Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81.685
Filter
1.
Commun Biol ; 7(1): 791, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951588

ABSTRACT

According to single-molecule localisation microscopy almost all plasma membrane proteins are clustered. We demonstrate that clusters can arise from variations in membrane topography where the local density of a randomly distributed membrane molecule to a degree matches the variations in the local amount of membrane. Further, we demonstrate that this false clustering can be differentiated from genuine clustering by using a membrane marker to report on local variations in the amount of membrane. In dual colour live cell single molecule localisation microscopy using the membrane probe DiI alongside either the transferrin receptor or the GPI-anchored protein CD59, we found that pair correlation analysis reported both proteins and DiI as being clustered, as did its derivative pair correlation-photoactivation localisation microscopy and nearest neighbour analyses. After converting the localisations into images and using the DiI image to factor out topography variations, no CD59 clusters were visible, suggesting that the clustering reported by the other methods is an artefact. However, the TfR clusters persisted after topography variations were factored out. We demonstrate that membrane topography variations can make membrane molecules appear clustered and present a straightforward remedy suitable as the first step in the cluster analysis pipeline.


Subject(s)
CD59 Antigens , Cell Membrane , Receptors, Transferrin , Single Molecule Imaging , Single Molecule Imaging/methods , Cell Membrane/metabolism , CD59 Antigens/metabolism , Receptors, Transferrin/metabolism , Humans , Membrane Proteins/metabolism , Cluster Analysis , Microscopy, Fluorescence/methods
2.
Commun Biol ; 7(1): 799, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956304

ABSTRACT

In this paper, we propose a fluorescence-lifetime imaging microscopy (FLIM) multiplexing system based on the fluorogen-activating protein FAST. This genetically encoded fluorescent labeling platform employs FAST mutants that activate the same fluorogen but provide different fluorescence lifetimes for each specific protein-dye pair. All the proposed probes with varying lifetimes possess nearly identical and the smallest-in-class size, along with quite similar steady-state optical properties. In live mammalian cells, we target these chemogenetic tags to two intracellular structures simultaneously, where their fluorescence signals are clearly distinguished by FLIM. Due to the unique structure of certain fluorogens under study, their complexes with FAST mutants display a monophasic fluorescence decay, which may facilitate enhanced multiplexing efficiency by reducing signal cross-talks and providing optimal prerequisites for signal separation upon co-localized and/or spatially overlapped labeling.


Subject(s)
Fluorescent Dyes , Microscopy, Fluorescence , Microscopy, Fluorescence/methods , Fluorescent Dyes/chemistry , Humans , Animals , Fluorescence , Mutation
3.
Methods Enzymol ; 700: 385-411, 2024.
Article in English | MEDLINE | ID: mdl-38971608

ABSTRACT

Plasma membranes are flexible and can exhibit numerous shapes below the optical diffraction limit. The shape of cell periphery can either induce or be a product of local protein density changes, encoding numerous cellular functions. However, quantifying membrane curvature and the ensuing sorting of proteins in live cells remains technically demanding. Here, we demonstrate the use of simple widefield fluorescence microscopy to study the geometrical properties (i.e., radius, length, and number) of thin membrane protrusions. Importantly, the quantification of protrusion radius establishes a platform for studying the curvature preferences of membrane proteins.


Subject(s)
Membrane Proteins , Microscopy, Fluorescence , Protein Transport , Microscopy, Fluorescence/methods , Humans , Membrane Proteins/metabolism , Membrane Proteins/analysis , Cell Membrane/metabolism , Cell Membrane/chemistry , Cell Surface Extensions/metabolism , Cell Surface Extensions/ultrastructure , Animals
5.
Methods Enzymol ; 700: 413-454, 2024.
Article in English | MEDLINE | ID: mdl-38971609

ABSTRACT

A popular strategy for therapeutic delivery to cells and tissues is to encapsulate therapeutics inside particles that cells internalize via endocytosis. The efficacy of particle uptake by endocytosis is often studied in bulk using flow cytometry and Western blot analysis and confirmed using confocal microscopy. However, these techniques do not reveal the detailed dynamics of particle internalization and how the inherent heterogeneity of many types of particles may impact their endocytic uptake. Toward addressing these gaps, here we present a live-cell imaging-based method that utilizes total internal reflection fluorescence microscopy to track the uptake of a large ensemble of individual particles in parallel, as they interact with the cellular endocytic machinery. To analyze the resulting data, we employ an open-source tracking algorithm in combination with custom data filters. This analysis reveals the dynamic interactions between particles and endocytic structures, which determine the probability of particle uptake. In particular, our approach can be used to examine how variations in the physical properties of particles (size, targeting, rigidity), as well as heterogeneity within the particle population, impact endocytic uptake. These data impact the design of particles toward more selective and efficient delivery of therapeutics to cells.


Subject(s)
Clathrin , Endocytosis , Endocytosis/physiology , Humans , Clathrin/metabolism , Microscopy, Fluorescence/methods , Animals , Algorithms
6.
PLoS One ; 19(7): e0306073, 2024.
Article in English | MEDLINE | ID: mdl-38995963

ABSTRACT

Analyzing tissue microstructure is essential for understanding complex biological systems in different species. Tissue functions largely depend on their intrinsic tissue architecture. Therefore, studying the three-dimensional (3D) microstructure of tissues, such as the liver, is particularly fascinating due to its conserved essential roles in metabolic processes and detoxification. Here, we present TiMiGNet, a novel deep learning approach for virtual 3D tissue microstructure reconstruction using Generative Adversarial Networks and fluorescence microscopy. TiMiGNet overcomes challenges such as poor antibody penetration and time-intensive procedures by generating accurate, high-resolution predictions of tissue components across large volumes without the need of paired images as input. We applied TiMiGNet to analyze tissue microstructure in mouse and human liver tissue. TiMiGNet shows high performance in predicting structures like bile canaliculi, sinusoids, and Kupffer cell shapes from actin meshwork images. Remarkably, using TiMiGNet we were able to computationally reconstruct tissue structures that cannot be directly imaged due experimental limitations in deep dense tissues, a significant advancement in deep tissue imaging. Our open-source virtual prediction tool facilitates accessible and efficient multi-species tissue microstructure analysis, accommodating researchers with varying expertise levels. Overall, our method represents a powerful approach for studying tissue microstructure, with far-reaching applications in diverse biological contexts and species.


Subject(s)
Deep Learning , Liver , Humans , Animals , Mice , Imaging, Three-Dimensional/methods , Microscopy, Fluorescence/methods , Image Processing, Computer-Assisted/methods
7.
J Extracell Vesicles ; 13(7): e12469, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38965984

ABSTRACT

Extracellular vesicles (EVs) play key roles in diverse biological processes, transport biomolecules between cells and have been engineered for therapeutic applications. A useful EV bioengineering strategy is to express engineered proteins on the EV surface to confer targeting, bioactivity and other properties. Measuring how incorporation varies across a population of EVs is important for characterising such materials and understanding their function, yet it remains challenging to quantitatively characterise the absolute number of engineered proteins incorporated at single-EV resolution. To address these needs, we developed a HaloTag-based characterisation platform in which dyes or other synthetic species can be covalently and stoichiometrically attached to engineered proteins on the EV surface. To evaluate this system, we employed several orthogonal quantification methods, including flow cytometry and fluorescence microscopy, and found that HaloTag-mediated quantification is generally robust across EV analysis methods. We compared HaloTag-labelling to antibody-labelling of EVs using single vesicle flow cytometry, enabling us to measure the substantial degree to which antibody labelling can underestimate proteins present on an EV. Finally, we demonstrate the use of HaloTag to compare between protein designs for EV bioengineering. Overall, the HaloTag system is a useful EV characterisation tool which complements and expands existing methods.


Subject(s)
Extracellular Vesicles , Flow Cytometry , Extracellular Vesicles/metabolism , Humans , Flow Cytometry/methods , Protein Engineering/methods , Microscopy, Fluorescence/methods , Bioengineering/methods
8.
Methods Mol Biol ; 2824: 165-188, 2024.
Article in English | MEDLINE | ID: mdl-39039413

ABSTRACT

Rift Valley fever virus (RVFV) is a mosquito-borne pathogen that represents a significant threat to both human and veterinary public health. Since its discovery in the Great Rift Valley of Kenya in the 1930s, the virus has spread across Africa and beyond, now posing a risk of introduction into Southern Europe and Asia. Despite recent progresses, early RVFV-host cell interactions remain largely uncharacterized. In this method chapter, we delineate the procedure for labeling RVFV particles with fluorescent organic dyes. This approach makes it feasible to visualize single viral particles in both fixed and living cells and study RVFV entry into host cells. We provide additional examples with two viruses closely related to RVFV, namely, Toscana virus and Uukuniemi virus. Furthermore, we illustrate how to utilize fluorescent viral particles to examine and quantify each step of the cell entry program of RVFV, which includes state-of-the-art fluorescence-based detection techniques such as fluorescence microscopy, flow cytometry, and fluorimetry.


Subject(s)
Fluorescent Dyes , Microscopy, Fluorescence , Rift Valley fever virus , Virion , Rift Valley fever virus/isolation & purification , Humans , Virion/isolation & purification , Animals , Fluorescent Dyes/chemistry , Microscopy, Fluorescence/methods , Flow Cytometry/methods , Virus Internalization , Rift Valley Fever/virology , Rift Valley Fever/diagnosis , Staining and Labeling/methods , Cell Line
9.
Nat Commun ; 15(1): 5813, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987559

ABSTRACT

Total internal reflection fluorescence (TIRF) microscopy offers powerful means to uncover the functional organization of proteins in the plasma membrane with very high spatial and temporal resolution. Traditional TIRF illumination, however, shows a Gaussian intensity profile, which is typically deteriorated by overlaying interference fringes hampering precise quantification of intensities-an important requisite for quantitative analyses in single-molecule localization microscopy (SMLM). Here, we combine flat-field illumination by using a standard πShaper with multi-angular TIR illumination by incorporating a spatial light modulator compatible with fast super-resolution structured illumination microscopy (SIM). This distinct combination enables quantitative multi-color SMLM with a highly homogenous illumination. By using a dual camera setup with optimized image splitting optics, we achieve a versatile combination of SMLM and SIM with up to three channels. We deploy this setup for establishing robust detection of receptor stoichiometries based on single-molecule intensity analysis and single-molecule Förster resonance energy transfer (smFRET). Homogeneous illumination furthermore enables long-term tracking and localization microscopy (TALM) of cell surface receptors identifying spatial heterogeneity of mobility and accessibility in the plasma membrane. By combination of TALM and SIM, spatially and molecularly heterogenous diffusion properties can be correlated with nanoscale cytoskeletal organization and dynamics.


Subject(s)
Cell Membrane , Fluorescence Resonance Energy Transfer , Microscopy, Fluorescence , Single Molecule Imaging , Cell Membrane/metabolism , Single Molecule Imaging/methods , Microscopy, Fluorescence/methods , Fluorescence Resonance Energy Transfer/methods , Humans , Animals
10.
Methods Mol Biol ; 2819: 189-223, 2024.
Article in English | MEDLINE | ID: mdl-39028508

ABSTRACT

All DNA-binding proteins in vivo exist as a population of freely diffusing molecules and of DNA-bound molecules. The molecules bound to DNA can be split into specifically/tightly and nonspecifically bound proteins. Single-molecule tracking (SMT) is a method allowing to visualize protein dynamics in living cells, revealing their behavior in terms of mode of motion, diffusion coefficient/speed, change of dwell times, and unveiling preferred subcellular sites of dwelling. Bleaching-type SMT or fluorescent protein-tagged SMT involves rapid laser-induced bleaching of most fluorophore-labeled molecules. The remaining single fluorescent proteins are then continuously tracked. The trajectories of several fluorescent molecules per cell for a population of cells are analyzed and combined to permit a robust analysis of average behavior of single molecules in live cells, including analyses of protein dynamics in mutant cells or cells exposed to changes in environmental conditions.In this chapter, we describe the preparation of Bacillus subtilis cells, the recording of movies of those cells expressing a monomeric variant of a yellow fluorescent protein (mNeonGreen) fused to a protein of choice, and the subsequent curation of the movie data including the statistical analysis of the protein dynamics. We present a short overview of the analysis program SMTracker 2.0, highlighting its ability to analyze SMT data by non-expert scientists.


Subject(s)
Bacillus subtilis , DNA-Binding Proteins , Single Molecule Imaging , Single Molecule Imaging/methods , Bacillus subtilis/metabolism , Bacillus subtilis/genetics , DNA-Binding Proteins/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Microscopy, Fluorescence/methods , Luminescent Proteins/metabolism , Luminescent Proteins/genetics
11.
Nat Biomed Eng ; 8(6): 672-688, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38987630

ABSTRACT

The most widely used fluorophore in glioma-resection surgery, 5-aminolevulinic acid (5-ALA), is thought to cause the selective accumulation of fluorescent protoporphyrin IX (PpIX) in tumour cells. Here we show that the clinical detection of PpIX can be improved via a microscope that performs paired stimulated Raman histology and two-photon excitation fluorescence microscopy (TPEF). We validated the technique in fresh tumour specimens from 115 patients with high-grade gliomas across four medical institutions. We found a weak negative correlation between tissue cellularity and the fluorescence intensity of PpIX across all imaged specimens. Semi-supervised clustering of the TPEF images revealed five distinct patterns of PpIX fluorescence, and spatial transcriptomic analyses of the imaged tissue showed that myeloid cells predominate in areas where PpIX accumulates in the intracellular space. Further analysis of external spatially resolved metabolomics, transcriptomics and RNA-sequencing datasets from glioblastoma specimens confirmed that myeloid cells preferentially accumulate and metabolize PpIX. Our findings question 5-ALA-induced fluorescence in glioma cells and show how 5-ALA and TPEF imaging can provide a window into the immune microenvironment of gliomas.


Subject(s)
Brain Neoplasms , Glioma , Protoporphyrins , Spectrum Analysis, Raman , Protoporphyrins/metabolism , Humans , Glioma/pathology , Glioma/metabolism , Glioma/surgery , Glioma/diagnostic imaging , Spectrum Analysis, Raman/methods , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/surgery , Brain Neoplasms/diagnostic imaging , Microscopy, Fluorescence/methods , Aminolevulinic Acid/metabolism , Female , Male
13.
Methods Mol Biol ; 2814: 133-147, 2024.
Article in English | MEDLINE | ID: mdl-38954203

ABSTRACT

Activation processes at the plasma membrane have been studied with life-cell imaging using GFP fused to a protein that binds to a component of the activation process. In this way, PIP3 formation has been monitored with CRAC-GFP, Ras-GTP with RBD-Raf-GFP, and Rap-GTP with Ral-GDS-GFP. The fluorescent sensors translocate from the cytoplasm to the plasma membrane upon activation of the process. Although this translocation assay can provide very impressive images and movies, the method is not very sensitive, and amount of GFP-sensor at the plasma membrane is not linear with the amount of activator. The fluorescence in pixels at the cell boundary is partly coming from the GFP-sensor that is bound to the activated membrane and partly from unbound GFP-sensor in the cytosolic volume of that boundary pixel. The variable and unknown amount of cytosol in boundary pixels causes the low sensitivity and nonlinearity of the GFP-translocation assay. Here we describe a method in which the GFP-sensor is co-expressed with cytosolic-RFP. For each boundary pixels, the RFP fluorescence is used to determine the amount of cytosol of that pixel and is subtracted from the GFP fluorescence of that pixel yielding the amount of GFP-sensor that is specifically associated with the plasma membrane in that pixel. This GRminusRD method using GFP-sensor/RFP is at least tenfold more sensitive, more reproducible, and linear with activator compared to GFP-sensor alone.


Subject(s)
Cell Membrane , Green Fluorescent Proteins , Cell Membrane/metabolism , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/genetics , Humans , Luminescent Proteins/metabolism , Luminescent Proteins/genetics , Protein Transport , Microscopy, Fluorescence/methods , Cytosol/metabolism , Animals
14.
J Phys Chem B ; 128(28): 6751-6759, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38955346

ABSTRACT

Protein labeling through transient and repetitive hybridization of short, fluorophore-labeled DNA oligonucleotides has become widely applied in various optical super-resolution microscopy methods. The main advantages are multitarget imaging and molecular quantification. A challenge is the high background signal originating from the presence of unbound fluorophore-DNA labels in solution. Here, we report the self-quenching of fluorophore dimers conjugated to DNA oligonucleotides as a general concept to reduce the fluorescence background. Upon hybridization, the fluorescence signals of both fluorophores are restored. We expand the toolbox of fluorophores suitable for self-quenching and report their spectra and hybridization equilibria. We apply self-quenched fluorophore-DNA labels to stimulated emission depletion microscopy and single-molecule localization microscopy and report improved imaging performances.


Subject(s)
DNA , Fluorescent Dyes , Microscopy, Fluorescence , Fluorescent Dyes/chemistry , DNA/chemistry , Nucleic Acid Hybridization , Oligonucleotides/chemistry
15.
Nat Commun ; 15(1): 5521, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951553

ABSTRACT

The microgeometry of the cellular microenvironment profoundly impacts cellular behaviors, yet the link between it and the ubiquitously expressed mechanosensitive ion channel PIEZO1 remains unclear. Herein, we describe a fluorescent micropipette aspiration assay that allows for simultaneous visualization of intracellular calcium dynamics and cytoskeletal architecture in real-time, under varied micropipette geometries. By integrating elastic shell finite element analysis with fluorescent lifetime imaging microscopy and employing PIEZO1-specific transgenic red blood cells and HEK cell lines, we demonstrate a direct correlation between the microscale geometry of aspiration and PIEZO1-mediated calcium signaling. We reveal that increased micropipette tip angles and physical constrictions lead to a significant reorganization of F-actin, accumulation at the aspirated cell neck, and subsequently amplify the tension stress at the dome of the cell to induce more PIEZO1's activity. Disruption of the F-actin network or inhibition of its mobility leads to a notable decline in PIEZO1 mediated calcium influx, underscoring its critical role in cellular mechanosensing amidst geometrical constraints.


Subject(s)
Actins , Calcium , Cytoskeleton , Ion Channels , Mechanotransduction, Cellular , Humans , Ion Channels/metabolism , Actins/metabolism , HEK293 Cells , Cytoskeleton/metabolism , Calcium/metabolism , Calcium Signaling/physiology , Finite Element Analysis , Animals , Microscopy, Fluorescence/methods
16.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(6): 527-531, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38952092

ABSTRACT

Objective To explore a simple and feasible method for whole-mount immunofluorescence staining of lymphatic vessels in the ApoE-/- mouse model of atherosclerosis. Methods Aortic specimens were carefully excised from the ApoE-/- mouse model. Following immunostaining with specific antibodies against smooth muscle actin (SMA) and lymphatic vessel endothelial receptor 1 (LYVE1), the aortas, including the aortic root, were subjected to a 30-minute treatment with 5 g/L Sudan Black B solution. This step was instrumental in minimizing the autofluorescent background of the tissue. Thereafter, the aortas were processed through a clearing protocol and imaged within a purpose-built chamber under a fluorescence microscope. Results The pretreatment with 5 g/L Sudan Black B effectively suppressed the autofluorescent signals emanating from the vascular structures, thereby enhancing the contrast and clarity of the specific fluorescence signals associated with the lymphatic vessels. This enhancement in signal quality did not compromise the integrity or specificity of the immunofluorescent markers. Conclusion A facile, highly specific, and effective approach for the visualization of lymphatic vessels in whole-mount aortic preparations from ApoE-/- mice is established.


Subject(s)
Aorta , Apolipoproteins E , Fluorescent Antibody Technique , Lymphatic Vessels , Animals , Lymphatic Vessels/metabolism , Lymphatic Vessels/diagnostic imaging , Mice , Aorta/metabolism , Apolipoproteins E/genetics , Apolipoproteins E/deficiency , Apolipoproteins E/metabolism , Fluorescent Antibody Technique/methods , Adventitia/metabolism , Atherosclerosis/metabolism , Atherosclerosis/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Staining and Labeling/methods , Microscopy, Fluorescence/methods
17.
Nanoscale ; 16(28): 13677-13686, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38967236

ABSTRACT

Leptospirosis is a global public health problem caused by Gram-negative pathogenic bacteria belonging to the genus Leptospira. The disease is transmitted through the urine of infected animals, which contaminates water and soil, leading to the infection of other animals and humans. Currently, several approaches exist to detect these bacteria; however, a new sensitive method for the live-cell imaging of Leptospira is required. In this study, we report the green synthesis of cadmium telluride quantum dots (CdTe QDs) which are unique fluorescent nanocrystals with a high fluorescence quantum yield capable of modifying cell surfaces and are biocompatible with cells. The fabrication of QDs with concanavalin A (ConA), a carbohydrate-binding lectin and known biological probe for Gram-negative bacteria, produced ConA-QDs which can effectively bind on Leptospira and exhibit strong fluorescence under simple fluorescence microscopy, allowing the live-cell imaging of the bacteria. Overall, we performed the simple synthesis of ConA-QDs and demonstrated their potential use as versatile fluorescent probes for the live-cell imaging of Leptospira. This technique could be further applied to track leptospiral cells and study the infection mechanism, contributing to a more thorough understanding of leptospirosis and how to control it in the future.


Subject(s)
Leptospira , Quantum Dots , Quantum Dots/chemistry , Fluorescent Dyes/chemistry , Cadmium Compounds/chemistry , Tellurium/chemistry , Concanavalin A/chemistry , Canavalia/chemistry , Biocompatible Materials/chemistry , Microscopy, Fluorescence
18.
Mikrochim Acta ; 191(8): 466, 2024 07 17.
Article in English | MEDLINE | ID: mdl-39017814

ABSTRACT

The CRISPR/Cas13 nucleases have been widely documented for nucleic acid detection. Understanding the intricacies of CRISPR/Cas13's reaction components is pivotal for harnessing its full potential for biosensing applications. Herein, we report on the influence of CRISPR/Cas13a reaction components on its trans-cleavage activity and the development of an on-chip total internal reflection fluorescence microscopy (TIRFM)-powered RNA sensing system. We used SARS-CoV-2 synthetic RNA and pseudovirus as a model system. Our results show that optimizing Mg2+ concentration, reporter length, and crRNA combination significantly improves the detection sensitivity. Under optimized conditions, we detected 100 fM unamplified SARS-CoV-2 synthetic RNA using a microtiter plate reader. To further improve sensitivity and provide a new amplification-free RNA sensing toolbox, we developed a TIRFM-based amplification-free RNA sensing system. We were able to detect RNA down to 100 aM. Furthermore, the TIRM-based detection system developed in this study is 1000-fold more sensitive than the off-coverslip assay. The possible clinical applicability of the system was demonstrated by detecting SARS-CoV-2 pseudovirus RNA. Our proposed sensing system has the potential to detect any target RNA with slight modifications to the existing setup, providing a universal RNA detection platform.


Subject(s)
CRISPR-Cas Systems , RNA, Viral , SARS-CoV-2 , SARS-CoV-2/genetics , RNA, Viral/analysis , RNA, Viral/genetics , Humans , COVID-19/diagnosis , COVID-19/virology , Biosensing Techniques/methods , CRISPR-Associated Proteins , Microscopy, Fluorescence , Lab-On-A-Chip Devices , Limit of Detection , Magnesium/chemistry , COVID-19 Nucleic Acid Testing/methods
19.
J Biomed Opt ; 29(Suppl 2): S22712, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39015510

ABSTRACT

Significance: Label-free quantitative phase imaging can potentially measure cellular dynamics with minimal perturbation, motivating efforts to develop faster and more sensitive instrumentation. We characterize fast, single-shot quantitative phase gradient microscopy (ss-QPGM) that simultaneously acquires multiple polarization components required to reconstruct phase images. We integrate a computationally efficient least squares algorithm to provide real-time, video-rate imaging (up to 75 frames / s ). The developed instrument was used to observe changes in cellular morphology and correlate these to molecular measures commonly obtained by staining. Aim: We aim to characterize a fast approach to ss-QPGM and record morphological changes in single-cell phase images. We also correlate these with biochemical changes indicating cell death using concurrently acquired fluorescence images. Approach: Here, we examine nutrient deprivation and anticancer drug-induced cell death in two different breast cell lines, viz., M2 and MCF7. Our approach involves in-line measurements of ss-QPGM and fluorescence imaging of the cells biochemically labeled for viability. Results: We validate the accuracy of the phase measurement using a USAF1951 pattern phase target. The ss-QPGM system resolves 912.3 lp / mm , and our analysis scheme accurately retrieves the phase with a high correlation coefficient ( ∼ 0.99 ), as measured by calibrated sample thicknesses. Analyzing the contrast in phase, we estimate the spatial resolution achievable to be 0.55 µ m for this microscope. ss-QPGM time-lapse live-cell imaging reveals multiple intracellular and morphological changes during biochemically induced cell death. Inferences from co-registered images of quantitative phase and fluorescence suggest the possibility of necrosis, which agrees with previous findings. Conclusions: Label-free ss-QPGM with high-temporal resolution and high spatial fidelity is demonstrated. Its application for monitoring dynamic changes in live cells offers promising prospects.


Subject(s)
Algorithms , Humans , Image Processing, Computer-Assisted/methods , Cell Line, Tumor , Microscopy, Phase-Contrast/methods , MCF-7 Cells , Microscopy, Fluorescence/methods
20.
Nat Biotechnol ; 42(7): 1026, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39020198
SELECTION OF CITATIONS
SEARCH DETAIL
...