Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 16.535
Filter
1.
Med Oncol ; 41(6): 137, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38705933

ABSTRACT

Metastasis poses a significant challenge in combating tumors. Even in papillary thyroid cancer (PTC), which typically exhibits a favorable prognosis, high recurrence rates are attributed to metastasis. Cytoplasmic linker protein 170 (CLIP170) functions as a classical microtubule plus-end tracking protein (+TIP) and has shown close association with cell migration. Nevertheless, the specific impact of CLIP170 on PTC cells remains to be elucidated. Our analysis of the GEO and TCGA databases unveiled an association between CLIP170 and the progression of PTC. To explore the impact of CLIP170 on PTC cells, we conducted various assays. We evaluated its effects through CCK-8, wound healing assay, and transwell assay after knocking down CLIP170. Additionally, the influence of CLIP170 on the cellular actin structure was examined via immunofluorescence; we further investigated the molecular expressions of epithelial-mesenchymal transition (EMT) and the transforming growth factor-ß (TGF-ß) signaling pathways through Western blotting and RT-qPCR. These findings were substantiated through an in vivo nude mouse model of lung metastasis. We observed a decreased expression of CLIP170 in PTC in contrast to normal thyroid tissue. Functionally, the knockdown of CLIP170 (CLIP170KD) notably enhanced the metastatic potential and EMT of PTC cells, both in vitro and in vivo. Mechanistically, CLIP170KD triggered the activation of the TGF-ß pathway, subsequently promoting tumor cell migration, invasion, and EMT. Remarkably, the TGF-ß inhibitor LY2157299 effectively countered TGF-ß activity and significantly reversed tumor metastasis and EMT induced by CLIP170 knockdown. In summary, these findings collectively propose CLIP170 as a promising therapeutic target to mitigate metastatic tendencies in PTC.


Subject(s)
Epithelial-Mesenchymal Transition , Microtubule-Associated Proteins , Neoplasm Proteins , Signal Transduction , Thyroid Cancer, Papillary , Thyroid Neoplasms , Transforming Growth Factor beta , Animals , Female , Humans , Male , Mice , Cell Line, Tumor , Cell Movement , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Lung Neoplasms/genetics , Mice, Nude , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Neoplasm Metastasis , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/metabolism , Thyroid Cancer, Papillary/genetics , Thyroid Neoplasms/pathology , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/genetics , Transforming Growth Factor beta/metabolism
2.
Yi Chuan ; 46(5): 398-407, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38763774

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive, chronic, and irreversible interstitial lung disease with unknown cause. To explore the role and regulatory mechanism of leucine-rich repeat-containing protein 15 (LRRC15) in IPF, bleomycin (BLM)-induced pulmonary fibrosis in mouse and A549 cells were constructed, and the expression of LRRC15 were detected. Then, MTT, GFP-RFP-LC3 dual fluorescent labeling system and Western blotting were used to investigate the effects of LRRC15 on cell activity and autophagy after transfection of siLRRC15, respectively. The results indicated that the expression of LRRC15 was significantly increased after the BLM treatment in mouse lung tissue and A549 cells. The designed and synthesized siLRRC15 followed by transfection into A549 cells resulted in a dramatic reduction in LRRC15 expression and partially restored the cell damage induced by BLM. Moreover, the expression of LC3-II and P62 were up-regulated, the amount of autophagosome were increased by GFP-RFP-LC3 dual fluorescent labeling assay after BLM treatment. Meanwhile, this study also showed that the key autophagy proteins LC3-II, ATG5 and ATG7 were up-regulated, P62 was down-regulated and autophagic flux were enhanced after further treatment of A549 cells with siLRRC15. The above findings suggest that LRRC15 is an indicator of epithelial cell damage and may participate in the regulation of fibrosis through autophagy mechanism in IPF. This study provides necessary theoretical basis for further elucidating the mechanism of IPF.


Subject(s)
Autophagy , Bleomycin , Animals , Humans , Male , Mice , A549 Cells , Autophagy/drug effects , Bleomycin/pharmacology , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/genetics , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism
3.
Nat Commun ; 15(1): 4467, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796459

ABSTRACT

As daughter centrioles assemble during G2, they recruit conserved Ana3/RTTN followed by its partner Rcd4/PPP1R35. Together, this contributes to the subsequent recruitment of Ana1/CEP295, required for the centriole's conversion to a centrosome. Here, we show that Rcd4/PPP1R35 is also required to maintain 9-fold centriole symmetry in the Drosophila male germline; its absence causes microtubule triplets to disperse into a reduced number of doublet or singlet microtubules. rcd4-null mutant spermatocytes display skinny centrioles that elongate normally and localize centriolar components correctly. Mutant spermatocytes also have centrioles of normal girth that splay at their proximal ends when induced to elongate by Ana1 overexpression. Skinny and splayed spermatid centrioles can still recruit a proximal centriole-like (PCL) structure marking a capability to initiate features of centriole duplication in developing sperm. Thus, stable 9-fold symmetry of microtubule triplets is not essential for centriole growth, correct longitudinal association of centriole components, and aspects of centriole duplication.


Subject(s)
Centrioles , Drosophila Proteins , Microtubules , Spermatocytes , Centrioles/metabolism , Centrioles/ultrastructure , Centrioles/genetics , Animals , Male , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Spermatocytes/metabolism , Microtubules/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Spermatids/metabolism , Spermatids/cytology , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Mutation , Drosophila
4.
PeerJ ; 12: e17032, 2024.
Article in English | MEDLINE | ID: mdl-38770093

ABSTRACT

Purpose: This study seeks to identify potential clinical biomarkers for osteoarthritis (OA) using bioinformatics and investigate OA mechanisms through cellular assays. Methods: Differentially Expressed Genes (DEGs) from GSE52042 (four OA samples, four control samples) were screened and analyzed with protein-protein interaction (PPI) analysis. Overlapping genes in GSE52042 and GSE206848 (seven OA samples, and seven control samples) were identified and evaluated using Gene Set Enrichment Analysis (GSEA) and clinical diagnostic value analysis to determine the hub gene. Finally, whether and how the hub gene impacts LPS-induced OA progression was explored by in vitro experiments, including Western blotting (WB), co-immunoprecipitation (Co-IP), flow cytometry, etc. Result: Bioinformatics analysis of DEGs (142 up-regulated and 171 down-regulated) in GSE52042 identified two overlapping genes (U2AF2, TPX2) that exhibit significant clinical diagnostic value. These genes are up-regulated in OA samples from both GSE52042 and GSE206848 datasets. Notably, TPX2, which AUC = 0.873 was identified as the hub gene. In vitro experiments have demonstrated that silencing TPX2 can alleviate damage to chondrocytes induced by lipopolysaccharide (LPS). Furthermore, there is a protein interaction between TPX2 and MMP13 in OA. Excessive MMP13 can attenuate the effects of TPX2 knockdown on LPS-induced changes in OA protein expression, cell growth, and apoptosis. Conclusion: In conclusion, our findings shed light on the molecular mechanisms of OA and suggested TPX2 as a potential therapeutic target. TPX2 could promote the progression of LPS-induced OA by up-regulating the expression of MMP13, which provides some implications for clinical research.


Subject(s)
Cell Cycle Proteins , Chondrocytes , Disease Progression , Lipopolysaccharides , Matrix Metalloproteinase 13 , Microtubule-Associated Proteins , Osteoarthritis , Up-Regulation , Lipopolysaccharides/pharmacology , Osteoarthritis/genetics , Osteoarthritis/metabolism , Osteoarthritis/pathology , Osteoarthritis/chemically induced , Humans , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 13/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chondrocytes/metabolism , Chondrocytes/pathology , Chondrocytes/drug effects , Computational Biology , Protein Interaction Maps
5.
Elife ; 122024 May 17.
Article in English | MEDLINE | ID: mdl-38757694

ABSTRACT

The fragile X syndrome (FXS) represents the most prevalent form of inherited intellectual disability and is the first monogenic cause of autism spectrum disorder. FXS results from the absence of the RNA-binding protein FMRP (fragile X messenger ribonucleoprotein). Neuronal migration is an essential step of brain development allowing displacement of neurons from their germinal niches to their final integration site. The precise role of FMRP in neuronal migration remains largely unexplored. Using live imaging of postnatal rostral migratory stream (RMS) neurons in Fmr1-null mice, we observed that the absence of FMRP leads to delayed neuronal migration and altered trajectory, associated with defects of centrosomal movement. RNA-interference-induced knockdown of Fmr1 shows that these migratory defects are cell-autonomous. Notably, the primary Fmrp mRNA target implicated in these migratory defects is microtubule-associated protein 1B (MAP1B). Knocking down MAP1B expression effectively rescued most of the observed migratory defects. Finally, we elucidate the molecular mechanisms at play by demonstrating that the absence of FMRP induces defects in the cage of microtubules surrounding the nucleus of migrating neurons, which is rescued by MAP1B knockdown. Our findings reveal a novel neurodevelopmental role for FMRP in collaboration with MAP1B, jointly orchestrating neuronal migration by influencing the microtubular cytoskeleton.


Subject(s)
Cell Movement , Fragile X Mental Retardation Protein , Mice, Knockout , Microtubule-Associated Proteins , Neurons , Fragile X Mental Retardation Protein/metabolism , Fragile X Mental Retardation Protein/genetics , Animals , Neurons/metabolism , Neurons/physiology , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Mice , Fragile X Syndrome/metabolism , Fragile X Syndrome/genetics , Gene Knockdown Techniques
6.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732079

ABSTRACT

Long-term spaceflight is known to induce disruptions in circadian rhythms, which are driven by a central pacemaker located in the suprachiasmatic nucleus (SCN) of the hypothalamus, but the underlying molecular mechanisms remain unclear. Here, we developed a rat model that simulated microgravity and isolation environments through tail suspension and isolation (TSI). We found that the TSI environment imposed circadian disruptions to the core body temperature, heart rate, and locomotor-activity rhythms of rats, especially in the amplitude of these rhythms. In TSI model rats' SCNs, the core circadian gene NR1D1 showed higher protein but not mRNA levels along with decreased BMAL1 levels, which indicated that NR1D1 could be regulated through post-translational regulation. The autophagosome marker LC3 could directly bind to NR1D1 via the LC3-interacting region (LIR) motifs and induce the degradation of NR1D1 in a mitophagy-dependent manner. Defects in mitophagy led to the reversal of NR1D1 degradation, thereby suppressing the expression of BMAL1. Mitophagy deficiency and subsequent mitochondrial dysfunction were observed in the SCN of TSI models. Urolithin A (UA), a mitophagy activator, demonstrated an ability to enhance the amplitude of core body temperature, heart rate, and locomotor-activity rhythms by prompting mitophagy induction to degrade NR1D1. Cumulatively, our results demonstrate that mitophagy exerts circadian control by regulating NR1D1 degradation, revealing mitophagy as a potential target for long-term spaceflight as well as diseases with SCN circadian disruption.


Subject(s)
ARNTL Transcription Factors , Circadian Rhythm , Mitophagy , Nuclear Receptor Subfamily 1, Group D, Member 1 , Animals , Rats , Circadian Rhythm/physiology , Male , ARNTL Transcription Factors/metabolism , ARNTL Transcription Factors/genetics , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Weightlessness Simulation , Suprachiasmatic Nucleus/metabolism , Suprachiasmatic Nucleus/physiology , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Body Temperature , Heart Rate , Rats, Sprague-Dawley , Proteolysis
7.
Neoplasia ; 53: 101003, 2024 07.
Article in English | MEDLINE | ID: mdl-38759377

ABSTRACT

Dynamic changes in the endoplasmic reticulum (ER) morphology are central to maintaining cellular homeostasis. Microtubules (MT) facilitate the continuous remodeling of the ER network into sheets and tubules by coordinating with many ER-shaping protein complexes, although how this process is controlled by extracellular signals remains unknown. Here we report that TAK1, a kinase responsive to various growth factors and cytokines including TGF-ß and TNF-α, triggers ER tubulation by activating αTAT1, an MT-acetylating enzyme that enhances ER-sliding. We show that this TAK1/αTAT1-dependent ER remodeling promotes cell survival by actively downregulating BOK, an ER membrane-associated proapoptotic effector. While BOK is normally protected from degradation when complexed with IP3R, it is rapidly degraded upon their dissociation during the ER sheets-to-tubules conversion. These findings demonstrate a distinct mechanism of ligand-induced ER remodeling and suggest that the TAK1/αTAT1 pathway may be a key target in ER stress and dysfunction.


Subject(s)
Endoplasmic Reticulum , MAP Kinase Kinase Kinases , Microtubules , Signal Transduction , Microtubules/metabolism , Endoplasmic Reticulum/metabolism , Humans , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Kinase Kinases/genetics , Acetylation , Animals , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Acetyltransferases/metabolism , Acetyltransferases/genetics , Endoplasmic Reticulum Stress , Mice , Microtubule Proteins
8.
Adv Exp Med Biol ; 1452: 21-35, 2024.
Article in English | MEDLINE | ID: mdl-38805123

ABSTRACT

Tubulin plays a fundamental role in cellular function and as the subject for microtubule-active agents in the treatment of ovarian cancer. Microtubule-binding proteins (e.g., tau, MAP1/2/4, EB1, CLIP, TOG, survivin, stathmin) and posttranslational modifications (e.g., tyrosination, deglutamylation, acetylation, glycation, phosphorylation, polyamination) further diversify tubulin functionality and may permit additional opportunities to understand microtubule behavior in disease and to develop microtubule-modifying approaches to combat ovarian cancer. Tubulin-based structures that project from suspended ovarian cancer cells known as microtentacles may contribute to metastatic potential of ovarian cancer cells and could represent an exciting novel therapeutic target.


Subject(s)
Microtubules , Neoplasm Metastasis , Ovarian Neoplasms , Protein Processing, Post-Translational , Tubulin , Humans , Tubulin/metabolism , Tubulin/chemistry , Female , Microtubules/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/drug therapy , Animals , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/drug therapy
9.
Life Sci Alliance ; 7(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38719748

ABSTRACT

Rab6 is a key modulator of protein secretion. The dynein adapter Bicaudal D2 (BicD2) recruits the motors cytoplasmic dynein and kinesin-1 to Rab6GTP-positive vesicles for transport; however, it is unknown how BicD2 recognizes Rab6. Here, we establish a structural model for recognition of Rab6GTP by BicD2, using structure prediction and mutagenesis. The binding site of BicD2 spans two regions of Rab6 that undergo structural changes upon the transition from the GDP- to GTP-bound state, and several hydrophobic interface residues are rearranged, explaining the increased affinity of the active GTP-bound state. Mutations of Rab6GTP that abolish binding to BicD2 also result in reduced co-migration of Rab6GTP/BicD2 in cells, validating our model. These mutations also severely diminished the motility of Rab6-positive vesicles in cells, highlighting the importance of the Rab6GTP/BicD2 interaction for overall motility of the multi-motor complex that contains both kinesin-1 and dynein. Our results provide insights into trafficking of secretory and Golgi-derived vesicles and will help devise therapies for diseases caused by BicD2 mutations, which selectively affect the affinity to Rab6 and other cargoes.


Subject(s)
Dyneins , Protein Binding , rab GTP-Binding Proteins , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Humans , Dyneins/metabolism , Dyneins/chemistry , Binding Sites , Kinesins/metabolism , Kinesins/chemistry , Kinesins/genetics , Mutation , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/chemistry , Protein Transport , Models, Molecular , Guanosine Triphosphate/metabolism
10.
Asian Pac J Cancer Prev ; 25(5): 1753-1761, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38809648

ABSTRACT

Hepatic steatosis has become the most common cause of chronic liver disease among children worldwide.  Lipophagy has been considered as a pathway affecting steatosis development and progression. OBJECTIVE: this study aimed to evaluate the immunohistochemical expression of Beclin1 and LC3A in pediatric hepatic tissues with steatosis and to correlate their expression with clinicopathological parameters. METHODS: this study included 81 Egyptian pediatric patients with hepatic steatosis and 21 pediatric cases without hepatic steatosis. All specimens were stained by Beclin1 and LC3A antibodies. According to final diagnosis obtained from Pediatric Hepatology department, patients were divided into two groups: chronic liver disease (CLD) group that included 45 cases and inborn error of metabolism (IEM) group that included 36 cases. RESULTS: higher beclin1 expression was significantly correlated with higher stages of fibrosis and distorted liver architecture in CLD group, (P=0.043) for both. The control group showed higher positivity, percentage, as well as the median values of the H score of LC3A expression than did the CLD group or the IEM group (P=0.055, 0.001, and 0.008, respectively). Higher positivity of LC3A was significantly associated with higher stages of fibrosis and distorted liver architecture in the studied IEM group (P=0.021) for both. CONCLUSIONS: Varying intensity grades of LC3A and Beclin 1 immunohistochemical expression demonstrate the variation of autophagy at different phases of pediatric hepatic steatosis and varied disease etiology.


Subject(s)
Autophagy , Beclin-1 , Fatty Liver , Microtubule-Associated Proteins , Humans , Male , Female , Child , Beclin-1/metabolism , Fatty Liver/pathology , Fatty Liver/metabolism , Child, Preschool , Microtubule-Associated Proteins/metabolism , Case-Control Studies , Prognosis , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Adolescent , Follow-Up Studies , Egypt , Infant , Biomarkers/metabolism , Liver/pathology , Liver/metabolism
11.
J Exp Clin Cancer Res ; 43(1): 150, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38807192

ABSTRACT

BACKGROUND: Ovarian cancer has a high mortality rate mainly due to its resistance to currently used therapies. This resistance has been associated with the presence of cancer stem cells (CSCs), interactions with the microenvironment, and intratumoral heterogeneity. Therefore, the search for new therapeutic targets, particularly those targeting CSCs, is important for improving patient prognosis. HOOK1 has been found to be transcriptionally altered in a substantial percentage of ovarian tumors, but its role in tumor initiation and development is still not fully understood. METHODS: The downregulation of HOOK1 was performed in ovarian cancer cell lines using CRISPR/Cas9 technology, followed by growth in vitro and in vivo assays. Subsequently, migration (Boyden chamber), cell death (Western-Blot and flow cytometry) and stemness properties (clonal heterogeneity analysis, tumorspheres assay and flow cytometry) of the downregulated cell lines were analysed. To gain insights into the specific mechanisms of action of HOOK1 in ovarian cancer, a proteomic analysis was performed, followed by Western-blot and cytotoxicity assays to confirm the results found within the mass spectrometry. Immunofluorescence staining, Western-blotting and flow cytometry were also employed to finish uncovering the role of HOOK1 in ovarian cancer. RESULTS: In this study, we observed that reducing the levels of HOOK1 in ovarian cancer cells reduced in vitro growth and migration and prevented tumor formation in vivo. Furthermore, HOOK1 reduction led to a decrease in stem-like capabilities in these cells, which, however, did not seem related to the expression of genes traditionally associated with this phenotype. A proteome study, along with other analysis, showed that the downregulation of HOOK1 also induced an increase in endoplasmic reticulum stress levels in these cells. Finally, the decrease in stem-like properties observed in cells with downregulated HOOK1 could be explained by an increase in cell death in the CSC population within the culture due to endoplasmic reticulum stress by the unfolded protein response. CONCLUSION: HOOK1 contributes to maintaining the tumorigenic and stemness properties of ovarian cancer cells by preserving protein homeostasis and could be considered an alternative therapeutic target, especially in combination with inducers of endoplasmic reticulum or proteotoxic stress such as proteasome inhibitors.


Subject(s)
Autophagy , Endoplasmic Reticulum Stress , Neoplastic Stem Cells , Ovarian Neoplasms , Female , Humans , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Mice , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Animals , Cell Line, Tumor , Proteostasis , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Cell Proliferation , Cell Movement
12.
Oncoimmunology ; 13(1): 2360275, 2024.
Article in English | MEDLINE | ID: mdl-38812570
13.
J Cell Biol ; 223(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38743010

ABSTRACT

Basal bodies (BBs) are conserved eukaryotic structures that organize cilia. They are comprised of nine, cylindrically arranged, triplet microtubules (TMTs) connected to each other by inter-TMT linkages which stabilize the structure. Poc1 is a conserved protein important for BB structural integrity in the face of ciliary forces transmitted to BBs. To understand how Poc1 confers BB stability, we identified the precise position of Poc1 in the Tetrahymena BB and the effect of Poc1 loss on BB structure. Poc1 binds at the TMT inner junctions, stabilizing TMTs directly. From this location, Poc1 also stabilizes inter-TMT linkages throughout the BB, including the cartwheel pinhead and the inner scaffold. The full localization of the inner scaffold protein Fam161A requires Poc1. As ciliary forces are increased, Fam161A is reduced, indicative of a force-dependent molecular remodeling of the inner scaffold. Thus, while not essential for BB assembly, Poc1 promotes BB interconnections that establish an architecture competent to resist ciliary forces.


Subject(s)
Basal Bodies , Cilia , Microtubules , Protozoan Proteins , Tetrahymena thermophila , Basal Bodies/metabolism , Cilia/metabolism , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Microtubules/metabolism , Protein Binding , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Tetrahymena thermophila/metabolism , Tetrahymena thermophila/genetics
14.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791174

ABSTRACT

The spindle and kinetochore-associated complex subunit 3 (SKA3) is a protein essential for proper chromosome segregation during mitosis and thus responsible for maintaining genome stability. Although its involvement in the pathogenesis of various cancer types has been reported, the potential clinicopathological significance of SKA3 in pancreatic ductal adenocarcinoma (PDAC) has not been fully elucidated. Therefore, this study aimed to assess clinicopathological associations and prognostic value of SKA3 in PDAC. For this purpose, in-house immunohistochemical analysis on tissue macroarrays (TMAs), as well as a bioinformatic examination using publicly available RNA-Seq dataset, were performed. It was demonstrated that SKA3 expression at both mRNA and protein levels was significantly elevated in PDAC compared to control tissues. Upregulated mRNA expression constituted an independent unfavorable prognostic factor for the overall survival of PDAC patients, whereas altered SKA3 protein levels were associated with significantly better clinical outcomes. The last observation was particularly clear in the early-stage tumors. These findings render SKA3 a promising prognostic biomarker for patients with pancreatic ductal adenocarcinoma. However, further studies are needed to confirm this conclusion.


Subject(s)
Biomarkers, Tumor , Carcinoma, Pancreatic Ductal , Gene Expression Regulation, Neoplastic , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/mortality , Male , Prognosis , Female , Middle Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/mortality , Aged , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Adenocarcinoma/mortality , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Cell Cycle Proteins
15.
Nat Commun ; 15(1): 3779, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710684

ABSTRACT

The α-Aurora kinase is a crucial regulator of spindle microtubule organization during mitosis in plants. Here, we report a post-mitotic role for α-Aurora in reorganizing the phragmoplast microtubule array. In Arabidopsis thaliana, α-Aurora relocated from spindle poles to the phragmoplast midzone, where it interacted with the microtubule cross-linker MAP65-3. In a hypomorphic α-Aurora mutant, MAP65-3 was detected on spindle microtubules, followed by a diffuse association pattern across the phragmoplast midzone. Simultaneously, phragmoplast microtubules remained belatedly in a solid disk array before transitioning to a ring shape. Microtubules at the leading edge of the matured phragmoplast were often disengaged, accompanied by conspicuous retentions of MAP65-3 at the phragmoplast interior edge. Specifically, α-Aurora phosphorylated two residues towards the C-terminus of MAP65-3. Mutation of these residues to alanines resulted in an increased association of MAP65-3 with microtubules within the phragmoplast. Consequently, the expansion of the phragmoplast was notably slower compared to wild-type cells or cells expressing a phospho-mimetic variant of MAP65-3. Moreover, mimicking phosphorylation reinstated disrupted MAP65-3 behaviors in plants with compromised α-Aurora function. Overall, our findings reveal a mechanism in which α-Aurora facilitates cytokinesis progression through phosphorylation-dependent restriction of MAP65-3 associating with microtubules at the phragmoplast midzone.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cytokinesis , Microtubule-Associated Proteins , Microtubules , Arabidopsis/metabolism , Arabidopsis/genetics , Microtubules/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Phosphorylation , Mutation , Spindle Apparatus/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Plants, Genetically Modified , Mitosis
16.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731842

ABSTRACT

(1) Autophagy plays a significant role in development and cell proliferation. This process is mainly accomplished by the LC3 protein, which, after maturation, builds the nascent autophagosomes. The inhibition of LC3 maturation results in the interference of autophagy activation. (2) In this study, starting from the structure of a known LC3B binder (LIR2-RavZ peptide), we identified new LC3B ligands by applying an in silico drug design strategy. The most promising peptides were synthesized, biophysically assayed, and biologically evaluated to ascertain their potential antiproliferative activity on five humans cell lines. (3) A cyclic peptide (named Pep6), endowed with high conformational stability (due to the presence of a disulfide bridge), displayed a Kd value on LC3B in the nanomolar range. Assays accomplished on PC3, MCF-7, and A549 cancer cell lines proved that Pep6 exhibited cytotoxic effects comparable to those of the peptide LIR2-RavZ, a reference LC3B ligand. Furthermore, it was ineffective on both normal prostatic epithelium PNT2 and autophagy-defective prostate cancer DU145 cells. (4) Pep6 can be considered a new autophagy inhibitor that can be employed as a pharmacological tool or even as a template for the rational design of new small molecules endowed with autophagy inhibitory activity.


Subject(s)
Autophagy , Drug Design , Peptides, Cyclic , Humans , Autophagy/drug effects , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemistry , Peptides, Cyclic/chemical synthesis , Cell Line, Tumor , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Microtubule-Associated Proteins/metabolism , Molecular Docking Simulation , A549 Cells , MCF-7 Cells
17.
J Med Virol ; 96(6): e29690, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38804180

ABSTRACT

Autophagy is a degradational pathway with pivotal roles in cellular homeostasis and survival, including protection of neurons in the central nervous system (CNS). The significance of autophagy as antiviral defense mechanism is recognized and some viruses hijack and modulate this process to their advantage in certain cell types. Here, we present data demonstrating that the human neurotropic herpesvirus varicella zoster virus (VZV) induces autophagy in human SH-SY5Y neuronal cells, in which the pathway exerts antiviral activity. Productively VZV-infected SH-SY5Y cells showed increased LC3-I-LC3-II conversion as well as co-localization of the viral glycoprotein E and the autophagy receptor p62. The activation of autophagy was dependent on a functional viral genome. Interestingly, inducers of autophagy reduced viral transcription, whereas inhibition of autophagy increased viral transcript expression. Finally, the genotype of patients with severe ocular and brain VZV infection were analyzed to identify potential autophagy-associated inborn errors of immunity. Two patients expressing genetic variants in the autophagy genes ULK1 and MAP1LC3B2, respectively, were identified. Notably, cells of both patients showed reduced autophagy, alongside enhanced viral replication and death of VZV-infected cells. In conclusion, these results demonstrate a neuro-protective role for autophagy in the context of VZV infection and suggest that failure to mount an autophagy response is a potential predisposing factor for development of severe VZV disease.


Subject(s)
Autophagy , Herpesvirus 3, Human , Neurons , Humans , Herpesvirus 3, Human/physiology , Herpesvirus 3, Human/pathogenicity , Neurons/virology , Autophagy-Related Protein-1 Homolog/metabolism , Autophagy-Related Protein-1 Homolog/genetics , Virus Replication , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Varicella Zoster Virus Infection/virology , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Cell Line , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Host-Pathogen Interactions
18.
Biomed Pharmacother ; 175: 116693, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701566

ABSTRACT

Sevoflurane postconditioning has been shown to provide neuroprotection against cerebral hypoxia-ischemia injury, but the mechanisms remain elusive. Microtubule-associated protein 2 (MAP2) is implicated in early neuronal hypoxia-ischemia injury. This study aimed to investigate whether the neuroprotective effects of sevoflurane postconditioning are related to the Akt/GSK-3ß pathway and its downstream target MAP2 in zebrafish hypoxia/reoxygenation (H/R) model. Sevoflurane postconditioning or GSK-3ß inhibitor TDZD-8 were used to treat H/R zebrafish. The cerebral infarction, neuronal apoptosis, and mitochondrial changes were evaluated using TTC staining, TUNEL staining, and transmission electron microscopy, respectively. The distribution of MAP2 in the brain was determined by immunofluorescence imaging. The levels of Akt, p-Akt, GSK-3ß, p-GSK-3ß, and MAP2 proteins were evaluated by Western blotting. The neurobehavioral recovery of zebrafish was assessed based on optokinetic response behavior. Our results indicated that sevoflurane postconditioning and TDZD-8 significantly reduced the cerebral infarction area, suppressed cell apoptosis, and improved mitochondrial integrity in zebrafish subjected to H/R. Furthermore, sevoflurane postconditioning and TDZD-8 elevated the ratios of p-Akt/Akt and p-GSK-3ß/GSK-3ß. However, the neuroprotective effect of sevoflurane postconditioning was effectively abolished upon suppression of MAP2 expression. In conclusion, sevoflurane postconditioning ameliorated cerebral H/R injury and facilitated the restoration of neurobehavioral function through the activation of Akt/GSK-3ß pathway and promotion of MAP2 expression.


Subject(s)
Glycogen Synthase Kinase 3 beta , Microtubule-Associated Proteins , Neuroprotective Agents , Proto-Oncogene Proteins c-akt , Sevoflurane , Signal Transduction , Zebrafish , Animals , Sevoflurane/pharmacology , Glycogen Synthase Kinase 3 beta/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Neuroprotective Agents/pharmacology , Signal Transduction/drug effects , Microtubule-Associated Proteins/metabolism , Apoptosis/drug effects , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Ischemic Postconditioning/methods , Hypoxia-Ischemia, Brain/metabolism , Hypoxia-Ischemia, Brain/drug therapy , Hypoxia-Ischemia, Brain/pathology , Zebrafish Proteins/metabolism , Disease Models, Animal , Mitochondria/drug effects , Mitochondria/metabolism , Male
19.
Traffic ; 25(4): e12933, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38600522

ABSTRACT

Macroautophagy/autophagy is an essential catabolic process that targets a wide variety of cellular components including proteins, organelles, and pathogens. ATG7, a protein involved in the autophagy process, plays a crucial role in maintaining cellular homeostasis and can contribute to the development of diseases such as cancer. ATG7 initiates autophagy by facilitating the lipidation of the ATG8 proteins in the growing autophagosome membrane. The noncanonical isoform ATG7(2) is unable to perform ATG8 lipidation; however, its cellular regulation and function are unknown. Here, we uncovered a distinct regulation and function of ATG7(2) in contrast with ATG7(1), the canonical isoform. First, affinity-purification mass spectrometry analysis revealed that ATG7(2) establishes direct protein-protein interactions (PPIs) with metabolic proteins, whereas ATG7(1) primarily interacts with autophagy machinery proteins. Furthermore, we identified that ATG7(2) mediates a decrease in metabolic activity, highlighting a novel splice-dependent function of this important autophagy protein. Then, we found a divergent expression pattern of ATG7(1) and ATG7(2) across human tissues. Conclusively, our work uncovers the divergent patterns of expression, protein interactions, and function of ATG7(2) in contrast to ATG7(1). These findings suggest a molecular switch between main catabolic processes through isoform-dependent expression of a key autophagy gene.


Subject(s)
Autophagy , Energy Metabolism , Humans , Autophagosomes/metabolism , Autophagy-Related Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Protein Isoforms/metabolism
20.
BMJ Open Respir Res ; 11(1)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38569671

ABSTRACT

BACKGROUND: Asthma is a chronic disease affecting the lower respiratory tract, which can lead to death in severe cases. The cause of asthma is not fully known, so exploring its potential mechanism is necessary for the targeted therapy of asthma. METHOD: Asthma mouse model was established with ovalbumin (OVA). H&E staining, immunohistochemistry and ELISA were used to detect the inflammatory response in asthma. Transcriptome sequencing was performed to screen differentially expressed genes (DEGs). The role of KIF23 silencing in cell viability, proliferation and apoptosis was explored by cell counting kit-8, EdU assay and flow cytometry. Effects of KIF23 knockdown on inflammation, oxidative stress and pyroptosis were detected by ELISA and western blot. After screening KIF23-related signalling pathways, the effect of KIF23 on p53 signalling pathway was explored by western blot. RESULTS: In the asthma model, the levels of caspase-3, IgG in serum and inflammatory factors (interleukin (IL)-1ß, KC and tumour necrosis factor (TNF)-α) in serum and bronchoalveolar lavage fluid were increased. Transcriptome sequencing showed that there were 352 DEGs in the asthma model, and 7 hub genes including KIF23 were identified. Knockdown of KIF23 increased cell proliferation and inhibited apoptosis, inflammation and pyroptosis of BEAS-2B cells induced by IL-13 in vitro. In vivo experiments verified that knockdown of KIF23 inhibited oxidative stress, inflammation and pyroptosis to alleviate OVA-induced asthma mice. In addition, p53 signalling pathway was suppressed by KIF23 knockdown. CONCLUSION: Knockdown of KIF23 alleviated the progression of asthma by suppressing pyroptosis and inhibited p53 signalling pathway.


Subject(s)
Asthma , Lung , Animals , Humans , Mice , Asthma/genetics , Asthma/pathology , Inflammation/genetics , Lung/pathology , Microtubule-Associated Proteins/adverse effects , Microtubule-Associated Proteins/metabolism , Pyroptosis , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/adverse effects , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...