Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 414
Filter
1.
Microbiome ; 12(1): 88, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741135

ABSTRACT

BACKGROUND: During the bloom season, the colonial cyanobacterium Microcystis forms complex aggregates which include a diverse microbiome within an exopolymer matrix. Early research postulated a simple mutualism existing with bacteria benefitting from the rich source of fixed carbon and Microcystis receiving recycled nutrients. Researchers have since hypothesized that Microcystis aggregates represent a community of synergistic and interacting species, an interactome, each with unique metabolic capabilities that are critical to the growth, maintenance, and demise of Microcystis blooms. Research has also shown that aggregate-associated bacteria are taxonomically different from free-living bacteria in the surrounding water. Moreover, research has identified little overlap in functional potential between Microcystis and members of its microbiome, further supporting the interactome concept. However, we still lack verification of general interaction and know little about the taxa and metabolic pathways supporting nutrient and metabolite cycling within Microcystis aggregates. RESULTS: During a 7-month study of bacterial communities comparing free-living and aggregate-associated bacteria in Lake Taihu, China, we found that aerobic anoxygenic phototrophic (AAP) bacteria were significantly more abundant within Microcystis aggregates than in free-living samples, suggesting a possible functional role for AAP bacteria in overall aggregate community function. We then analyzed gene composition in 102 high-quality metagenome-assembled genomes (MAGs) of bloom-microbiome bacteria from 10 lakes spanning four continents, compared with 12 complete Microcystis genomes which revealed that microbiome bacteria and Microcystis possessed complementary biochemical pathways that could serve in C, N, S, and P cycling. Mapping published transcripts from Microcystis blooms onto a comprehensive AAP and non-AAP bacteria MAG database (226 MAGs) indicated that observed high levels of expression of genes involved in nutrient cycling pathways were in AAP bacteria. CONCLUSIONS: Our results provide strong corroboration of the hypothesized Microcystis interactome and the first evidence that AAP bacteria may play an important role in nutrient cycling within Microcystis aggregate microbiomes. Video Abstract.


Subject(s)
Lakes , Microbiota , Microcystis , Microcystis/genetics , Microcystis/metabolism , Microcystis/growth & development , China , Lakes/microbiology , Nutrients/metabolism , Phototrophic Processes , Aerobiosis , Eutrophication , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Bacteria/isolation & purification , Nitrogen/metabolism , Carbon/metabolism
2.
Microbiol Spectr ; 12(6): e0029824, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38695606

ABSTRACT

The cyanosiphophage Mic1 specifically infects the bloom-forming Microcystis aeruginosa FACHB 1339 from Lake Chaohu, China. Previous genomic analysis showed that its 92,627 bp double-stranded DNA genome consists of 98 putative open reading frames, 63% of which are of unknown function. Here, we investigated the transcriptome dynamics of Mic1 and its host using RNA sequencing. In the early, middle, and late phases of the 10 h lytic cycle, the Mic1 genes are sequentially expressed and could be further temporally grouped into two distinct clusters in each phase. Notably, six early genes, including gp49 that encodes a TnpB-like transposase, immediately reach the highest transcriptional level in half an hour, representing a pioneer cluster that rapidly regulates and redirects host metabolism toward the phage. An in-depth analysis of the host transcriptomic profile in response to Mic1 infection revealed significant upregulation of a polyketide synthase pathway and a type III-B CRISPR system, accompanied by moderate downregulation of the photosynthesis and key metabolism pathways. The constant increase of phage transcripts and relatively low replacement rate over the host transcripts indicated that Mic1 utilizes a unique strategy to gradually take over a small portion of host metabolism pathways after infection. In addition, genomic analysis of a less-infective Mic1 and a Mic1-resistant host strain further confirmed their dynamic interplay and coevolution via the frequent horizontal gene transfer. These findings provide insights into the mutual benefit and symbiosis of the highly polymorphic cyanobacteria M. aeruginosa and cyanophages. IMPORTANCE: The highly polymorphic Microcystis aeruginosa is one of the predominant bloom-forming cyanobacteria in eutrophic freshwater bodies and is infected by diverse and abundant cyanophages. The presence of a large number of defense systems in M. aeruginosa genome suggests a dynamic interplay and coevolution with the cyanophages. In this study, we investigated the temporal gene expression pattern of Mic1 after infection and the corresponding transcriptional responses of its host. Moreover, the identification of a less-infective Mic1 and a Mic1-resistant host strain provided the evolved genes in the phage-host coevolution during the multiple-generation cultivation in the laboratory. Our findings enrich the knowledge on the interplay and coevolution of M. aeruginosa and its cyanophages and lay the foundation for the future application of cyanophage as a potential eco-friendly and bio-safe agent in controlling the succession of harmful cyanobacterial blooms.


Subject(s)
Bacteriophages , Microcystis , Microcystis/virology , Microcystis/genetics , Microcystis/metabolism , Bacteriophages/genetics , Bacteriophages/physiology , China , Transcriptome , Lakes/microbiology , Lakes/virology , Genome, Viral/genetics , Evolution, Molecular
3.
J Hazard Mater ; 473: 134678, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38781856

ABSTRACT

Increasing antivirals in surface water caused by their excessive consumption pose serious threats to aquatic organisms. Our recent research found that the input of antiviral drug arbidol to algal bloom water can induce acute toxicity to the growth and metabolism of Microcystis aeruginosa, resulting in growth inhibition, as well as decrease in chlorophyll and ATP contents. However, the toxic mechanisms involved remained obscure, which were further investigated through transcriptomic analysis in this study. The results indicated that 885-1248 genes in algae were differentially expressed after exposure to 0.01-10.0 mg/L of arbidol, with the majority being down-regulated. Analysis of commonly down-regulated genes found that the cellular response to oxidative stress and damaged DNA bonding were affected, implying that the stress defense system and DNA repair function of algae might be damaged. The down-regulation of genes in porphyrin metabolism, photosynthesis, carbon fixation, glycolysis, tricarboxylic acid cycle, and oxidative phosphorylation might inhibit chlorophyll synthesis, photosynthesis, and ATP supply, thereby hindering the growth and metabolism of algae. Moreover, the down-regulation of genes related to nucleotide metabolism and DNA replication might influence the reproduction of algae. These findings provided effective strategies to elucidate toxic mechanisms of contaminants on algae in algal bloom water.


Subject(s)
Antiviral Agents , Indoles , Microalgae , Microcystis , Transcriptome , Water Pollutants, Chemical , Indoles/toxicity , Antiviral Agents/toxicity , Antiviral Agents/pharmacology , Transcriptome/drug effects , Water Pollutants, Chemical/toxicity , Microalgae/drug effects , Microalgae/genetics , Microalgae/metabolism , Microalgae/growth & development , Microcystis/drug effects , Microcystis/genetics , Microcystis/metabolism , Microcystis/growth & development , Eutrophication/drug effects , Chlorophyll/metabolism
4.
Methods Mol Biol ; 2788: 397-410, 2024.
Article in English | MEDLINE | ID: mdl-38656527

ABSTRACT

Early monitoring of Microcystis, a cyanobacterium that produces microcystin, is paramount in order to confirm the presence of Microcystis spp. Both phenotypic and genotypic methods have been used. The phenotypic methods provide the presence of the microcystis but do not confirm its species type and toxin produced. Additionally, phenotypic methods cannot differentiate toxigenic from non-toxigenic Microcystis. Therefore, the current protocol also describes genetic methods based on PCR to detect toxigenic Microcystis spp. based on microcystin synthetase E (mcy E) gene and 16-23S RNA genes for species-specific identification, which can effectively comprehend distinct lineages and discrimination of potential complexity of microcystin populations. The presence of these microcystin toxins in blood, in most cases, indicates contamination of drinking water by cyanobacteria. The methods presented herein are used to identify microcystin toxins in drinking water and blood.


Subject(s)
Cyanobacteria , Lakes , Microcystins , Lakes/microbiology , Microcystins/genetics , Microcystins/analysis , Cyanobacteria/genetics , Cyanobacteria/isolation & purification , Phenotype , Genotype , Polymerase Chain Reaction/methods , Water Microbiology , Microcystis/genetics , Microcystis/isolation & purification , Microcystis/classification , Genotyping Techniques/methods
5.
Appl Microbiol Biotechnol ; 108(1): 309, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38661971

ABSTRACT

An alpha-proteobacterial strain JXJ CY 53 T was isolated from the cyanosphere of Microcystis sp. FACHB-905 (MF-905) collected from Lake Dianchi, China. JXJ CY 53 T was observed to be an aerobic, Gram-stain-negative, oval shaped, and mucus-secreting bacterium. It had C18:1ω7c and C16:0 as the major cellular fatty acids, Q-10 as the predominant ubiquinone, and sphingoglycolipid, diphosphatidylglycerol, phosphatidylcholine, and phosphatidylmethylethanolamine as the polar lipids. The G + C content of DNA was 65.85%. The bacterium had 16S rRNA gene sequence identities of 98.9% and 98.7% with Sphingomonas panni DSM 15761 T and Sphingomonas hankookensis KCTC 22579 T, respectively, while less than 97.4% identities with other members of the genus. Further taxonomic analysis indicated that JXJ CY 53 T represented a new member of Sphingomonas, and the species epithet was proposed as Sphingomonas lacusdianchii sp. nov. (type strain JXJ CY 53 T = KCTC 72813 T = CGMCC 1.17657 T). JXJ CY 53 T promoted the growth of MF-905 by providing bio-available phosphorus and nitrogen, plant hormones, vitamins, and carotenoids. It could modulate the relative abundances of nonculturable bacteria associated with MF-905 and influence the interactions of MF-905 and other bacteria isolated from the cyanobacterium, in addition to microcystin production characteristics. Meanwhile, MF-905 could provide JXJ CY 53 T dissolved organic carbon for growth, and control the growth of JXJ CY 53 T by secreting specific chemicals other than microcystins. Overall, these results suggest that the interactions between Microcystis and its attached bacteria are complex and dynamic, and may influence the growth characteristics of the cyanobacterium. This study provided new ideas to understand the interactions between Microcystis and its attached bacteria. KEY POINTS: • A novel bacterium (JXJCY 53 T) was isolated from the cyanosphere of Microcystis sp. FACHB-905 (MF-905) • JXJCY 53 T modulated the growth and microcystin production of MF-905 • MF-905 could control the attached bacteria by specific chemicals other than microcystins (MCs).


Subject(s)
Base Composition , DNA, Bacterial , Fatty Acids , Phylogeny , RNA, Ribosomal, 16S , Sphingomonas , Sphingomonas/metabolism , Sphingomonas/genetics , Sphingomonas/isolation & purification , Sphingomonas/classification , RNA, Ribosomal, 16S/genetics , China , Fatty Acids/metabolism , DNA, Bacterial/genetics , Phospholipids/analysis , Microcystis/genetics , Microcystis/metabolism , Microcystis/growth & development , Lakes/microbiology , Sequence Analysis, DNA , Bacterial Typing Techniques , Symbiosis , Ubiquinone
6.
Environ Pollut ; 348: 123812, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38527584

ABSTRACT

Hydrogen peroxide is a reactive oxygen species (ROS) naturally occurring at low levels in aquatic environments and production varies widely across different ecosystems. Oxygenic photosynthesis generates hydrogen peroxide as a byproduct, of which some portion can be released to ambient water. However, few studies have examined hydrogen peroxide dynamics in relation to cyanobacterial harmful algal blooms (cHABs). A year-long investigation of algal succession and hydrogen peroxide dynamics was conducted at the Caloosahatchee River, Florida, USA. We aimed to identify potential biological mechanisms responsible for elevated hydrogen peroxide production during cHAB events through the exploration of the freshwater microbial metatranscriptome. Hydrogen peroxide concentrations were elevated from February to September of 2021 when cyanobacteria were active and abundant. We observed one Microcystis cHAB event in spring and one in winter. Both had distinct nutrient uptake and cyanotoxin gene expression patterns. While meaningful levels of microcystin were only detected during periods of elevated hydrogen peroxide, cyanopeptolin was by far the most expressed cyanotoxin during the spring bloom when hydrogen peroxide was at its yearly maxima. Gene expressions of five microbial enzymes (Rubisco, superoxide dismutase, cytochrome b559, pyruvate oxidase, and NADH dehydrogenase) positively correlated to hydrogen peroxide concentrations. Additionally, there was higher nitrogen-fixing gene (nifDKH) expression by filamentous cyanobacteria after the spring bloom but no secondary bloom formation occurred. Overall, elevated environmental hydrogen peroxide concentrations were linked to cyanobacterial dominance and greater expression of specific enzymes in the photosynthesis of cyanobacteria. This implicates cyanobacterial photosynthesis and growth results in increased hydrogen peroxide generation as reflected in measured environmental concentrations.


Subject(s)
Cyanobacteria , Microcystis , Hydrogen Peroxide/metabolism , Ecosystem , Cyanobacteria/metabolism , Microcystis/genetics , Harmful Algal Bloom , Lakes
7.
FEMS Microbiol Ecol ; 100(4)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38499447

ABSTRACT

Species of the Microcystis genus are the most common bloom-forming toxic cyanobacteria worldwide. They belong to a clade of unicellular cyanobacteria whose ability to reach high biomasses during blooms is linked to the formation of colonies. Colonial lifestyle provides several advantages under stressing conditions of light intensity, ultraviolet light, toxic substances and grazing. The progression from a single-celled organism to multicellularity in Microcystis has usually been interpreted as individual phenotypic responses of the cyanobacterial cells to the environment. Here, we synthesize current knowledge about Microcystis colonial lifestyle and its role in the organism ecology. We then briefly review the available information on Microcystis microbiome and propose that changes leading from single cells to colonies are the consequence of specific and tightly regulated signals between the cyanobacterium and its microbiome through a biofilm-like mechanism. The resulting colony is a multi-specific community of interdependent microorganisms.


Subject(s)
Cyanobacteria , Microbiota , Microcystis , Microcystis/genetics , Biomass , Ecology
8.
Harmful Algae ; 133: 102587, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38485437

ABSTRACT

Hydrogen peroxide has gained popularity as an environmentally friendly treatment for cyanobacterial harmful algal blooms (cHABs) that takes advantage of oxidative stress sensitivity in cyanobacteria at controlled concentrations. Higher concentrations of hydrogen peroxide treatments may seem appealing for more severe cHABs but there is currently little understanding of the environmental impacts of this approach. Of specific concern is the associated microbial community, which may play key roles in the succession/recovery process post-treatment. To better understand impacts of a high concentration treatment on non-target microbial communities, we applied a hydrogen peroxide spray equating to a total volume concentration of 14 mM (473 mg/L, 0.04%) to 250 L mesocosms containing Microcystis bloom biomass, monitoring treatment and control mesocosms for 4 days. Cyanobacteria dominated control mesocosms throughout the experiment while treatment mesocosms experienced a 99% reduction, as determined by bacterial amplicon sequencing, and a 92% reduction in bacterial cell density within 1 day post-treatment. Only the bacterial community exhibited signs of regrowth, with a fold change of 9.2 bacterial cell density from day 1 to day 2. Recovery consisted of succession by Planctomycetota (47%) and Gammaproteobacteria (17%), which were likely resilient due to passive cell component compartmentalization and rapid upregulation of dnaK and groEL oxidative stress genes, respectively. The altered microbiome retained beneficial functionality of microcystin degradation through a currently recognized but unidentified pathway in Gammaproteobacteria, resulting in a 70% reduction coinciding with bacterial regrowth. There was also an 81% reduction of both total nitrogen and phosphorus, as compared to 91 and 93% in the control, respectively, due to high expressions of genes related to nitrogen (argH, carB, glts, glnA) and phosphorus (pntAB, phoB, pstSCB) cycling. Overall, we found a portion of the bacterial community was resilient to the high-concentration hydrogen peroxide treatment, resulting in Planctomycetota and Gammaproteobacteria dominance. This high-concentration treatment may be suitable to rapidly end cHABs which have already negatively impacted the aquatic environment rather than allow them to persist.


Subject(s)
Cyanobacteria , Microcystis , Microcystis/genetics , Hydrogen Peroxide/metabolism , Cyanobacteria/genetics , Nitrogen/metabolism , Phosphorus/metabolism
9.
Environ Sci Technol ; 58(11): 5024-5034, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38454313

ABSTRACT

Detecting cyanobacteria in environments is an important concern due to their crucial roles in ecosystems, and they can form blooms with the potential to harm humans and nonhuman entities. However, the most widely used methods for high-throughput detection of environmental cyanobacteria, such as 16S rRNA sequencing, typically provide above-species-level resolution, thereby disregarding intraspecific variation. To address this, we developed a novel DNA microarray tool, termed the CyanoStrainChip, that enables strain-level comprehensive profiling of environmental cyanobacteria. The CyanoStrainChip was designed to target 1277 strains; nearly all major groups of cyanobacteria are included by implementing 43,666 genome-wide, strain-specific probes. It demonstrated strong specificity by in vitro mock community experiments. The high correlation (Pearson's R > 0.97) between probe fluorescence intensities and the corresponding DNA amounts (ranging from 1-100 ng) indicated excellent quantitative capability. Consistent cyanobacterial profiles of field samples were observed by both the CyanoStrainChip and next-generation sequencing methods. Furthermore, CyanoStrainChip analysis of surface water samples in Lake Chaohu uncovered a high intraspecific variation of abundance change within the genus Microcystis between different severity levels of cyanobacterial blooms, highlighting two toxic Microcystis strains that are of critical concern for Lake Chaohu harmful blooms suppression. Overall, these results suggest a potential for CyanoStrainChip as a valuable tool for cyanobacterial ecological research and harmful bloom monitoring to supplement existing techniques.


Subject(s)
Cyanobacteria , Microcystis , Humans , Oligonucleotide Array Sequence Analysis , RNA, Ribosomal, 16S/genetics , Ecosystem , Harmful Algal Bloom , Cyanobacteria/genetics , Lakes/microbiology , Microcystis/genetics
10.
J Environ Manage ; 354: 120128, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38382427

ABSTRACT

The global increase in harmful algal blooms (HABs) has become a growing concern over the years, and New York State (NYS) is no exception. The Finger Lakes region in NYS has been identified as a hotspot for HABs, with Cayuga Lake having the highest number of blooms reported. The Cayuga Lake HABs Monitoring Program has been tracking cHABs (dominant bloom taxa, chlorophyll A, and microcystin levels) since 2018. However, limited research has been conducted on the microbiome of HABs in this region. In this study, the microbiome of HABs in the Cayuga Lake was surveyed and compared with non-HAB baseline samples. Using 16S rDNA community analysis, common bloom-forming cyanobacteria, were identified, with Microcystis being the dominant taxa in high toxin blooms. Further, this study evaluated the ability of Microcystis mcyA qPCR to detect elevated levels of potential toxigenic Microcystis in water samples using both benchtop and handheld qPCR devices. The results showed good performance of the qPCR assay as a screening for high toxin versus low/no toxin blooms. Additionally, the handheld qPCR device holds potential for in-field rapid (<1 h) screenings for high toxin blooms. This study provides insights into the microbiome of HABs in Cayuga Lake and offers a potential tool for rapid screening of high toxin blooms.


Subject(s)
Microbiota , Microcystis , Lakes/microbiology , Chlorophyll A , Harmful Algal Bloom , New York , Microcystis/genetics , Microcystins/genetics
11.
Harmful Algae ; 132: 102580, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38331539

ABSTRACT

Microcystis-dominated cyanobacterial harmful algal blooms (cyanoHABs) have a global impact on freshwater environments, affecting both wildlife and human health. Microcystis diversity and function in field samples and laboratory cultures can be determined by sequencing whole genomes of cultured isolates or natural populations, but these methods remain computationally and financially expensive. Amplicon sequencing of marker genes is a lower cost and higher throughput alternative to characterize strain composition and diversity in mixed samples. However, the selection of appropriate marker gene region(s) and primers requires prior understanding of the relationship between single gene genotype, whole genome content, and phenotype. To identify phylogenetic markers of Microcystis strain diversity, we compared phylogenetic trees built from each of 2,351 individual core genes to an established phylogeny and assessed the ability of these core genes to predict whole genome content and bioactive compound genotypes. We identified single-copy core genes better able to resolve Microcystis phylogenies than previously identified marker genes. We developed primers suitable for current Illumina-based amplicon sequencing with near-complete coverage of available Microcystis genomes and demonstrate that they outperform existing options for assessing Microcystis strain composition. Results showed that genetic markers can be used to infer Microcystis gene content and phenotypes such as potential production of bioactive compounds , although marker performance varies by bioactive compound gene and sequence similarity. Finally, we demonstrate that these markers can be used to characterize the Microcystis strain composition of laboratory or field samples like those collected for surveillance and modeling of Microcystis-dominated cyanobacterial harmful algal blooms.


Subject(s)
Cyanobacteria , Microcystis , Humans , Microcystis/genetics , Phylogeny , Cyanobacteria/genetics , Harmful Algal Bloom , Genomics
12.
J Hazard Mater ; 467: 133596, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38325097

ABSTRACT

Short-chain Perfluorinated compounds (PFCs), used as substitutes for highly toxic long-chain PFCs, are increasingly entering the aquatic environment. However, the toxicity of short-chain PFCs in the environment is still controversial. This study investigated the effects of short-chain perfluorobutanesulfonic acid (PFBS) at different concentrations (2.5, 6, 14.4, 36, and 90 mg/L) on M. aeruginosa growth under 12-day exposure and explored the molecular mechanism of toxicity using transcriptomics. The results showed that M. aeruginosa exhibited hormetic effects after exposure to PFBS. Low PFBS concentrations stimulated algal growth, whereas high PFBS concentrations inhibited it, and this inhibitory effect became progressively more pronounced with increasing PFBS exposure concentrations. Transcriptomics showed that PFBS promoted the pathways of photosynthesis, glycolysis, energy metabolism and peptidoglycan synthesis, providing the energy required for cell growth and maintaining cellular morphology. PFBS, on the other hand, caused growth inhibition in algae mainly through oxidative stress, streptomycin synthesis, and genetic damage. Our findings provide new insights into the toxicity and underlying mechanism of short-chain PFCs on algae and inform the understanding of the hormetic effect of short-chain PFCs, which are crucial for assessing their ecological risks in aquatic environments.


Subject(s)
Fluorocarbons , Microcystis , Sulfonic Acids , Microcystis/genetics , Cell Cycle , Cell Proliferation , Energy Metabolism
13.
Antonie Van Leeuwenhoek ; 117(1): 12, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38170242

ABSTRACT

A novel alphaproteobacterial strain JXJ CY 41T was isolated from a culture mass of Microcystis, collected from Lake Dianchi, south-west, China. Strain JXJ CY 41T was gram-strain-negative, aerobic, motile, with rod-shaped cells (0.4-1.0 × 1.7-3.5 µm). It was positive for catalase and starch hydrolysis, negative for oxidase and hydrolysis of Tweens (20, 40, and 80). Growth occurred at 10-44 °C, pH 5.0-10.0, and 0-5.0% (w/v) NaCl. Major fatty acids included C16:0 (28.1%), 11-methyl C18:1 ω7c (36.7%) and C18:1 ω7c (20.8%). Q10 was the sole ubiquinone. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, glycolipid, and an unidentified lipid. The DNA G + C content was 63.1%. Its 16S rRNA gene sequence showed high similarities with Devosia oryziradicis G19T (99.5%; not validly published), D. yakushimensis Yak96BT (98.3%) and D. ginsengisoli Gsoil 520T (98.1%), and less than 98.1% similarities with other members of the genus Devosia. The digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values between strain JXJ CY 41T and its 5 closest similar strains were 19.9-24.1% and 75.7-80.5%, respectively. Based on the data above, strain JXJ CY 41T was identified as a novel species of the genus Devosia, for which the epithet Devosia lacusdianchii sp. nov. was proposed. The type strain is JXJ CY 41T (= KCTC 72812T = CGMCC 1.17502T). Strain JXJ CY 41T exhibited different interactions with Microcystis aeruginosa FACHB-905 (Maf) under different conditions, and Maf could control the bacterial cellular density by secreting unknown specific chemical compounds according to its nutritional requirements.


Subject(s)
Microcystis , Adolescent , Child , Humans , Microcystis/genetics , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Phylogeny , Fatty Acids/chemistry , Sequence Analysis, DNA , Bacterial Typing Techniques , Phospholipids/chemistry
14.
Appl Microbiol Biotechnol ; 108(1): 42, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38183480

ABSTRACT

The massive proliferation of Microcystis threatens freshwater ecosystems and degrades water quality globally. Understanding the mechanisms that contribute to Microcystis growth is crucial for managing Microcystis blooms. The lifestyles of bacteria can be classified generally into two groups: particle-attached (PA; > 3 µm) and free-living (FL; 0.2-3.0 µm). However, little is known about the response of PA and FL bacteria to Microcystis blooms. Using 16S rRNA gene high-throughput sequencing, we investigated the stability, assembly process, and co-occurrence patterns of PA and FL bacterial communities during distinct bloom stages. PA bacteria were phylogenetically different from their FL counterparts. Microcystis blooms substantially influenced bacterial communities. The time decay relationship model revealed that Microcystis blooms might increase the stability of both PA and FL bacterial communities. A contrasting community assembly mechanism was observed between the PA and FL bacterial communities. Throughout Microcystis blooms, homogeneous selection was the major assembly process that impacted the PA bacterial community, whereas drift explained much of the turnover of the FL bacterial community. Both PA and FL bacterial communities could be separated into modules related to different phases of Microcystis blooms. Microcystis blooms altered the assembly process of PA and FL bacterial communities. PA bacterial community appeared to be more responsive to Microcystis blooms than FL bacteria. Decomposition of Microcystis blooms may enhance cooperation among bacteria. Our findings highlight the importance of studying bacterial lifestyles to understand their functions in regulating Microcystis blooms. KEY POINTS: • Microcystis blooms alter the assembly process of PA and FL bacterial communities • Microcystis blooms increase the stability of both PA and FL bacterial communities • PA bacteria seem to be more responsive to Microcystis blooms than FL bacteria.


Subject(s)
Ecosystem , Microcystis , Microcystis/genetics , RNA, Ribosomal, 16S/genetics , Fresh Water , High-Throughput Nucleotide Sequencing
15.
Environ Sci Pollut Res Int ; 31(2): 2930-2943, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38079038

ABSTRACT

Microcystis aeruginosa (M. aeruginosa) causes massive blooms in eutrophic freshwater and releases microcystin. Poyang Lake is the largest freshwater lake in China and has kept a mid-nutrient level in recent years. However, there is little research on microcystin production in Poyang Lake. In this study, water and sediment samples from ten sampling sites in Poyang Lake were collected from May to December in 2020, and from January to April in 2021 respectively. Microcystis genes (mcyA, mcyB, 16 s rDNA) were quantified by real-time fluorescence quantitative PCR analysis, and then the spatial and temporal variation of mcy genes, physicochemical factors, and bacterial population structure in the lake was analyzed. The relationship between the abundance of mcy genes and physicochemical factors in water column was also revealed. Results indicated that the microcystin-producing genes mcyA and mcyB showed significant differences in spatial and temporal levels as well, which is closely related to the physicochemical factors especially the water temperature (p < 0.05) and the nitrogen content (p < 0.05). The abundance of mcy genes in the sediment in December affected the abundance of mcy genes in the water column in the next year, while the toxic Microcystis would accumulate in the sediment. In addition to the toxic Microcystis, we also found a large number of non-toxic Microcystis in the water column and sediment, and the ratio of toxic to non-toxic species can also affect the toxicity production of M. aeruginosa. Overall, the results showed that M. aeruginosa toxin-producing genes in Poyang Lake distributed spatially and temporally which related to the physicochemical factors of Poyang Lake.


Subject(s)
Microcystis , Microcystis/genetics , Lakes/microbiology , Microcystins , Real-Time Polymerase Chain Reaction , Water
16.
J Phycol ; 60(1): 152-169, 2024 02.
Article in English | MEDLINE | ID: mdl-38073162

ABSTRACT

Superior antagonistic activity against axenic Microcystis aeruginosa PCC7806 was observed with Paucibacter sp. B51 isolated from cyanobacterial bloom samples among 43 tested freshwater bacterial species. Complete genome sequencing, analyzing average nucleotide identity and digital DNA-DNA hybridization, designated the B51 strain as Paucibacter aquatile. Electron and fluorescence microscopic image analyses revealed the presence of the B51 strain in the vicinity of M. aeruginosa cells, which might provoke direct inhibition of the photosynthetic activity of the PCC7806 cells, leading to perturbation of cellular metabolisms and consequent cell death. Our speculation was supported by the findings that growth failure of the PCC7806 cells led to low pH conditions with fewer chlorophylls and down-regulation of photosystem genes (e.g., psbD and psaB) during their 48-h co-culture condition. Interestingly, the concentrated ethyl acetate extracts obtained from B51-grown supernatant exhibited a growth-inhibitory effect on PCC7806. The physical separation of both strains by a filter system led to no inhibitory activity of the B51 cells, suggesting that contact-mediated anti-cyanobacterial compounds might also be responsible for hampering the growth of the PCC7806 cells. Bioinformatic tools identified 12 gene clusters that possibly produce secondary metabolites, including a class II lasso peptide in the B51 genome. Further chemical analysis demonstrated anti-cyanobacterial activity from fractionated samples having a rubrivinodin-like lasso peptide, named paucinodin. Taken together, both contact-mediated inhibition of photosynthesis and the lasso peptide secretion of the B51 strain are responsible for the anti-cyanobacterial activity of P. aquatile B51.


Subject(s)
Burkholderiales , Cyanobacteria , Microcystis , Microcystis/genetics , Cyanobacteria/genetics , Peptides/pharmacology , DNA/pharmacology
17.
Sci Total Environ ; 912: 169249, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38081424

ABSTRACT

Harmful algal blooms (HABs) are a threat to freshwater systems over the world due to the production of hepatotoxins like microcystin (MC), and nuisance taste and odour (T&O) compounds like 2-methylisoborneol (MIB). While MCs are known to cause detrimental effects to both water quality and human health, MIB is only reported to cause aesthetical problems. In this study, we investigated a tropical, urban lake that was experiencing persistent MC and MIB events. Although it was dominated by Microcystis blooms, analysis revealed that the toxigenic Microcystis were not the only species driving the MC concentrations. Additionally, there was also a lack of causative species for the MIB events. Through isolation, we have identified three toxigenic Microcystis found to produce four different variants of MCs, and two novel non-toxigenic Microcystis that were capable of producing MIB. The ability to produce MIB had never been previously reported for this species. Compared to other major producers such as Planktothricoides sp. and Streptomyces sp., the MIB synthase genes of our Microcystis sp. strains were partial, illustrating the possibility of unique synthesis pathways. The Microcystis sp. strains were found to produce about 2.77-5.22 fg MIB cell-1, with a majority of the contents (70-80 %) existing in the extracellular phase. Correlation analysis of field study indicated that phosphorus limitation may have an indirect effect on non-toxigenic Microcystis abundance and proportion by influencing the toxigenic genotype, suggesting that current measures to control HABs may favour the proliferation of the non-toxigenic Microcystis. The potential for Microcystis sp. to produce MIB through unique synthesis pathway, coupled with the potential dominance of non-toxigenic genotypes in Microcystis blooms, signals the possibility that non-toxigenic Microcystis should be monitored as well.


Subject(s)
Cyanobacteria , Microcystis , Humans , Microcystis/genetics , Microcystis/metabolism , Lakes/analysis , Cyanobacteria/genetics , Microcystins/analysis , Harmful Algal Bloom , Genotype
18.
J Environ Manage ; 351: 119729, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38056335

ABSTRACT

Cyanobacterial blooms pose a global environmental concern, with various genera contributing to their formation. The harmfulness of cyanobacterial blooms varies depending on the specific genus, yet the factors triggering their formation remain incompletely understood. This study conducted qPCR of sediment DNA in Lake Erhai to reconstruct the historical succession of three common bloom-forming cyanobacterial genera (i.e., Microcystis, Dolichospermum, and Aphanizomenon). The driving factors and their corresponding thresholds were identified, and human activities related to driving factors were evaluated. The results revealed two successions in the past century. The first succession transitioned from Aphanizomenon (1902-1978) to Microcystis and Dolichospermum (1978-1999), driven by TN:TP and TP. The second succession shifted from Microcystis and Dolichospermum (1978-1999) to Microcystis (1999-2010), driven by TP, TN:TP, and temperature. The thresholds of TP and TN:TP for the Microcystis bloom were 0.023 mg/L and 17, respectively. TN:TP was significantly influenced by domestic pollution and crop farming in both successions, while TP was significantly impacted by domestic pollution in the first succession and by pollution from crop and dairy farming in the second succession. These results shed light on the underlying mechanism responsible for the blooms of various cyanobacterial genera and could serve as a valuable reference for effectively preventing and controlling nutrient input in the watershed.


Subject(s)
Cyanobacteria , Microcystis , China , Eutrophication , Lakes/microbiology , Microcystis/genetics , Nutrients
19.
Environ Res ; 241: 117597, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37939808

ABSTRACT

Since the 2007 water crisis occurred in Lake Taihu, substantial measures have been taken to restore the lake. This study evaluates the effectiveness of these restoration activities. We examined the physicochemical parameters and the distribution of microcystin and Microcystis in both the water column and sediment during the bloom period of May 2020 to October 2020. The mean value of extracellular and intracellular microcystin content was 0.12 µg L-1 and 16.26 µg L-1, respectively. The mean value of microcystin in sediment was 172.02 ng g-1 and peaked in August. The concentration in the water and sediment was significantly lower than the historical average concentration. The abundance of toxigenic Microcystis and total Microcystis in the water column ranged from 2.61 × 102 to 2.25 × 109 copies·L-1 and 8.28 × 105 to 2.76 × 109 copies·L-1, respectively. The proportion of toxic Microcystis in the sediment ranging from 31.2% to 19.12%. The highest and lowest region was Meiliang Bay and Grass-algae type zone, respectively. The copy number of the 16S rRNA gene was 1-4 orders of magnitude higher than that of mcyA gene in populations of Microcystis, indicating that non-toxic Microcystis was the dominant form in the majority of the lake. The abundance of toxic Microcystis in the water column was positively correlated with total phosphorus, PO43--P and pH, while the water temperature played distinct role to the distribution of toxic Microcystis in sediment. Our research indicated phosphorus remains a key factor influencing the toxic Microcystis and microcystins in the water column. pH played distinct roles in the distribution of microcystins in sediment and water column. The increasing water temperature is a threat. Explicit management actions and policies, which take into account nutrient concentrations, pH, and increasing temperatures, are necessary to understand and control the distribution of microcystin and Microcystis in Lake Taihu.


Subject(s)
Drinking Water , Microcystis , Lakes/chemistry , Microcystins , RNA, Ribosomal, 16S/genetics , Microcystis/genetics , Phosphorus/analysis , China
20.
FEMS Microbiol Ecol ; 100(1)2024 01 16.
Article in English | MEDLINE | ID: mdl-38148131

ABSTRACT

Microcystis blooms have a marked effect on microbial taxonomical diversity in eutrophic lakes, but their influence on the composition of microbial functional genes is still unclear. In this study, the free-living microbial functional genes (FMFG) composition was investigated in the period before Microcystis blooms (March) and during Microcystis blooms (July) using a comprehensive functional gene array (GeoChip 5.0). The composition and richness of FMFG in the water column was significantly different between these two periods. The FMFG in March was enriched in the functional categories of nitrogen, sulfur, and phosphorus cycling, whereas the FMFG in July was enriched in carbon cycling, organic remediation, and metal homeostasis. Molecular ecological network analysis further demonstrated fewer functional gene interactions and reduced complexity in July than in March. Module hubs of the March network were mediated by functional genes associated with carbon, nitrogen, sulfur, and phosphorus, whereas those in July by a metal homeostasis functional gene. We also observed stronger deterministic processes in the FMFG assembly in July than in March. Collectively, this study demonstrated that Microcystis blooms induced significant changes in FMFG composition and metabolic potential, and abundance-information, which can support the understanding and management of biogeochemical cycling in eutrophic lake ecosystems.


Subject(s)
Microcystis , Microcystis/genetics , Microcystis/metabolism , Lakes/chemistry , Ecosystem , China , Phosphorus/metabolism , Nitrogen/metabolism , Carbon/metabolism , Sulfur/metabolism , Eutrophication
SELECTION OF CITATIONS
SEARCH DETAIL
...