTS: • A novel bacterium (JXJCY 53 T) was isolated from the cyanosphere of Microcystis sp. FACHB-905 (MF-905) • JXJCY 53 T modulated the growth and microcystin production of MF-905 • MF-905 could control the attached bacteria by specific chemicals other than microcystins (MCs).


Subject(s)
Base Composition , DNA, Bacterial , Fatty Acids , Phylogeny , RNA, Ribosomal, 16S , Sphingomonas , Sphingomonas/metabolism , Sphingomonas/genetics , Sphingomonas/isolation & purification , Sphingomonas/classification , RNA, Ribosomal, 16S/genetics , China , Fatty Acids/metabolism , DNA, Bacterial/genetics , Phospholipids/analysis , Microcystis/genetics , Microcystis/metabolism , Microcystis/growth & development , Lakes/microbiology , Sequence Analysis, DNA , Bacterial Typing Techniques , Symbiosis , Ubiquinone
16.
J Microbiol ; 62(3): 249-260, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38587591

ABSTRACT

The proliferation of harmful cyanobacterial blooms dominated by Microcystis aeruginosa has become an increasingly serious problem in freshwater ecosystems due to climate change and eutrophication. Microcystis-blooms in freshwater generate compounds with unpleasant odors, reduce the levels of dissolved O2, and excrete microcystins into aquatic ecosystems, potentially harming various organisms, including humans. Various chemical and biological approaches have thus been developed to mitigate the impact of the blooms, though issues such as secondary pollution and high economic costs have not been adequately addressed. Red clays and H2O2 are conventional treatment methods that have been employed worldwide for the mitigation of the blooms, while novel approaches, such as the use of plant or microbial metabolites and antagonistic bacteria, have also recently been proposed. Many of these methods rely on the generation of reactive oxygen species, the inhibition of photosynthesis, and/or the disruption of cellular membranes as their mechanisms of action, which may also negatively impact other freshwater microbiota. Nevertheless, the underlying molecular mechanisms of anticyanobacterial chemicals and antagonistic bacteria remain unclear. This review thus discusses both conventional and innovative approaches for the management of M. aeruginosa in freshwater bodies.


Subject(s)
Fresh Water , Microcystis , Microcystis/growth & development , Microcystis/drug effects , Microcystis/metabolism , Fresh Water/microbiology , Harmful Algal Bloom , Eutrophication , Ecosystem , Hydrogen Peroxide/metabolism , Reactive Oxygen Species/metabolism , Microcystins/metabolism , Photosynthesis , Climate Change
17.
J Hazard Mater ; 471: 134352, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38677120

ABSTRACT

Microcystis typically forms colonies under natural conditions, which contributes to occurrence and prevalence of algal blooms. The colonies consist of Microcystis and associated bacteria (AB), embedded in extracellular polymeric substances (EPS). Previous studies indicate that AB can induce Microcystis to form colonies, however the efficiency is generally low and results in a uniform morphotype. In this study, by using filtrated natural water, several AB strains induced unicellular M. aeruginosa to form colonies resembling several Microcystis morphotypes. The mechanisms were investigated with Methylobacterium sp. Z5. Ca2+ was necessary for Z5 to induce Microcystis to form colonies, while dissolved organic matters (DOM) facilitated AB to agglomerate Microcystis to form large colonies. EPS of living Z5, mainly the aromatic protein components, played a key role in colony induction. Z5 initially aggregated Microcystis via the bridging effects of Ca2+ and DOM, followed by the induction of EPS synthesis and secretion in Microcystis. In this process, the colony forming mode shifted from cell adhesion to a combination of cell adhesion and cell division. Intriguingly, Z5 drove the genomic rearrangement of Microcystis by upregulating some transposase genes. This study unveiled a novel mechanism about Microcystis colony formation and identified a new driver of Microcystis genomic evolution.


Subject(s)
Calcium , Extracellular Polymeric Substance Matrix , Microcystis , Microcystis/metabolism , Calcium/metabolism , Extracellular Polymeric Substance Matrix/metabolism , Methylobacterium/metabolism , Methylobacterium/genetics
18.
J Hazard Mater ; 471: 134373, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38678710

ABSTRACT

The cyanobacterial response to pharmaceuticals is less frequently investigated compared to green algae. Pharmaceuticals can influence not only the growth rate of cyanobacteria culture, but can also cause changes at the cellular level. The effect of diclofenac (DCF) as one of the for cyanobacteria has been rarely tested, and DCF has never been applied with cellular biomarkers. The aim of this work was to test the response of two unicellular cyanobacteria (Synechocystis salina and Microcystis aeruginosa) toward DCF (100 mg L-1) under photoautotrophic growth conditions. Such endpoints were analyzed as cells number, DCF uptake, the change in concentrations of photosynthetic pigments, the production of toxins, and chlorophyll a in vivo fluorescence. It was noted that during a 96 h exposure, cell proliferation was not impacted. Nevertheless, a biochemical response was observed. The increased production of microcystin was noted for M. aeruginosa. Due to the negligible absorption of DCF into cells, it is possible that the biochemical changes are induced by an external signal. The application of non-standard biomarkers demonstrates the effect of DCF on microorganism metabolism without a corresponding effect on biomass. The high resistance of cyanobacteria to DCF and the stimulating effect of DCF on the secretion of toxins raise concerns for environment biodiversity.


Subject(s)
Biomarkers , Chlorophyll A , Diclofenac , Microcystis , Synechocystis , Microcystis/drug effects , Microcystis/metabolism , Microcystis/growth & development , Diclofenac/toxicity , Diclofenac/metabolism , Biomarkers/metabolism , Synechocystis/metabolism , Synechocystis/drug effects , Synechocystis/growth & development , Chlorophyll A/metabolism , Microcystins/metabolism , Chlorophyll/metabolism , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism , Photosynthesis/drug effects , Anti-Inflammatory Agents, Non-Steroidal/pharmacology
19.
J Photochem Photobiol B ; 255: 112924, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688041

ABSTRACT

Whether rapid oxygen isotopic exchange between bicarbonate and water occurs in photosynthesis is the key to determine the source of oxygen by classic 18O-labeled photosynthetic oxygen evolution experiments. Here we show that both Microcystis aeruginosa and Chlamydomonas reinhardtii utilize a significant proportion (>16%) of added bicarbonate as a carbon source for photosynthesis. However, oxygen isotopic signal in added bicarbonate cannot be traced in the oxygen in organic matter synthesized by these photosynthetic organisms. This contradicts the current photosynthesis theory, which states that photosynthetic oxygen evolution comes only from water, and oxygen in photosynthetic organic matter comes only from carbon dioxide. We conclude that the photosynthetic organisms undergo rapid exchange of oxygen isotope between bicarbonate and water during photosynthesis. At the same time, this study also provides isotopic evidence for a new mechanism that half of the oxygen in photosynthetic oxygen evolution comes from bicarbonate photolysis and half comes from water photolysis, which provides a new explanation for the bicarbonate effect, and suggests that the Kok-Joliot cycle of photosynthetic oxygen evolution, must be modified to include a molecule of bicarbonate in addition to one molecule of water which in turn must be incorporated into the cycle instead of two water molecules. Furthermore, this study provides a theoretical basis for constructing a newer artificial photosynthetic reactor coupling light reactions with the dark reactions.


Subject(s)
Bicarbonates , Chlamydomonas reinhardtii , Oxygen Isotopes , Photosynthesis , Water , Bicarbonates/chemistry , Bicarbonates/metabolism , Water/chemistry , Water/metabolism , Oxygen Isotopes/chemistry , Chlamydomonas reinhardtii/metabolism , Microcystis/metabolism , Oxygen/metabolism , Oxygen/chemistry , Carbon Dioxide/metabolism , Carbon Dioxide/chemistry
20.
Chemosphere ; 358: 142104, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38653399

ABSTRACT

Uptake of methylmercury (MeHg), a potent neurotoxin, by phytoplankton is a major concern due to its role as the primary pathway for MeHg entry into aquatic food webs, thereby posing a significant risk to human health. While it is widely believed that the MeHg uptake by plankton is negatively correlated with the concentrations of dissolved organic matter (DOM) in the water, ongoing debates continue regarding the specific components of DOM that exerts the dominant influence on this process. In this study, we employed a widely-used resin fractionation approach to separate and classify DOM derived from algae (AOM) and natural rivers (NOM) into distinct components: strongly hydrophobic, weakly hydrophobic, and hydrophilic fractions. We conduct a comparative analysis of different DOM components using a combination of spectroscopy and mass spectrometry techniques, aiming to identify their impact on MeHg uptake by Microcystis elabens, a prevalent alga in freshwater environments. We found that the hydrophobic components had exhibited more pronounced spectral characteristics associated with the protein structures while protein-like compounds between hydrophobic and hydrophilic components displayed significant variations in both distributions and the values of m/z (mass-to-charge ratio) of the molecules. Regardless of DOM sources, the low-proportion hydrophobic components usually dominated inhibition of MeHg uptake by Microcystis elabens. Results inferred from the correlation analysis suggest that the uptake of MeHg by the phytoplankton was most strongly and negatively correlated with the presence of protein-like components. Our findings underscore the importance of considering the diverse impacts of different DOM fractions on inhibition of phytoplankton MeHg uptake. This information should be considered in future assessments and modeling endeavors aimed at understanding and predicting risks associated with aquatic Hg contamination.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Methylmercury Compounds , Phytoplankton , Water Pollutants, Chemical , Methylmercury Compounds/chemistry , Methylmercury Compounds/metabolism , Phytoplankton/drug effects , Phytoplankton/metabolism , Water Pollutants, Chemical/metabolism , Microcystis/drug effects , Microcystis/metabolism , Rivers/chemistry , Food Chain
SELECTION OF CITATIONS
SEARCH DETAIL
...