Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
Add more filters










Publication year range
1.
Food Res Int ; 188: 114352, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823826

ABSTRACT

In the ongoing quest to formulate sensory-rich, low-fat products that maintain structural integrity, this work investigated the potential of bigels, especially those created using innovative Pickering techniques. By harnessing the unique properties of whey protein isolate (WPI) and whey protein microgel (WPM) as interfacial stabilizers, WPM-based Pickering bigels exhibited a remarkable particle localization at the interface due to specific intermolecular interactions. The rise in protein concentration not only intensified particle coverage and interface stabilization but also amplified attributes like storage modulus, yield stress, and adhesiveness, owing to enhanced intermolecular forces and a compact gel matrix. Impressively, WPM-based Pickering bigels outshone in practical applications, showcasing exceptional oil retention during freeze-thaw cycles and extended flavor release-a promising indication for frozen food product applications. Furthermore, these bigels underwent a sensory evolution from a lubricious texture at lower concentrations to a stable plateau at higher ones, offering an enriched consumer experience. In a comparative digestibility assessment, WPM-based Pickering bigels demonstrated superior prowess in decelerating the release of free fatty acids, indicating slowed lipid digestion. This study demonstrates the potential to fine-tune oral sensations and digestive profiles in bigels by modulating Pickering particle concentrations.


Subject(s)
Digestion , Microgels , Taste , Whey Proteins , Whey Proteins/chemistry , Humans , Microgels/chemistry , Food Handling/methods , Gastrointestinal Tract/metabolism , Sensation
2.
Int J Nanomedicine ; 19: 5059-5070, 2024.
Article in English | MEDLINE | ID: mdl-38836007

ABSTRACT

Purpose: The purpose of this study is to address the need for efficient drug delivery with high drug encapsulation efficiency and sustained drug release. We aim to create nanoparticle-loaded microgels for potential applications in treatment development. Methods: We adopted the process of ionic gelation to generate microgels from sodium alginate and carboxymethyl cellulose. These microgels were loaded with doxorubicin-conjugated amine-functionalized zinc ferrite nanoparticles (AZnFe-NPs). The systems were characterized using various techniques. Toxicity was evaluated in MCF-7 cells. In vitro release studies were conducted at different pH levels at 37 oC, with the drug release kinetics being analyzed using various models. Results: The drug encapsulation efficiency of the created carriers was as high as 70%. The nanoparticle-loaded microgels exhibited pH-responsive behavior and sustained drug release. Drug release from them was mediated via a non-Fickian type of diffusion. Conclusion: Given their high drug encapsulation efficiency, sustained drug release and pH-responsiveness, our nanoparticle-loaded microgels show promise as smart carriers for future treatment applications. Further development and research can significantly benefit the field of drug delivery and treatment development.


Subject(s)
Delayed-Action Preparations , Doxorubicin , Drug Carriers , Drug Liberation , Ferric Compounds , Microgels , Doxorubicin/chemistry , Doxorubicin/pharmacokinetics , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Humans , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Delayed-Action Preparations/pharmacology , MCF-7 Cells , Ferric Compounds/chemistry , Hydrogen-Ion Concentration , Microgels/chemistry , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Alginates/chemistry , Amines/chemistry , Carboxymethylcellulose Sodium/chemistry , Nanoparticles/chemistry , Zinc/chemistry , Zinc Compounds/chemistry , Cell Survival/drug effects
3.
J Nanobiotechnology ; 22(1): 305, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822364

ABSTRACT

BACKGROUND: Renal fibrosis is a progressive process associated with chronic kidney disease (CKD), contributing to impaired kidney function. Active constituents in traditional Chinese herbs, such as emodin (EMO) and asiatic acid (AA), exhibit potent anti-fibrotic properties. However, the oral administration of EMO and AA results in low bioavailability and limited kidney accumulation. Additionally, while oral probiotics have been accepted for CKD treatment through gut microbiota modulation, a significant challenge lies in ensuring their viability upon administration. Therefore, our study aims to address both renal fibrosis and gut microbiota imbalance through innovative co-delivery strategies. RESULTS: In this study, we developed yeast cell wall particles (YCWPs) encapsulating EMO and AA self-assembled nanoparticles (NPYs) and embedded them, along with Lactobacillus casei Zhang, in chitosan/sodium alginate (CS/SA) microgels. The developed microgels showed significant controlled release properties for the loaded NPYs and prolonged the retention time of Lactobacillus casei Zhang (L. casei Zhang) in the intestine. Furthermore, in vivo biodistribution showed that the microgel-carried NPYs significantly accumulated in the obstructed kidneys of rats, thereby substantially increasing the accumulation of EMO and AA in the impaired kidneys. More importantly, through hitchhiking delivery based on yeast cell wall and positive modulation of gut microbiota, our microgels with this synergistic strategy of therapeutic and modulatory interactions could regulate the TGF-ß/Smad signaling pathway and thus effectively ameliorate renal fibrosis in unilateral ureteral obstruction (UUO) rats. CONCLUSION: In conclusion, our work provides a new strategy for the treatment of renal fibrosis based on hitchhiking co-delivery of nanodrugs and probiotics to achieve synergistic effects of disease treatment and targeted gut flora modulation.


Subject(s)
Fibrosis , Gastrointestinal Microbiome , Kidney , Nanoparticles , Rats, Sprague-Dawley , Animals , Gastrointestinal Microbiome/drug effects , Rats , Administration, Oral , Male , Kidney/pathology , Kidney/drug effects , Nanoparticles/chemistry , Microgels/chemistry , Lacticaseibacillus casei , Probiotics/pharmacology , Renal Insufficiency, Chronic/drug therapy , Chitosan/chemistry , Alginates/chemistry , Pentacyclic Triterpenes/pharmacology , Drug Delivery Systems/methods , Tissue Distribution , Cell Wall
4.
Anal Chem ; 96(25): 10140-10144, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38862384

ABSTRACT

Photochemical cross-linking is a key step for manufacturing microgels in numerous applications, including drug delivery, tissue engineering, material production, and wound healing. Existing photochemical cross-linking techniques in microfluidic devices rely on UV curing, which can cause cell and DNA damage. We address this challenge by developing a microfluidic workflow for producing microgels using visible light-driven photochemical cross-linking of aqueous droplets dispersed in a continuous oil phase. We report a proof-of-concept to construct microgels from the protein Bovine Serum Albumin (BSA) with [Ru(bpy)3]2+ mediated cross-linking. By controlling the capillary number of the continuous and dispersed phases, the volumetric flow rate, and the photochemical reaction time within the microfluidic tubing, we demonstrate the construction of protein microgels with controllable and uniform dimensions. Our technique can, in principle, be applied to a wide range of different proteins with biological and responsive properties. This work therefore bridges the gap between hydrogel manufacturing using visible light and microfluidic microgel templating, facilitating numerous biomedical applications.


Subject(s)
Cross-Linking Reagents , Microgels , Photochemical Processes , Serum Albumin, Bovine , Serum Albumin, Bovine/chemistry , Cross-Linking Reagents/chemistry , Microgels/chemistry , Animals , Cattle , Light , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques
5.
Biosens Bioelectron ; 260: 116406, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38805889

ABSTRACT

Chemically modified oligonucleotides can solve biosensing issues for the development of capture probes, antisense, CRISPR/Cas, and siRNA, by enhancing their duplex-forming ability, their stability against enzymatic degradation, and their specificity for targets with high sequence similarity as microRNA families. However, the use of modified oligonucleotides such as locked nucleic acids (LNA) for biosensors is still limited by hurdles in design and from performances on the material interface. Here we developed a fluorogenic biosensor for non-coding RNAs, represented by polymeric PEG microgels conjugated with molecular beacons (MB) modified with locked nucleic acids (MicroLOCK). By 3D modeling and computational analysis, we designed molecular beacons (MB) inserting spot-on LNAs for high specificity among targets with high sequence similarity (95%). MicroLOCK can reversibly detect microRNA targets in a tiny amount of biological sample (2 µL) at 25 °C with a higher sensitivity (LOD 1.3 fM) without any reverse transcription or amplification. MicroLOCK can hybridize the target with fast kinetic (about 30 min), high duplex stability without interferences from the polymer interface, showing high signal-to-noise ratio (up to S/N = 7.3). MicroLOCK also demonstrated excellent resistance to highly nuclease-rich environments, in real samples. These findings represent a great breakthrough for using the LNA in developing low-cost biosensing approaches and can be applied not only for nucleic acids and protein detection but also for real-time imaging and quantitative assessment of gene targeting both in vitro and in vivo.


Subject(s)
Biosensing Techniques , MicroRNAs , Oligonucleotides , Biosensing Techniques/methods , MicroRNAs/analysis , MicroRNAs/genetics , Oligonucleotides/chemistry , Humans , Microgels/chemistry , Limit of Detection , Nucleic Acid Hybridization
6.
J Nanobiotechnology ; 22(1): 241, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735933

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) incidence is increasing in recent years due to intestinal flora imbalance, making oral probiotics a hotspot for research. However, numerous studies related to intestinal flora regulation ignore its internal mechanisms without in-depth research. RESULTS: Here, we developed a probiotic microgel delivery system (L.r@(SA-CS)2) through the layer-by-layer encapsulation technology of alginate (SA) and chitosan (CS) to improve gut microbiota dysbiosis and enhance anti-tumor therapeutic effect. Short chain fatty acids (SCFAs) produced by L.r have direct anti-tumor effects. Additionally, it reduces harmful bacteria such as Proteobacteria and Fusobacteriota, and through bacteria mutualophy increases beneficial bacteria such as Bacteroidota and Firmicutes which produce butyric acid. By binding to the G protein-coupled receptor 109A (GPR109A) on the surface of colonic epithelial cells, butyric acid can induce apoptosis in abnormal cells. Due to the low expression of GPR109A in colon cancer cells, MK-6892 (MK) can be used to stimulate GPR109A. With increased production of butyrate, activated GPR109A is able to bind more butyrate, which further promotes apoptosis of cancer cells and triggers an antitumor response. CONCLUSION: It appears that the oral administration of L.r@(SA-CS)2 microgels may provide a treatment option for CRC by modifying the gut microbiota.


Subject(s)
Fatty Acids, Volatile , Gastrointestinal Microbiome , Limosilactobacillus reuteri , Probiotics , Gastrointestinal Microbiome/drug effects , Probiotics/pharmacology , Humans , Fatty Acids, Volatile/metabolism , Animals , Limosilactobacillus reuteri/metabolism , Mice , Chitosan/chemistry , Alginates/chemistry , Alginates/pharmacology , Apoptosis/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Administration, Oral , Colorectal Neoplasms/drug therapy , Cell Line, Tumor , Receptors, G-Protein-Coupled/metabolism , Microgels/chemistry , Mice, Inbred BALB C , Butyric Acid/pharmacology , Butyric Acid/metabolism
7.
Food Chem ; 452: 139588, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38754168

ABSTRACT

In this study, sodium alginate/ soy protein isolate (SPI) microgels cross-linked by various divalent cations including Cu2+, Ba2+, Ca2+, and Zn2+ were fabricated. Cryo-scanning electron microscopy observations revealed distinctive structural variations among the microgels. In the context of gastric pH conditions, the degree of shrinkage of the microgels followed the sequence of Ca2+ > Ba2+ > Cu2+ > Zn2+. Meanwhile, under intestinal pH conditions, the degree of swelling was ranked as Zn2+ > Ca2+ > Ba2+ > Cu2+. The impact of these variations was investigated through in vitro digestion studies, revealing that all microgels successfully delayed the release of ß-carotene within the stomach. Within the simulated intestinal fluid, the microgel cross-linked with Zn2+ exhibited an initial burst release, while those cross-linked with Cu2+, Ba2+, or Ca2+ displayed a sustained release pattern. This research underscores the potential of sodium alginate/SPI microgels cross-linked with different divalent cations as efficient controlled-release delivery systems.


Subject(s)
Alginates , Delayed-Action Preparations , Microgels , Soybean Proteins , Alginates/chemistry , Soybean Proteins/chemistry , Delayed-Action Preparations/chemistry , Microgels/chemistry , Hydrogen-Ion Concentration , beta Carotene/chemistry , Cations, Divalent/chemistry
8.
J Vis Exp ; (207)2024 May 03.
Article in English | MEDLINE | ID: mdl-38767380

ABSTRACT

Embedded three-dimensional (3D) bioprinting utilizing a granular hydrogel supporting bath has emerged as a critical technique for creating biomimetic scaffolds. However, engineering a suitable gel suspension medium that balances precise bioink deposition with cell viability and function presents multiple challenges, particularly in achieving the desired viscoelastic properties. Here, a novel κ-carrageenan gel supporting bath is fabricated through an easy-to-operate mechanical grinding process, producing homogeneous sub-microscale particles. These sub-microgels exhibit typical Bingham flow behavior with small yield stress and rapid shear-thinning properties, which facilitate the smooth deposition of bioinks. Moreover, the reversible gel-sol transition and self-healing capabilities of the κ-carrageenan microgel network ensure the structural integrity of printed constructs, enabling the creation of complex, multi-layered tissue structures with defined architectural features. Post-printing, the κ-carrageenan sub-microgels can be easily removed by a simple phosphate-buffered saline wash. Further bioprinting with cell-laden bioinks demonstrates that cells within the biomimetic constructs have a high viability of 92% and quickly extend pseudopodia, as well as maintain robust proliferation, indicating the potential of this bioprinting strategy for tissue and organ fabrication. In summary, this novel κ-carrageenan sub-microgel medium emerges as a promising avenue for embedded bioprinting of exceptional quality, bearing profound implications for the in vitro development of engineered tissues and organs.


Subject(s)
Bioprinting , Carrageenan , Carrageenan/chemistry , Bioprinting/methods , Microgels/chemistry , Printing, Three-Dimensional , Tissue Engineering/methods , Hydrogels/chemistry , Tissue Scaffolds/chemistry , Animals , Humans
9.
ACS Biomater Sci Eng ; 10(6): 3958-3967, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38711418

ABSTRACT

Microgels are advanced scaffolds for tissue engineering due to their proper biodegradability, good biocompatibility, and high specific surface area for effective oxygen and nutrient transfer. However, most of the current monodispersed microgel fabrication systems rely heavily on various precision pumps, which highly increase the cost and complexity of their downstream application. In this work, we developed a simple and facile system for the controllable generation of uniform alginate microgels by integrating a gas-shearing strategy into a glass microfluidic device. Importantly, the cell-laden microgels can be rapidly prepared in a pump-free manner under an all-aqueous environment. The three-dimensional cultured green fluorescent protein-human A549 cells in alginate microgels exhibited enhanced stemness and drug resistance compared to those under two-dimensional conditions. The pancreatic cancer organoids in alginate microgels exhibited some of the key features of pancreatic cancer. The proposed microgels showed decent monodispersity, biocompatibility, and versatility, providing great opportunities in various biomedical applications such as microcarrier fabricating, organoid engineering, and high-throughput drug screening.


Subject(s)
Alginates , Microgels , Alginates/chemistry , Alginates/pharmacology , Humans , Microgels/chemistry , A549 Cells , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Lab-On-A-Chip Devices , Tissue Engineering/methods , Tissue Scaffolds/chemistry
10.
Biomacromolecules ; 25(6): 3807-3822, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38807305

ABSTRACT

Glycans, composed of linked monosaccharides, play crucial roles in biology and find diverse applications. Enhancing their enzymatic synthesis can be achieved by immobilizing enzymes on materials such as microgels. Here, we present microgels with immobilized glycosyltransferases, synthesized through droplet microfluidics, immobilizing enzymes either via encapsulation or postattachment. SpyTag-SpyCatcher interaction was used for enzyme binding, among others. Fluorescamine and permeability assays confirmed enzyme immobilization and microgel porosity, while enzymatic activities were determined using HPLC. The potential application of microgels in cascade reactions involving multiple enzymes was demonstrated by combining ß4GalT and α3GalT in an enzymatic reaction with high yields. Moreover, a cascade of ß4GalT and ß3GlcNAcT was successfully implemented. These results pave the way toward a modular membrane bioreactor for automated glycan synthesis containing the presented biocatalytic microgels.


Subject(s)
Enzymes, Immobilized , Glycosyltransferases , Microgels , Polysaccharides , Enzymes, Immobilized/chemistry , Polysaccharides/chemistry , Glycosyltransferases/metabolism , Glycosyltransferases/chemistry , Microgels/chemistry , Biocatalysis
11.
Biomater Sci ; 12(12): 3112-3123, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38738267

ABSTRACT

Cardiovascular diseases are a major global cause of morbidity and mortality, and they are often characterized by cardiomyocytes dead that ultimately leads to myocardial ischemia (MI). This condition replaces functional cardiac tissue with fibrotic scar tissue compromising heart function. Injectable systems for the in situ delivery of cells or molecules to assist during tissue repair have emerged as promising approaches for tissue engineering, particularly for myocardial repair. Methacryloyl platelet lysates (PLMA) have been employed for constructing full human-based 3D cell culture matrices and demonstrated potential for xeno-free applications. In this study, we propose using PLMA to produce microparticles (MPs) serving as anchors for cardiac and endothelial cells and ultimately as injectable systems for cardiac tissue repair. The herein reported PLMA MPs were produced by droplet microfluidics and showed great properties for cell attachment. More importantly, it is possible to show the capacity of PLMA MPs to serve as cell microcarriers even in the absence of animal-derived serum supplementation in the culture media.


Subject(s)
Biocompatible Materials , Blood Platelets , Microgels , Humans , Blood Platelets/chemistry , Blood Platelets/metabolism , Microgels/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Cells, Cultured , Cell Culture Techniques , Tissue Engineering , Methacrylates/chemistry
12.
Soft Matter ; 20(24): 4669-4680, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38563822

ABSTRACT

The slug Arion subfuscus produces a tough, highly adhesive defensive secretion. This secretion is a flexible hydrogel that is toughened by a double network mechanism. While synthetic double network gels typically require extensive time to prepare, this slug creates a tough gel in seconds. To gain insight into how the glue forms a double-network hydrogel so rapidly, the secretory apparatus of this slug was analyzed. The goal was to determine how the major components of the glue were distributed and mixed. Most of the glue comes from two types of large unicellular glands; one secretes polyanionic polysaccharides in small, membrane-bound packets, the other secretes proteins that appear to form a cross-linked network. The latter gland shows distinct regions where cross-linking appears to be occurring. These regions are darker, more homogeneous and appear more solid than the rest of the secretory material. The enzyme catalase is highly abundant in these regions, as are basic proteins. These results suggest that a rapid oxidation event occurs in this protein-containing gland, triggering cross-linking before the glue is released. The cross-linked microgels would then join together after secretion to form a granular hydrogel. The polysaccharide-filled packets would be mixed and interspersed among these microgels and may contribute to joining them together. This is an unexpected and highly effective way to form a tough gel rapidly.


Subject(s)
Adhesives , Hydrogels , Microgels , Animals , Hydrogels/chemistry , Adhesives/chemistry , Microgels/chemistry , Gastropoda/chemistry , Gastropoda/metabolism , Polysaccharides/chemistry , Polysaccharides/metabolism
13.
Angew Chem Int Ed Engl ; 63(27): e202319832, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38652238

ABSTRACT

Widespread use of plant protection agents in agriculture is a major cause of pollution. Apart from active ingredients, the environmental impact of auxiliary synthetic polymers should be minimized if they are highly persistent. An alternative to synthetic polymers is the use of natural polysaccharides, which are abundant and biodegradable. In this study, we explore pectin microgels functionalized with anchor peptides (P-MAPs) to be used as an alternative biobased pesticide delivery system. Using copper as the active ingredient, P-MAPs effectively prevented infection of grapevine plants with downy mildew under semi-field conditions on par with commercial copper pesticides. By using anchor peptides, the microgels tightly bind to the leaf surface, exhibiting excellent rain fastness and prolonged fungicidal activity. Finally, P-MAPs are shown to be easily degradable by enzymes found in nature, demonstrating their negligible long-term impact on the environment.


Subject(s)
Microgels , Peptides , Pesticides , Microgels/chemistry , Peptides/chemistry , Peptides/pharmacology , Pesticides/chemistry , Pesticides/pharmacology , Vitis/chemistry , Pectins/chemistry , Copper/chemistry
14.
J Mater Chem B ; 12(19): 4736-4747, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38660955

ABSTRACT

Rapid removal of toxic substances is crucial to restore the normal functions of our body and ensure survival. Due to their high substrate specificity and catalytic efficiency, enzymes are unique candidates to deplete toxic compounds. While enzymes display several limitations including low stability and high immunogenicity, these can be overcome by entrapping them in a diverse range of carriers. The resulting micro/nanoreactors shield the enzymes from their surroundings, preventing their misfolding or denaturation thus allowing them to conduct their function. The micro/nanoreactors must circulate in the blood stream for extended periods of time to ensure complete depletion of the toxic agents. Surprisingly, while it is widely acknowledged that non-spherical carriers exhibit longer residence time in the bloodstream than their spherical counterparts, so far, all the reported micro/nanoreactors have been assembled with a spherical architecture. Herein, we address this important issue by pioneering the first shape-specific microreactors. We use UV-assisted punching to create rod-like microgel shapes with dimensions of 8 µm × 1 µm × 2 µm and demonstrate their biocompatibility by conducting hemolysis and cell viability assays with a macrophage and an endothelial cell line. Upon encapsulation of the model enzyme ß-lactamase, the successful fabrication of rod-shaped microreactors is demonstrated by their ability to convert the yellow nitrocefin substrate into its hydrolyzed product.


Subject(s)
Microgels , Humans , Microgels/chemistry , Cell Survival/drug effects , Animals , Mice , Hemolysis , Biocompatible Materials/chemistry , Biocompatible Materials/metabolism , Biocompatible Materials/pharmacology , Particle Size , Surface Properties
15.
Biomater Sci ; 12(11): 2930-2942, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38646699

ABSTRACT

Current mesh materials used for the clinical treatment of abdominal defects struggle to balance mechanical properties and bioactivity to support tissue remodeling. Therefore, a bioactive microgel-coated electrospinning membrane was designed with the superiority of cell-instructive topology in guiding cell behavior and function for abdominal wall defect reconstruction. The electrostatic spinning technique was employed to prepare a bioabsorbable PLCL fiber membrane with an effective mechanical support. Additionally, decellularized matrix (dECM)-derived bioactive microgels were further coated on the fiber membrane through co-precipitation with dopamine, which was expected to endow cell-instructive hydrophilic interfaces and topological morphologies for cell adhesion. Moreover, the introduction of the dECM into the microgel promoted the myogenic proliferation and differentiation of C2C12 cells. Subsequently, in vivo experiments using a rat abdominal wall defect model demonstrated that the bioactive microgel coating significantly contributed to the reconstruction of intact abdominal wall structures, highlighting its potential for clinical application in promoting the repair of soft tissue defects associated with abdominal wall damage. This study presented an effective mesh material for facilitating the reconstruction of abdominal wall defects and contributed novel design concepts for the surface modification of scaffolds with cell-instructive interfaces and topology.


Subject(s)
Abdominal Wall , Animals , Abdominal Wall/surgery , Mice , Rats , Microgels/chemistry , Cell Line , Rats, Sprague-Dawley , Cell Adhesion/drug effects , Membranes, Artificial , Tissue Scaffolds/chemistry , Cell Proliferation/drug effects , Polyesters/chemistry , Cell Differentiation/drug effects , Male , Tissue Engineering
16.
Int J Biol Macromol ; 268(Pt 1): 131899, 2024 May.
Article in English | MEDLINE | ID: mdl-38677703

ABSTRACT

Emerging food processing technologies provide broader avenues for enhancing probiotic delivery systems. In this study, the new Fu brick tea polysaccharide (FBTP) was extracted and combined with cold plasma-modified alginate nano-montmorillonite (AMT) to prepare microgels by ionic gelation to improve the viability of encapsulated Lactobacillus kefiranofaciens JKSP109. Results showed that cold plasma treatment for 3 min changed the surface charge of AMT biopolymer solution, and FBTP addition reduced the particle size to the lowest of 223 ± 5.50 nm. Morphological analysis showed that the AMT treated with cold plasma for 3 min and FBTP (C3AMT + FBTP) formed a dense microgel through electrostatic interaction, and the probiotics were randomly distributed in their internal polysaccharide network, as well as the interlayer and surrounding of nanoparticles. The probiotics immobilized in C3AMT + FBTP microgel exhibited the highest viability (8.48 ± 0.03 log CFU/g) and colonic colonization after exposure to simulated gastrointestinal conditions. In addition, the good antioxidant activity of FBTP reduced the loss of probiotic viability during storage, with only 2.58 log CFU/g decreased after 4 weeks. Therefore, such probiotic products enriched with natural bioactive ingredients can be developed as a potential functional food additive.


Subject(s)
Alginates , Microgels , Polysaccharides , Probiotics , Tea , Alginates/chemistry , Tea/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Microgels/chemistry , Microbial Viability/drug effects , Plasma Gases/pharmacology , Plasma Gases/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Lactobacillus , Particle Size
17.
Food Chem ; 449: 139187, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38604029

ABSTRACT

Pickering emulsions stabilized by protein particles are of great interest for use in real food systems. This study was to investigate the properties of microgel particles prepared from different plant proteins, i.e., soybean protein isolate (SPI), pea protein isolate (PPI), mung bean protein isolate (MPI), chia seed protein isolate (CSPI), and chickpea protein isolate (CPI). MPI protein particles had most desirable Pickering emulsion forming ability. The particles of SPI and PPI had similar particle size (316.23 nm and 294.80 nm) and surface hydrophobicity (2238.40 and 2001.13) and emulsion forming ability, while the CSPI and CPI particle stabilized emulsions had the least desirable properties. The MPI and PPI particle stabilized Pickering emulsions produced better quality ice cream than the one produced by SPI particle-stabilized emulsions. These findings provide insight into the properties of Pickering emulsions stabilized by different plant protein particles and help expand their application in emulsions and ice cream.


Subject(s)
Emulsions , Particle Size , Plant Proteins , Emulsions/chemistry , Plant Proteins/chemistry , Microgels/chemistry , Hydrophobic and Hydrophilic Interactions , Ice Cream/analysis , Cicer/chemistry , Vigna/chemistry
18.
Int J Biol Macromol ; 268(Pt 1): 131594, 2024 May.
Article in English | MEDLINE | ID: mdl-38621568

ABSTRACT

Treating severe peripheral nerve injuries is difficult. Nerve repair with conduit small gap tubulization is a treatment option but still needs to be improved. This study aimed to assess the use of microgels containing growth factors, along with chitosan-based conduits, for repairing nerves. Using the water-oil emulsion technique, microgels of methacrylic alginate (AlgMA) that contained vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF) were prepared. The effects on rat Schwann cells (RSC96) and human umbilical vein endothelial cells (HUVECs) were evaluated. Chitosan-based conduits were fabricated and used in conjunction with microgels containing two growth factors to treat complete neurotmesis in rats. The results showed that the utilization of dual growth factor microgels improved the migration and decreased the apoptosis of RSC96 cells while promoting the growth and formation of tubes in HUVECs. The utilization of dual growth factor microgels and chitosan-based conduits resulted in notable advancements in the regeneration and myelination of nerve fibers, recovery of neurons, alleviation of muscle atrophy and recovery of neuromotor function and nerve conduction. In conclusion, the use of dual growth factor AlgMA microgels in combination with chitosan-based conduits has the potential to significantly improve the effectiveness of nerve repair.


Subject(s)
Alginates , Chitosan , Human Umbilical Vein Endothelial Cells , Nerve Regeneration , Schwann Cells , Chitosan/chemistry , Chitosan/pharmacology , Alginates/chemistry , Alginates/pharmacology , Animals , Humans , Rats , Nerve Regeneration/drug effects , Schwann Cells/drug effects , Microgels/chemistry , Peripheral Nerve Injuries/drug therapy , Peripheral Nerve Injuries/therapy , Rats, Sprague-Dawley , Vascular Endothelial Growth Factor A/pharmacology , Vascular Endothelial Growth Factor A/metabolism , Tissue Scaffolds/chemistry , Methacrylates/chemistry , Methacrylates/pharmacology , Cell Movement/drug effects
19.
Macromol Rapid Commun ; 45(11): e2300680, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38461409

ABSTRACT

The porous structure of microgels significantly influences their properties and, thus, their suitability for various applications, in particular as building blocks for tissue scaffolds. Porosity is one of the crucial features for microgel-cell interactions and significantly increases the cells' accumulation and proliferation. Consequently, tailoring the porosity of microgels in an effortless way is important but still challenging, especially for nonspherical microgels. This work presents a straightforward procedure to fabricate complex-shaped poly(N-isopropyl acrylamide) (PNIPAM) microgels with tuned porous structures using the so-called cononsolvency effect during microgel polymerization. Therefore, the classical solvent in the reaction solution is exchanged from water to water-methanol mixtures in a stop-flow lithography process. For cylindrical microgels with a higher methanol content during fabrication, a greater degree of collapsing is observed, and their aspect ratio increases. Furthermore, the collapsing and swelling velocities change with the methanol content, indicating a modified porous structure, which is confirmed by electron microscopy micrographs. Furthermore, swelling patterns of the microgel variants occur during cooling, revealing their thermal response as a highly heterogeneous process. These results show a novel procedure to fabricate PNIPAM microgels of any elongated 2D shape with tailored porous structure and thermoresponsiveness by introducing the cononsolvency effect during stop-flow lithography polymerization.


Subject(s)
Acrylic Resins , Microgels , Porosity , Acrylic Resins/chemistry , Microgels/chemistry , Temperature , Polymerization , Surface Properties , Water/chemistry , Particle Size
20.
Adv Healthc Mater ; 13(14): e2304386, 2024 06.
Article in English | MEDLINE | ID: mdl-38373601

ABSTRACT

Tissue engineering at single-cell resolution has enhanced therapeutic efficacy. Droplet microfluidics offers a powerful platform that allows deterministic single-cell encapsulation into aqueous droplets, yet the direct encapsulation of cells into microgels remains challenging. Here, the design of a microfluidic device that is capable of single-cell encapsulation within polyethylene glycol norbornene (PEGNB) hydrogels on-chip is reported. Cells are first ordered in media within a straight microchannel via inertial focusing, followed by the introduction of PEGNB solution from two separate, converging channels. Droplets are thoroughly mixed by passage through a serpentine channel, and microgels are formed by photo-photopolymerization. This platform uniquely enables both single-cell encapsulation and excellent cell viability post-photo-polymerization. More than 90% of singly encapsulated mesenchymal stromal cells (MSCs) remain alive for 7 days. Notably, singly encapsulated MSCs have elevated expression levels in genes that code anti-inflammatory cytokines, for example, IL-10 and TGF-ß, thus enhancing the secretion of proteins of interest. Following injection into a mouse model with induced inflammation, singly encapsulated MSCs show a strong retention rate in vivo, reduce overall inflammation, and mitigate liver damage. These translational results indicate that deterministic single-cell encapsulation could find use in a broad spectrum of tissue engineering applications.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Norbornanes , Polyethylene Glycols , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Animals , Polyethylene Glycols/chemistry , Mice , Mesenchymal Stem Cell Transplantation/methods , Norbornanes/chemistry , Microgels/chemistry , Cell Encapsulation/methods , Hydrogels/chemistry , Hydrogels/pharmacology , Cell Survival/drug effects , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...