Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 296
Filter
1.
J Hazard Mater ; 472: 134480, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38703683

ABSTRACT

The widespread use of polyethylene terephthalate (PET) in various industries has led to a surge in microplastics (MPs) pollution, posing a significant threat to ecosystems and human health. To address this, we have developed a bacterial enzyme cascade reaction system (BECRS) that focuses on the efficient degradation of PET. This system harnesses the Escherichia coli (E. coli) surface to display CsgA protein, which forms curli fibers, along with the carbohydrate-binding module 3 (CBM3) and PETases, to enhance the adsorption and degradation of PET. The study demonstrated that the BECRS achieved a notable PET film degradation rate of 3437 ± 148 µg/(d*cm²), with a degradation efficiency of 21.40% for crystalline PET MPs, and the degradation products were all converted to TPA. The stability of the system was evidenced by retaining over 80% of its original activity after multiple uses and during one month of storage. Molecular dynamics simulations confirmed that the presence of CsgA did not interfere with the enzymatic activity of PETases. This BECRS represents a significant step forward in the biodegradation of PET, particularly microplastics, offering a practical and sustainable solution for environmental pollution control.


Subject(s)
Biodegradation, Environmental , Escherichia coli , Polyethylene Terephthalates , Polyethylene Terephthalates/metabolism , Polyethylene Terephthalates/chemistry , Escherichia coli/metabolism , Microplastics/metabolism , Microplastics/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Molecular Dynamics Simulation , Escherichia coli Proteins/metabolism , Adsorption
2.
J Hazard Mater ; 472: 134510, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38704909

ABSTRACT

Nitrogen removal is essential for restoring eutrophic lakes. Microorganisms and aquatic plants in lakes are both crucial for removing excess nitrogen. However, microplastic (MP) pollution and the invasion of exotic aquatic plants have become increasingly serious in lake ecosystems due to human activity and plant-dominant traits. This field mesocosm study explored how the diversity of invasive submerged macrophytes affects denitrification (DNF), anammox (ANA), and dissimilatory nitrate reduction to ammonium (DNRA) in lake sediments with varying MPs. Results showed that invasive macrophytes suppressed DNF rates, but DNRA and ANA were less sensitive than DNF to the diversity of invasive species. Sediment MPs increased the biomass of invasive species more than native species, but did not affect microbial processes. The effects of MPs on nitrate dissimilatory reduction were process-specific. MPs increased DNF rates and the competitive advantage of DNF over DNRA by changing the sediment environment. The decoupling of DNF and ANA was also observed, with increased DNF rates and decreased ANA rates. The study findings suggested new insights into how the invasion of exotic submerged macrophytes affects the sediment nitrogen cycle complex environments.


Subject(s)
Geologic Sediments , Introduced Species , Lakes , Microplastics , Nitrates , Plants , Geologic Sediments/microbiology , Nitrates/metabolism , Plants/metabolism , Microplastics/metabolism , Lakes/microbiology , Water Pollutants, Chemical/metabolism , Oxidation-Reduction , Biodiversity , Denitrification
3.
BMC Vet Res ; 20(1): 143, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38622626

ABSTRACT

Polystyrene nanoplastic (PS-NPs) and Engine oil (EO) pose multiple ecotoxic effects with increasing threat to fish ecosystems. The current study investigated the toxicity of 15 days exposure to PS-NPs and / or EO to explore their combined synergistic effects on Nile tilapia, Oreochromis niloticus (O. niloticus). Hematobiochemical parameters, proinflammatory cytokines, and oxidative stress biomarkers as well as histological alterations were evaluated. The experimental design contained 120 acclimated Nile tilapia distributed into four groups, control, PS-NPs (5 mg/L), EO (1%) and their combination (PS-NPs + EO). After 15-days of exposure, blood and tissue samples were collected from all fish experimental groups. Results indicated that Nile tilapia exposed to PS-NPs and / or EO revealed a significant decrease in almost all the measured hematological parameters in comparison to the control, whereas WBCs and lymphocyte counts were significantly increased in the combined group only. Results clarified that the combined PS-NPs + EO group showed the maximum decrease in RBCs, Hb, MCH and MCHC, and showed the maximum significant rise in interleukin-1ß (IL-1ß), and interleukin-6 (IL-6) in comparison to all other exposed groups. Meanwhile, total antioxidant capacity (TAC) showed a significant (p < 0.05) decline only in the combination group, whereas reduced glutathione (GSH) showed a significant decline in all exposed groups in comparison to the control. Both malondialdehyde (MDA) and aspartate aminotransferase (AST) showed a significant elevation only in the combination group. Uric acid showed the maximum elevation in the combination group than all other groups, whereas creatinine showed significant elevation in the EO and combination group when compared to the control. Furthermore, the present experiment proved that exposure to these toxicants either individually or in combination is accompanied by pronounced histomorpholgical damage characterized by severe necrosis and hemorrhage of the vital organs of Nile tilapia, additionally extensively inflammatory conditions with leucocytes infiltration. We concluded that combination exposure to both PS-NPs and EO caused severe anemia, extreme inflammatory response, oxidative stress, and lipid peroxidation effects, thus they can synergize with each other to intensify toxicity in fish.


Subject(s)
Cichlids , Microplastics , Animals , Microplastics/metabolism , Microplastics/pharmacology , Polystyrenes/toxicity , Polystyrenes/metabolism , Ecosystem , Liver/metabolism , Antioxidants/metabolism , Oxidative Stress , Interleukin-6/metabolism
4.
J Hazard Mater ; 471: 134328, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38643575

ABSTRACT

The microbial degradation of polyethylene (PE) and polypropylene (PP) resins in rivers and lakes has emerged as a crucial issue in the management of microplastics. This study revealed that as the flow rate decreased longitudinally, ammonia nitrogen (NH4+-N), heavy fraction of organic carbon (HFOC), and small-size microplastics (< 1 mm) gradually accumulated in the deep and downstream estuarine sediments. Based on their surface morphology and carbonyl index, these sediments were identified as the potential hot zone for PE/PP degradation. Within the identified hot zone, concentrations of PE/PP-degrading genes, enzymes, and bacteria were significantly elevated compared to other zones, exhibiting strong intercorrelations. Analysis of niche differences revealed that the accumulation of NH4+-N and HFOC in the hot zone facilitated the synergistic coexistence of key bacteria responsible for PE/PP degradation within biofilms. The findings of this study offer a novel insight and comprehensive understanding of the distribution characteristics and synergistic degradation potential of PE/PP in natural freshwater environments.


Subject(s)
Bacteria , Biodegradation, Environmental , Geologic Sediments , Polyethylene , Polypropylenes , Water Pollutants, Chemical , Polypropylenes/chemistry , Polyethylene/chemistry , Polyethylene/metabolism , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/chemistry , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Bacteria/metabolism , Bacteria/genetics , Microplastics/toxicity , Microplastics/metabolism , Fresh Water/microbiology , Estuaries
5.
J Hazard Mater ; 471: 134342, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38678705

ABSTRACT

The accumulation of microplastics in reservoirs due to river damming has drawn considerable attention due to their potential impacts on elemental biogeochemical cycling at the watershed scale. However, the effects of plastisphere communities on the sulfur cycle in the large deep-water reservoir remain poorly understood. Here, we collected microplastics and their surrounding environmental samples in the water and sediment ecosystems of Xiaowan Reservoir and found a significant spatiotemporal pattern of microplastics and sulfur distribution in this Reservoir. Based on the microbial analysis, plastic-degrading taxa (e.g., Ralstonia, Rhodococcus) involved in the sulfur cycle were enriched in the plastisphere of water and sediment, respectively. Typical thiosulfate oxidizing bacteria Limnobacter acted as keystone species in the plastisphere microbial network. Sulfate, oxidation reduction potential and organic matter drove the variations of the plastisphere. Environmental filtration significantly affected the plastisphere communities, and the deterministic process dominated the community assembly. Furthermore, predicted functional profiles related to sulfur cycling, compound degradation and membrane transport were significantly enriched in the plastisphere. Overall, our results suggest microplastics as a new microbial niche exert different effects in water and sediment environments, and provide insights into the potential impacts of the plastisphere on the sulfur biogeochemical cycle in the reservoir ecosystem.


Subject(s)
Geologic Sediments , Microplastics , Sulfur , Water Pollutants, Chemical , Sulfur/metabolism , Microplastics/metabolism , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/analysis , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Bacteria/metabolism , Bacteria/classification , China
6.
Arch Microbiol ; 206(5): 238, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38684545

ABSTRACT

Nanoplastics pose significant environmental problems due to their high mobility and increased toxicity. These particles can cause infertility and inflammation in aquatic organisms, disrupt microbial signaling and act as pollutants carrier. Despite extensive studies on their harmful impact on living organisms, the microbial degradation of nanoplastics is still under research. This study investigated the degradation of nanoplastics by isolating bacteria from the gut microbiome of Tenebrio molitor larvae fed various plastic diets. Five bacterial strains capable of degrading polystyrene were identified, with Achromobacter xylosoxidans M9 showing significant nanoplastic degradation abilities. Within 6 days, this strain reduced nanoplastic particle size by 92.3%, as confirmed by SEM and TEM analyses, and altered the chemical composition of the nanoplastics, indicating a potential for enhanced bioremediation strategies. The strain also caused a 7% weight loss in polystyrene film over 30 days, demonstrating its efficiency in degrading nanoplastics faster than polystyrene film. These findings might enhance plastic bioremediation strategies.


Subject(s)
Achromobacter denitrificans , Biodegradation, Environmental , Gastrointestinal Microbiome , Polystyrenes , Animals , Polystyrenes/metabolism , Achromobacter denitrificans/metabolism , Plastics/metabolism , Plastics/chemistry , Larva/microbiology , Microplastics/metabolism
7.
ACS Nano ; 18(18): 11828-11836, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38659192

ABSTRACT

As essential primary producers, cyanobacteria play a major role in global carbon and nitrogen cycles. Though the influence of nanoplastics on the carbon metabolism of cyanobacteria is well-studied, little is known about how nanoplastics affect their nitrogen metabolism, especially under environmentally relevant nitrogen concentrations. Here, we show that nitrogen forms regulated growth inhibition, nitrogen consumption, and the synthesis and release of microcystin (MC) in Microcystis aeruginosa exposed to 10 µg/mL amino-modified polystyrene nanoplastics (PS-NH2) with a particle size of 50 nm under environmentally relevant nitrogen concentrations of nitrate, ammonium, and urea. We demonstrate that PS-NH2 inhibit M. aeruginosa differently in nitrate, urea, and ammonium, with inhibition rates of 51.87, 39.70, and 36.69%, respectively. It is caused through the differences in impairing cell membrane integrity, disrupting redox homeostasis, and varying nitrogen transport pathways under different nitrogen forms. M. aeruginosa respond to exposure of PS-NH2 by utilizing additional nitrogen to boost the production of amino acids, thereby enhancing the synthesis of MC, extracellular polymeric substances, and membrane phospholipids. Our results found that the threat of nanoplastics on primary producers can be regulated by the nitrogen forms in freshwater ecosystems, contributing to a better understanding of nanoplastic risks under environmentally relevant conditions.


Subject(s)
Microcystis , Nitrogen , Microcystis/drug effects , Microcystis/metabolism , Microcystis/growth & development , Nitrogen/chemistry , Nitrogen/metabolism , Microcystins/metabolism , Polystyrenes/chemistry , Particle Size , Microplastics/metabolism , Nanoparticles/chemistry , Nitrates/metabolism , Nitrates/chemistry , Urea/metabolism , Urea/chemistry , Urea/pharmacology
8.
Sci Total Environ ; 929: 172775, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38670383

ABSTRACT

Environmental pollution caused by the excessive use of plastics has resulted in the inflow of microplastics into the human body. However, the effects of microplastics on the human gut microbiota still need to be better understood. To determine whether plastic-degrading bacteria exist in the human gut, we collected the feces of six human individuals, did enrichment cultures and screened for bacterial species with a low-density polyethylene (LDPE) or polypropylene (PP)-degrading activity using a micro-spray method. We successfully isolated four bacterial species with an LDPE-degrading activity and three with a PP-degrading activity. Notably, all bacterial species identified with an LDPE or PP-degrading activity were opportunistic pathogens. We analyzed the microbial degradation of the LDPE or PP surface using scanning electron microscopy and confirmed that each bacterial species caused the physical changes. Chemical structural changes were further investigated using X-ray photoelectron spectroscopy and Fourier-transform-infrared spectroscopy, confirming the oxidation of the LDPE or PP surface with the formation of carbonyl groups (C=O), ester groups (CO), and hydroxyl groups (-OH) by each bacterial species. Finally, high temperature gel permeation chromatography (HT-GPC) analysis showed that these bacterial species performed to a limited extent depolymerization. These results indicate that, as a single species, these opportunistic pathogens in the human gut have a complete set of enzymes and other components required to initiate the oxidation of the carbon chains of LDPE or PP and to degrade them. Furthermore, these findings suggest that these bacterial species can potentially biodegrade and metabolize microplastics in the human gut.


Subject(s)
Bacteria , Gastrointestinal Microbiome , Plastics , Humans , Bacteria/metabolism , Plastics/metabolism , Feces/microbiology , Biodegradation, Environmental , Microplastics/metabolism , Environmental Pollutants/metabolism
9.
Environ Pollut ; 349: 123927, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38582184

ABSTRACT

The recovery phase of mangrove seedlings in coastal wetland ecosystems can be negatively affected by exposure to external pollutants. This study aimed to investigate the impact of microplastics (MPs) influx, specifically polystyrene (PS) and polymethyl methacrylate (PMMA), on the growth of Aegiceras corniculatum seedlings and their accumulation of heavy metals (HMs). PS and PMMA significantly increased HMs accumulation (up to 21.0-548%), particularly in the roots of seedlings, compared to the control treatment (CK). Additionally, elevated activities of malondialdehyde and catalase enzymes were observed in the leaves of seedlings, while peroxidase enzyme activity decreased. Topological analysis of the root sediment microbiota coexistence network revealed that the modularization data increased from 0.69 (CK treatment) to 1.07 (PS treatment) and 5.11 (PMMA treatment) under the combined stress of MPs and HMs. This suggests that the introduction of MPs intensifies microbial modularization. The primary cause of increased HMs accumulation in plants is the MPs input, which influences the secretion of organic acids by plants and facilitates the shift of HMs in sediment to bioavailable states. Furthermore, changes in microbial clustering may also contribute to the elevated HMs accumulation in plants. This study provides valuable insights into the effects of external pollutants on mangrove seedlings and offers new perspectives for the preservation and restoration of mangrove coastal wetlands.


Subject(s)
Metals, Heavy , Microplastics , Seedlings , Water Pollutants, Chemical , Wetlands , Metals, Heavy/metabolism , Water Pollutants, Chemical/metabolism , Seedlings/metabolism , Microplastics/metabolism , Environmental Monitoring/methods , Primulaceae/metabolism , Geologic Sediments/chemistry
10.
Food Chem ; 450: 139349, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38631205

ABSTRACT

Kale is a functional food with anti-cancer, antioxidant, and anemia prevention properties. The harmful effects of the emerging pollutant microplastic (MP) on plants have been widely studied, but there is limited research how to mitigate MP damage on plants. Numerous studies have shown that Se is involved in regulating plant resistance to abiotic stresses. The paper investigated impact of MP and Se on kale growth, photosynthesis, reactive oxygen species (ROS) metabolism, phytochemicals, and endogenous hormones. Results revealed that MP triggered a ROS burst, which led to breakdown of antioxidant system in kale, and had significant toxic effects on photosynthetic system, biomass, and accumulation of secondary metabolites, as well as a significant decrease in IAA and a significant increase in GA. Under MP supply, Se mitigated the adverse effects of MP on kale by increasing photosynthetic pigment content, stimulating function of antioxidant system, enhancing secondary metabolite synthesis, and modulating hormonal networks.


Subject(s)
Brassica , Homeostasis , Microplastics , Oxidation-Reduction , Photosynthesis , Plant Growth Regulators , Secondary Metabolism , Selenium , Photosynthesis/drug effects , Brassica/metabolism , Brassica/chemistry , Brassica/growth & development , Brassica/drug effects , Microplastics/metabolism , Selenium/metabolism , Selenium/pharmacology , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Homeostasis/drug effects , Reactive Oxygen Species/metabolism , Antioxidants/metabolism , Soil Pollutants/metabolism
11.
Curr Protoc ; 4(4): e1027, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38588063

ABSTRACT

The development of patient-derived intestinal organoids represents an invaluable model for simulating the native human intestinal epithelium. These stem cell-rich cultures outperform commonly used cell lines like Caco-2 and HT29-MTX in reflecting the cellular diversity of the native intestinal epithelium after differentiation. In our recent study examining the effects of polystyrene (PS), microplastics (MPs), and nanoplastics (NPs), widespread pollutants in our environment and food chain, on the human intestinal epithelium, these organoids have been instrumental in elucidating the absorption mechanisms and potential biological impacts of plastic particles. Building on previously established protocols in human intestinal organoid culture, we herein detail a streamlined protocol for the cultivation, differentiation, and generation of organoid-derived monolayers. This protocol is tailored to generate monolayers incorporating microfold cells (M cells), key for intestinal particle uptake but often absent in current in vitro models. We provide validated protocols for the characterization of MPs/NPs via scanning electron microscopy (SEM) for detailed imaging and their introduction to intestinal epithelial monolayer cells via confocal immunostaining. Additionally, protocols to test the impacts of MP/NP exposure on the functions of the intestinal barrier using transendothelial electrical resistance (TEER) measurements and assessing inflammatory responses using cytokine profiling are detailed. Overall, our protocols enable the generation of human intestinal organoid monolayers, complete with the option of including or excluding M cells, offering crucial techniques for observing particle uptake and identifying inflammatory responses in intestinal epithelial cells to advance our knowledge of the potential effects of plastic pollution on human gut health. These approaches are also amendable to the study of other gut-related chemical and biological exposures and physiological responses due to the robust nature of the systems. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Human intestinal organoid culture and generation of monolayers with and without M cells Support Protocol 1: Culture of L-WRN and production of WRN-conditioned medium Support Protocol 2: Neuronal cell culture and integration into intestinal epithelium Support Protocol 3: Immune cell culture and integration into intestinal epithelium Basic Protocol 2: Scanning electron microscopy: sample preparation and imaging Basic Protocol 3: Immunostaining and confocal imaging of MP/NP uptake in organoid-derived monolayers Basic Protocol 4: Assessment of intestinal barrier function via TEER measurements Basic Protocol 5: Cytokine profiling using ELISA post-MP/NP exposure.


Subject(s)
Microplastics , Plastics , Humans , Microplastics/metabolism , Caco-2 Cells , Plastics/metabolism , Intestinal Mucosa/metabolism , Organoids , Epithelium , Cytokines/metabolism
12.
Sci Total Environ ; 926: 172125, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38565353

ABSTRACT

Despite both microplastics (MPs) and harmful algae blooms (HABs) may pose a severe threat to the immunity of marine bivalves, the toxification mechanism underlying is far from being fully understood. In addition, owing to the prevalence and sudden occurrence characteristics of MPs and HABs, respectively, bivalves with MP-exposure experience may face acute challenge of harmful algae under realistic scenarios. However, little is known about the impacts and underlying mechanisms of MP-exposure experience on the susceptibility of immunity to HABs in bivalve mollusks. Taking polystyrene MPs and diarrhetic shellfish toxin-producing Prorocentrum lima as representatives, the impacts of MP-exposure on immunity vulnerability to HABs were investigated in the thick-shell mussel, Mytilus coruscus. Our results revealed evident immunotoxicity of MPs and P. lima to the mussel, as evidenced by significantly impaired total count, phagocytic activity, and cell viability of haemocytes, which may result from the induction of oxidative stress, aggravation of haemocyte apoptosis, and shortage in cellular energy supply. Moreover, marked disruptions of immunity, antioxidant system, apoptosis regulation, and metabolism upon MPs and P. lima exposure were illustrated by gene expression and comparative metabolomic analyses. Furthermore, the mussels that experienced MP-exposure were shown to be more vulnerable to P. lima, indicated by greater degree of deleterious effects on abovementioned parameters detected. In general, our findings emphasize the threat of MPs and HABs to bivalve species, which deserves close attention and more investigation.


Subject(s)
Marine Toxins , Mytilus , Animals , Marine Toxins/toxicity , Microplastics/metabolism , Plastics/metabolism , Mytilus/metabolism , Shellfish
13.
Sci Total Environ ; 927: 172243, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38582118

ABSTRACT

Globally, over 287 million tons of plastic are disposed in landfills, rivers, and oceans or are burned every year. The results are devastating to our ecosystems, wildlife and human health. One promising remedy is the yellow mealworm (Tenebrio molitor larvae), which has proved capable of degrading microplastics (MPs). This paper presents a new investigation into the biodegradation of aged polyethylene (PE) film and polystyrene (PS) foam by the Tenebrio molitor larvae. After a 35 - day feeding period, both pristine and aged MPs can be consumed by larvae. Even with some inhibitions in larvae growth due to the limited nutrient supply of aged MPs, when compared with pristine MPs, the aged MPs were depolymerized more efficiently in gut microbiota based on gel permeation chromatography (GPC) and Fourier transform infrared spectroscopy (FTIR) analysis. With the change in surface chemical properties, the metabolic intermediates of aged MPs contained more oxygen-containing functional groups and shortened long-chain alkane, which was confirmed by gas chromatography and mass spectrometry (GC-MS). High-throughput sequencing revealed that the richness and diversity of gut microbes were restricted in the MPs-fed group. Although MPs had a negative effect on the relative abundance of the two dominant bacteria Enterococcaceae and Lactobacillaceae, the aged MPs may promote the relative abundance of Enterobacteriaceae and Streptococcaceae. Redundancy analysis (RDA) further verified that the aged MPs are effectively biodegraded by yellow mealworm. This work provides new insights into insect-mediated mechanisms of aged MP degradation and promising strategies for MP sustainable and efficient solutions.


Subject(s)
Biodegradation, Environmental , Larva , Microplastics , Polyethylene , Polystyrenes , Tenebrio , Animals , Microplastics/metabolism , Tenebrio/metabolism , Polyethylene/metabolism , Gastrointestinal Microbiome , Water Pollutants, Chemical/metabolism
14.
Ecotoxicol Environ Saf ; 273: 116175, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38458070

ABSTRACT

Nanoplastics are recognized as emerging contaminants that can cause severe toxicity to marine fishes. However, limited researches were focusing on the toxic effects of nanoplastics on marine fish, especially the post-exposure resilience. In this study, red drum (Sciaenops ocellatus) were exposed to 5 mg/L polystyrene nanoplastics (100 nm, PS-NPs) for a 7-day exposure experiment, and a 14-day recovery experiment that followed. The aim was to evaluate the dynamic alterations in hepatic and branchial tissue damage, hepatic antioxidant capacity, as well as hepatic transcriptional and metabolic regulation in the red drum during exposure and post-exposure to PS-NPs. Histopathological observation found that PS-NPs primarily triggered hepatic lipid droplets and branchial epithelial liftings, a phenomenon persistently discernible up to the 14 days of recovery. Although antioxidant capacity partially recovered during recovery periods, PS-NPs resulted in a sustained reduction in hepatic antioxidant activity, causing oxidative damage throughout the entire exposure and recovery phases, as evidenced by decreased total superoxide dismutase activities and increased malondialdehyde content. At the transcriptional and metabolic level, PS-NPs primarily induced lipid metabolism disorders, DNA damage, biofilm disruption, and mitochondrial dysfunction. In the gene-metabolite correlation interaction network, numerous CcO (cytochrome c oxidase) family genes and lipid metabolites were identified as key regulatory genes and metabolites in detoxification processes. Among them, the red drum possesses one additional CcO6B in comparison to human and zebrafish, which potentially contributes to its enhanced capacity for maintaining a stable and positive regulatory function in detoxification. This study revealed that nanoplastics cause severe biotoxicity to red drum, which may be detrimental to the survival of wild populations and affect the economics of farmed populations.


Subject(s)
Perciformes , Water Pollutants, Chemical , Animals , Humans , Antioxidants/metabolism , Microplastics/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Perciformes/genetics , Perciformes/metabolism , Oxidative Stress , Polystyrenes/toxicity , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism
15.
Ecotoxicol Environ Saf ; 274: 116181, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38460406

ABSTRACT

The emergence of polyvinyl chloride (PVC) microplastics (MPs) as pollutants in agricultural soils is increasingly alarming, presenting significant toxic threats to soil ecosystems. Ajwain (Trachyspermum ammi L.), a plant of significant medicinal and culinary value, is increasingly subjected to environmental stressors that threaten its growth and productivity. This situation is particularly acute given the well-documented toxicity of chromium (Cr), which has been shown to adversely affect plant biomass and escalate risks to the productivity of such economically and therapeutically important species. The present study was conducted to investigate the individual effects of different levels of PVC-MPs (0, 2, and 4 mg L-1) and Cr (0, 150, and 300 mg kg-1) on various aspects of plant growth. Specifically, we examined growth and biomass, photosynthetic pigments, gas exchange attributes, oxidative stress responses, antioxidant compound activity (both enzymatic and nonenzymatic), gene expression, sugar content, nutritional status, organic acid exudation, and Cr accumulation in different parts of Ajwain (Trachyspermum ammi L.) seedlings, which were also exposed to varying levels of titanium dioxide (TiO2) nanoparticles (NPs) (0, 25, and 50 µg mL-1). Results from the present study showed that the increasing levels of Cr and PVC-MPs in soils significantly decreased plant growth and biomass, photosynthetic pigments, gas exchange attributes, sugars, and nutritional contents from the roots and shoots of the plants. Conversely, increasing levels of Cr and PVC-MPs in the soil increased oxidative stress indicators in term of malondialdehyde, hydrogen peroxide, and electrolyte leakage, and also increased organic acid exudation pattern in the roots of T. ammi seedlings. Interestingly, the application of TiO2-NPs counteracted the toxicity of Cr and PVC-MPs in T. ammi seedlings, leading to greater growth and biomass. This protective effect is facilitated by the NPs' ability to sequester reactive oxygen species, thereby reducing oxidative stress and lowering Cr concentrations in both the roots and shoots of the plants. Our research findings indicated that the application of TiO2-NPs has been shown to enhance the resilience of T. ammi seedlings to Cr and PVC-MPs toxicity, leading to not only improved biomass but also a healthier physiological state of the plants. This was demonstrated by a more balanced exudation of organic acids, which is a critical response mechanism to metal stress.


Subject(s)
Ammi , Soil Pollutants , Titanium , Antioxidants/metabolism , Ammi/metabolism , Microplastics/metabolism , Plastics/metabolism , Chromium/analysis , Ecosystem , Oxidative Stress , Soil , Gene Expression , Soil Pollutants/analysis
16.
Funct Integr Genomics ; 24(2): 46, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38429576

ABSTRACT

Cyanobacteria are oxygenic photosynthetic organisms which are found across many ecosystems, including freshwater and marine habitats. They are also found on natural and artificial surfaces. In this study, we cultured and characterise a novel cyanobacterium from the surfaces of foam microplastics of tropical coastal waters. We study the chemical ecology of this cyanobacterium, Sphaerothrix gracilis gen. et sp. nov., together with its potential to form harmful cyanobacterial blooms and bioremediation applications to combat plastic pollution. The genome of S. gracilis spanned 6.7 Mbp, with identification of antibiotic resistance, nitrogen-fixation, plastic-degrading and genes involved in harmful metabolite production. The transport of potentially harmful S. gracilis in coastal environments could have severe implications on human health and food security, especially in times of a cyanobacterial bloom.


Subject(s)
Cyanobacteria , Ecosystem , Humans , Microplastics/metabolism , Plastics/metabolism , Cyanobacteria/genetics , Cyanobacteria/metabolism , Nitrogen Fixation
17.
Environ Pollut ; 348: 123822, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38522609

ABSTRACT

Environmental pollution poses a significant and pressing threat to the overall well-being of aquatic ecosystems in modern society. This study showed that pollutants like dusts from AC filter, fan wings and Traffic dust PM 2.5 were exposed to Artemia salina in pristine form and in combination. The findings indicated that exposure to multi-pollutants had a detrimental effect on the hatching rates of A. salina cysts. Compared to untreated A. salina, the morphology of adult (7th day old) A. salina changed noticeably after each incubation period (24-120 h). Oxidative stress increased considerably as the exposure duration increased from 24 to 120 h compared to the control group. There was a time-dependent decline in antioxidant enzyme activity and total protein concentration. When all particles were used all together, the total protein content in A. salina decreased significantly. All particles showed a considerable decline in survival rate. Those exposed to traffic dust particles showed significantly higher levels of oxidative stress and antioxidant activity than those exposed to other particles.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Animals , Acetaminophen , Antioxidants/metabolism , Artemia/metabolism , Ecosystem , Environmental Pollutants/metabolism , Microplastics/metabolism , Plastics/metabolism , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism
18.
Sci Total Environ ; 926: 171817, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38513858

ABSTRACT

Polystyrene microplastic (PS-MPs) contamination has become a worldwide hotspot of concern, and its entry into organisms can cause oxidative stress resulting in multi-organ damage. The plasticizer di (2-ethylhexyl) phthalate (DEHP) is a common endocrine disruptor, these two environmental toxins often occur together, but their combined toxicity to the kidney and its mechanism of toxicity are unknown. Therefore, in this study, we established PS-MPS and/or DEHP-exposed mouse models. The results showed that alone exposure to both PS-MPs and DEHP caused inflammatory cell infiltration, cell membrane rupture, and content spillage in kidney tissues. There were also down-regulation of antioxidant enzyme levels, increased ROS content, activated of the NF-κB pathway, stimulated the levels of heat shock proteins (HSPs), pyroptosis, and inflammatory associated factors. Notably, the co-exposure group showed greater toxicity to kidney tissues, the cellular assay further validated these results. The introduction of the antioxidant n-acetylcysteine (NAC) and the NLRP3 inhibitor (MCC950) could mitigate the changes in the above measures. In summary, co-exposure of PS-MPs and DEHP induced oxidative stress that activated the NF-κB/NLRP3 pathway and aggravated kidney pyroptosis and inflammation, as well as that HSPs are also involved in this pathologic injury process. This study not only enriched the nephrotoxicity of plasticizers and microplastics, but also provided new insights into the toxicity mechanisms of multicomponent co-pollution in environmental.


Subject(s)
Diethylhexyl Phthalate , Microplastics , Oxidative Stress , Phthalic Acids , Pyroptosis , Animals , Mice , Antioxidants/metabolism , Diethylhexyl Phthalate/toxicity , Diethylhexyl Phthalate/metabolism , Inflammation/chemically induced , Kidney/metabolism , Microplastics/metabolism , Microplastics/toxicity , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Plasticizers/toxicity , Plasticizers/metabolism , Plastics/metabolism , Plastics/toxicity , Polystyrenes/toxicity , Polystyrenes/metabolism
19.
J Hazard Mater ; 469: 134086, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38521034

ABSTRACT

In this study, nanoplastic (NPs) at environmentally relevant concentration (0.001% w/w) had no effect on the growth of rice, while significantly elevated the phytotoxicity of As (III) by 9.4-22.8% based on the endpoints of biomass and photosynthesis. Mechanistically, NPs at 0.001% w/w enhanced As accumulation in the rice shoots and roots by 70.9% and 24.5%, respectively. Reasons of this finding can was that (1) the co-exposure with As and NPs significantly decreased abscisic acid content by 16.0% in rice, with subsequent increasing the expression of aquaporin related genes by 2.1- to 2.7-folds as compared with As alone treatment; (2) the presence of NPs significantly inhibited iron plaque formation on rice root surface by 22.5%. We firstly demonstrated that "Trojan horse effect" had no contribution to the enhancement of As accumulation by NPs exposure. Additionally, NPs disrupted the salicylic acid, jasmonic acid, and glutathione metabolism, which subsequently enhancing the oxidation (7.0%) and translocation (37.0%) of in planta As, and reducing arsenic detoxification pathways (e.g., antioxidative system (28.6-37.1%), As vacuolar sequestration (36.1%), and As efflux (18.7%)). Our findings reveal that the combined toxicity of NPs and traditional contaminations should be considered for realistic evaluations of NPs.


Subject(s)
Arsenic , Oryza , Arsenic/toxicity , Arsenic/metabolism , Oryza/metabolism , Plant Growth Regulators/metabolism , Microplastics/metabolism , Seedlings , Glutathione/metabolism , Plant Roots/metabolism
20.
Plant Physiol Biochem ; 208: 108531, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38513516

ABSTRACT

The occurrence of microplastics (MPs) and nanoplastics (NPs) in soils potentially induce morphological, physiological, and biochemical alterations in plants. The present study investigated the effects of MPs/NPs on lettuce (Lactuca sativa L. var. capitata) plants by focusing on (i) four different particle sizes of polyethylene micro- and nanoplastics, at (ii) four concentrations. Photosynthetic activity, morphological changes in plants, and metabolomic shifts in roots and leaves were investigated. Our findings revealed that particle size plays a pivotal role in influencing various growth traits of lettuce (biomass, color segmentation, greening index, leaf area, and photosynthetic activity), physiological parameters (including maximum quantum yield - Fv/Fmmax, or quantum yield in the steady-state Fv/FmLss, NPQLss, RfdLss, FtLss, FqLss), and metabolomic signatures. Smaller plastic sizes demonstrated a dose-dependent impact on aboveground plant structures, resulting in an overall elicitation of biosynthetic processes. Conversely, larger plastic size had a major impact on root metabolomics, leading to a negative modulation of biosynthetic processes. Specifically, the biosynthesis of secondary metabolites, phytohormone crosstalk, and the metabolism of lipids and fatty acids were among the most affected processes. In addition, nitrogen-containing compounds accumulated following plastic treatments. Our results highlighted a tight correlation between the qPCR analysis of genes associated with the soil nitrogen cycle (such as NifH, NirK, and NosZ), available nitrogen pools in soil (including NO3- and NH4), N-containing metabolites and morpho-physiological parameters of lettuce plants subjected to MPs/NPs. These findings underscore the intricate relationship between specific plastic contaminations, nitrogen dynamics, and plant performance.


Subject(s)
Lactuca , Microplastics , Microplastics/analysis , Microplastics/metabolism , Nitrogen/metabolism , Plant Leaves/metabolism , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...