Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.236
Filter
1.
Cell Rep Med ; 5(5): 101556, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38776872

ABSTRACT

Cardiovascular disease plays a central role in the electrical and structural remodeling of the right atrium, predisposing to arrhythmias, heart failure, and sudden death. Here, we dissect with single-nuclei RNA sequencing (snRNA-seq) and spatial transcriptomics the gene expression changes in the human ex vivo right atrial tissue and pericardial fluid in ischemic heart disease, myocardial infarction, and ischemic and non-ischemic heart failure using asymptomatic patients with valvular disease who undergo preventive surgery as the control group. We reveal substantial differences in disease-associated gene expression in all cell types, collectively suggesting inflammatory microvascular dysfunction and changes in the right atrial tissue composition as the valvular and vascular diseases progress into heart failure. The data collectively suggest that investigation of human cardiovascular disease should expand to all functionally important parts of the heart, which may help us to identify mechanisms promoting more severe types of the disease.


Subject(s)
Heart Atria , Microvessels , Myocardial Ischemia , Transcriptome , Humans , Heart Atria/pathology , Heart Atria/metabolism , Myocardial Ischemia/genetics , Myocardial Ischemia/pathology , Myocardial Ischemia/metabolism , Transcriptome/genetics , Microvessels/pathology , Inflammation/pathology , Inflammation/genetics , Male , Female , Middle Aged , Aged , Gene Expression Regulation
2.
J Am Coll Cardiol ; 83(21): 2052-2062, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38777509

ABSTRACT

BACKGROUND: The prognostic significance of various microvascular injury (MVI) patterns after ST-segment elevation myocardial infarction (STEMI) is not well known. OBJECTIVES: This study sought to investigate the prognostic implications of different MVI patterns in STEMI patients. METHODS: The authors analyzed 1,109 STEMI patients included in 3 prospective studies. Cardiac magnetic resonance (CMR) was performed 3 days (Q1-Q3: 2-5 days) after percutaneous coronary intervention (PCI) and included late gadolinium enhancement imaging for microvascular obstruction (MVO) and T2∗ mapping for intramyocardial hemorrhage (IMH). Patients were categorized into those without MVI (MVO-/IMH-), those with MVO but no IMH (MVO+/IMH-), and those with IMH (IMH+). RESULTS: MVI occurred in 633 (57%) patients, of whom 274 (25%) had an MVO+/IMH- pattern and 359 (32%) had an IMH+ pattern. Infarct size was larger and ejection fraction lower in IMH+ than in MVO+/IMH- and MVO-/IMH- (infarct size: 27% vs 19% vs 18% [P < 0.001]; ejection fraction: 45% vs 50% vs 54% [P < 0.001]). During a median follow-up of 12 months (Q1-Q3: 12-35 months), a clinical outcome event occurred more frequently in IMH+ than in MVO+/IMH- and MVO-/IMH- subgroups (19.5% vs 3.6% vs 4.4%; P < 0.001). IMH+ was the sole independent MVI parameter predicting major adverse cardiovascular events (HR: 3.88; 95% CI: 1.93-7.80; P < 0.001). CONCLUSIONS: MVI is associated with future adverse outcomes only in patients with a hemorrhagic phenotype (IMH+). Patients with only MVO (MVO+/IMH-) had a prognosis similar to patients without MVI (MVO-/IMH-). This highlights the independent prognostic importance of IMH in assessing and managing risk after STEMI.


Subject(s)
Magnetic Resonance Imaging, Cine , Percutaneous Coronary Intervention , ST Elevation Myocardial Infarction , Humans , ST Elevation Myocardial Infarction/surgery , ST Elevation Myocardial Infarction/diagnostic imaging , Male , Female , Middle Aged , Magnetic Resonance Imaging, Cine/methods , Prospective Studies , Aged , Prognosis , Microcirculation , Microvessels/diagnostic imaging , Microvessels/injuries , Microvessels/pathology
3.
J Am Heart Assoc ; 13(10): e033998, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38726925

ABSTRACT

BACKGROUND: The vasoconstrictor effects of angiotensin II via type 1 angiotensin II receptors in vascular smooth muscle cells are well established, but the direct effects of angiotensin II on vascular endothelial cells (VECs) in vivo and the mechanisms how VECs may mitigate angiotensin II-mediated vasoconstriction are not fully understood. The present study aimed to explore the molecular mechanisms and pathophysiological relevance of the direct actions of angiotensin II on VECs in kidney and brain microvessels in vivo. METHODS AND RESULTS: Changes in VEC intracellular calcium ([Ca2+]i) and nitric oxide (NO) production were visualized by intravital multiphoton microscopy of cadherin 5-Salsa6f mice or the endothelial uptake of NO-sensitive dye 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate, respectively. Kidney fibrosis by unilateral ureteral obstruction and Ready-to-use adeno-associated virus expressing Mouse Renin 1 gene (Ren1-AAV) hypertension were used as disease models. Acute systemic angiotensin II injections triggered >4-fold increases in VEC [Ca2+]i in brain and kidney resistance arterioles and capillaries that were blocked by pretreatment with the type 1 angiotensin II receptor inhibitor losartan, but not by the type 2 angiotensin II receptor inhibitor PD123319. VEC responded to acute angiotensin II by increased NO production as indicated by >1.5-fold increase in 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate fluorescence intensity. In mice with kidney fibrosis or hypertension, the angiotensin II-induced VEC [Ca2+]i and NO responses were significantly reduced, which was associated with more robust vasoconstrictions, VEC shedding, and microthrombi formation. CONCLUSIONS: The present study directly visualized angiotensin II-induced increases in VEC [Ca2+]i and NO production that serve to counterbalance agonist-induced vasoconstriction and maintain residual organ blood flow. These direct and endothelium-specific angiotensin II effects were blunted in disease conditions and linked to endothelial dysfunction and the development of vascular pathologies.


Subject(s)
Angiotensin II , Brain , Calcium , Hypertension , Kidney , Microvessels , Nitric Oxide , Vasoconstriction , Animals , Nitric Oxide/metabolism , Angiotensin II/pharmacology , Hypertension/metabolism , Hypertension/physiopathology , Hypertension/drug therapy , Kidney/blood supply , Kidney/metabolism , Calcium/metabolism , Vasoconstriction/drug effects , Microvessels/metabolism , Microvessels/drug effects , Microvessels/pathology , Brain/metabolism , Brain/blood supply , Mice , Disease Models, Animal , Male , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Mice, Inbred C57BL , Calcium Signaling/drug effects
4.
J Cancer Res Clin Oncol ; 150(5): 268, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38772976

ABSTRACT

PURPOSE: Papillary thyroid carcinoma (PTC) with metastatic lymph nodes (LNs) is closely associated with disease recurrence. This study accessed the value of superb microvascular imaging (SMI) in the diagnosis and prediction of metastatic cervical LNs in patients with PTC. METHODS: A total of 183 cervical LNs (103 metastatic and 80 reactive) from 116 patients with PTC were analysed. Metastatic cervical LNs were confirmed by pathology or/and cytology; reactive cervical LNs were confirmed by pathology or clinical features. The characteristic of conventional ultrasound (US) was extracted using univariate and multivariate analyses. The diagnostic performance of US and SMI were compared using the area under the receiver operating curve (AUC) with corresponding sensitivity and specificity. A nomogram was developed to predict metastatic LNs in patients with PTC, based on multivariate analyses. RESULTS: L/S < 2, ill-defined border, absence of hilum, isoechoic or hyperechoic, heterogeneous internal echo, peripheral or mixed vascular pattern on color Doppler flow imaging (CDFI) and SMI, and a larger SMI vascular index appeared more frequently in metastatic LNs in the training datasets than in reactive LNs (P < 0.05). The diagnostic sensitivity, specificity and accuracy of SMI vs US are 94.4% and 87.3%, 79.3% and 69.3%, and 87.6% and 79.1%, respectively; SMI combined with US exhibited a higher AUC [0.926 (0.877-0.975)] than US only [0.829 (0.759-0.900)]. L/S < 2, peripheral or mixed vascular type on CDFI, and peripheral or mixed vascular types on SMI were independent predictors of metastatic LNs with PTC. The nomogram based on these three parameters exhibited excellent discrimination, with an AUC of 0.926. CONCLUSION: SMI was superior to US in diagnosing metastatic LNs in PTC. US combined with SMI significantly improved the diagnostic accuracy of metastatic cervical LNs with PTC. SMI is efficacious for differentiating and predicting metastatic cervical LNs.


Subject(s)
Lymph Nodes , Lymphatic Metastasis , Thyroid Cancer, Papillary , Thyroid Neoplasms , Humans , Female , Lymphatic Metastasis/diagnostic imaging , Male , Middle Aged , Thyroid Neoplasms/pathology , Thyroid Neoplasms/diagnostic imaging , Thyroid Cancer, Papillary/diagnostic imaging , Thyroid Cancer, Papillary/pathology , Adult , Lymph Nodes/pathology , Lymph Nodes/diagnostic imaging , Microvessels/diagnostic imaging , Microvessels/pathology , Aged , Young Adult , Neck/diagnostic imaging , Nomograms , Adolescent , Carcinoma, Papillary/diagnostic imaging , Carcinoma, Papillary/pathology , Carcinoma, Papillary/secondary , Retrospective Studies , ROC Curve , Ultrasonography/methods , Sensitivity and Specificity , Ultrasonography, Doppler, Color/methods
5.
BMC Cancer ; 24(1): 617, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773511

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) presents a significant threat to individuals and healthcare systems due to its high recurrence rate. Accurate prognostic models are essential for improving patient outcomes. Gamma-glutamyl transpeptidase (GGT) and prealbumin (PA) are biomarkers closely related to HCC. This study aimed to investigate the predictive value of the GGT to PA ratio (GPR) and to construct prognostic nomograms for HCC patients without microvascular invasion. METHODS: We retrospectively analyzed data from 355 HCC patients who underwent radical hepatectomy at Shengjing Hospital of China Medical University between December 2012 and January 2021. Patients were randomly assigned to a training cohort (n = 267) and a validation cohort (n = 88). The linearity of GPR was assessed using restricted cubic spline (RCS) analysis, and the optimal cut-off value was determined by X-tile. Kaplan-Meier survival curves and log-rank tests were used to investigate the associations between GPR and both progression-free survival (PFS) and overall survival (OS). Cox multivariate regression analysis identified independent risk factors, enabling the construction of nomograms. Time-dependent receiver operating characteristic (ROC) and calibration curves were used to evaluate the accuracy of the nomograms. Decision curve analysis (DCA) assessed the predictive value of the models. RESULTS: Patients were categorized into GPR-low and GPR-high groups based on a GPR value of 333.33. Significant differences in PFS and OS were observed between the two groups (both P < 0.001). Cox multivariate analysis identified GPR as an independent risk factor for both PFS (OR = 1.80, 95% CI: 1.24-2.60, P = 0.002) and OS (OR = 1.87, 95% CI: 1.07-3.26, P = 0.029). The nomograms demonstrated good predictive performance, with C-index values of 0.69 for PFS and 0.76 for OS. Time-dependent ROC curves and calibration curves revealed the accuracy of the models in both the training and validation cohorts, with DCA results indicating notable clinical value. CONCLUSIONS: GPR emerged as an independent risk factor for both OS and PFS in HCC patients without microvascular invasion. The nomograms based on GPR demonstrated relatively robust predictive efficiency for prognosis.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Nomograms , Prealbumin , gamma-Glutamyltransferase , Humans , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/blood , Carcinoma, Hepatocellular/surgery , Liver Neoplasms/pathology , Liver Neoplasms/mortality , Liver Neoplasms/blood , Liver Neoplasms/surgery , Female , Male , Middle Aged , gamma-Glutamyltransferase/blood , gamma-Glutamyltransferase/metabolism , Retrospective Studies , Prognosis , Prealbumin/analysis , Prealbumin/metabolism , Biomarkers, Tumor/blood , Biomarkers, Tumor/metabolism , Hepatectomy , Adult , Aged , ROC Curve , Neoplasm Invasiveness , Kaplan-Meier Estimate , Microvessels/pathology , Predictive Value of Tests
6.
Respir Res ; 25(1): 205, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730297

ABSTRACT

BACKGROUND: Obesity is the main risk factor leading to the development of various respiratory diseases, such as asthma and pulmonary hypertension. Pulmonary microvascular endothelial cells (PMVECs) play a significant role in the development of lung diseases. Aconitate decarboxylase 1 (Acod1) mediates the production of itaconate, and Acod1/itaconate axis has been reported to play a protective role in multiple diseases. However, the roles of Acod1/itaconate axis in the PMVECs of obese mice are still unclear. METHODS: mRNA-seq was performed to identify the differentially expressed genes (DEGs) between high-fat diet (HFD)-induced PMVECs and chow-fed PMVECs in mice (|log2 fold change| ≥ 1, p ≤ 0.05). Free fatty acid (FFA) was used to induce cell injury, inflammation and mitochondrial oxidative stress in mouse PMVECs after transfection with the Acod1 overexpressed plasmid or 4-Octyl Itaconate (4-OI) administration. In addition, we investigated whether the nuclear factor erythroid 2-like 2 (Nrf2) pathway was involved in the effects of Acod1/itaconate in FFA-induced PMVECs. RESULTS: Down-regulated Acod1 was identified in HFD mouse PMVECs by mRNA-seq. Acod1 expression was also reduced in FFA-treated PMVECs. Acod1 overexpression inhibited cell injury, inflammation and mitochondrial oxidative stress induced by FFA in mouse PMVECs. 4-OI administration showed the consistent results in FFA-treated mouse PMVECs. Moreover, silencing Nrf2 reversed the effects of Acod1 overexpression and 4-OI administration in FFA-treated PMVECs, indicating that Nrf2 activation was required for the protective effects of Acod1/itaconate. CONCLUSION: Our results demonstrated that Acod1/Itaconate axis might protect mouse PMVECs from FFA-induced injury, inflammation and mitochondrial oxidative stress via activating Nrf2 pathway. It was meaningful for the treatment of obesity-caused pulmonary microvascular endotheliopathy.


Subject(s)
Carboxy-Lyases , Endothelial Cells , Lung , Mice, Inbred C57BL , NF-E2-Related Factor 2 , Obesity , Succinates , Animals , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Mice , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Endothelial Cells/pathology , Carboxy-Lyases/metabolism , Carboxy-Lyases/genetics , Obesity/metabolism , Obesity/complications , Male , Succinates/pharmacology , Lung/metabolism , Lung/drug effects , Lung/pathology , Lung/blood supply , Cells, Cultured , Microvessels/metabolism , Microvessels/drug effects , Microvessels/pathology , Oxidative Stress/drug effects , Oxidative Stress/physiology , Diet, High-Fat/adverse effects , Endothelium, Vascular/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/pathology , Hydro-Lyases
7.
Diabetes Metab Res Rev ; 40(4): e3812, 2024 May.
Article in English | MEDLINE | ID: mdl-38738481

ABSTRACT

AIMS: To evaluate the effectiveness of optical coherence tomography angiography (OCTA) in detecting early intraocular microvascular changes in diabetic patients. MATERIALS AND METHODS: A systematic study search was performed on PubMed, Medline, Embase, and the Cochrane Library, ranging from January 2012 to March 2023. Controlled studies compared diabetes mellitus (DM) patients with non-diabetic retinopathy (NDR) or patients with mild non-proliferative diabetic retinopathy (mild NPDR) to healthy people. These studies included parameters of OCTA such as foveal avascular zone (FAZ), vessel density of superficial capillary plexus (VDscp), vessel density of deep capillary plexus (VDdcp), and peripapillary VD. The relevant effect model was used according to the heterogeneity, and the mean difference and 95% confidence intervals were calculated. RESULTS: A total of 18 studies with 2101 eyes were eventually included in this meta-analysis. Our results demonstrated that early alterations of VDscp, VDdcp, and peripapillary VD in NDR patients had a significant difference compared with healthy people by OCTA (VDscp: WMD = -1.34, 95% CI: -1.99 to -0.68, P < 0.0001. VDdcp: WMD = -2.00, 95% CI: -2.95 to -1.04, P < 0.0001. Peripapillary VD: WMD = -1.07, 95% CI: -1.70 to -0.43, P = 0.0010). However, there was no statistically significant difference in total FAZ between them (WMD = -0.00, 95% CI: -0.02-0.01, P = 0.84). In addition, for patients with mild NPDR, OCTA could illustrate prominent changes in VDscp, VDdcp, and total FAZ compared with healthy people (VDscp: WMD = -6.11, 95% CI: -9.90 to -2.32, P = 0.002. VDdcp: WMD = -4.26, 95% CI: -5.95 to -2.57, P < 0.00001. FAZ: WMD = 0.06, 95% CI: 0.01-0.11, P = 0.03). CONCLUSIONS: In diabetic patients with or without retinopathy, the parameters of OCTA such as VDscp, VDdcp, and peripapillary vessel density were demonstrated as potential biomarkers in monitoring the early alterations of retinal microangiopathy, while total FAZ may have no significant changes in diabetic patients without retinopathy.


Subject(s)
Diabetic Retinopathy , Retinal Vessels , Tomography, Optical Coherence , Humans , Tomography, Optical Coherence/methods , Diabetic Retinopathy/diagnostic imaging , Diabetic Retinopathy/etiology , Retinal Vessels/diagnostic imaging , Retinal Vessels/pathology , Fluorescein Angiography/methods , Microvessels/diagnostic imaging , Microvessels/pathology , Diabetes Mellitus/diagnostic imaging , Prognosis
8.
PLoS One ; 19(5): e0303540, 2024.
Article in English | MEDLINE | ID: mdl-38820336

ABSTRACT

INTRODUCTION: Microvascular dysfunction (MVD) is a hallmark feature of chronic graft dysfunction in patients that underwent orthotopic heart transplantation (OHT) and is the main contributor to impaired long-term graft survival. The aim of this study was to determine the effect of MVD on functional and structural properties of cardiomyocytes isolated from ventricular biopsies of OHT patients. METHODS: We included 14 patients post-OHT, who had been transplanted for 8.1 years [5.0; 15.7 years]. Mean age was 49.6 ± 14.3 years; 64% were male. Coronary microvasculature was assessed using guidewire-based coronary flow reserve(CFR)/index of microvascular resistance (IMR) measurements. Ventricular myocardial biopsies were obtained and cardiomyocytes were isolated using enzymatic digestion. Cells were electrically stimulated and subcellular Ca2+ signalling as well as mitochondrial density were measured using confocal imaging. RESULTS: MVD measured by IMR was present in 6 of 14 patients with a mean IMR of 53±10 vs. 12±2 in MVD vs. controls (CTRL), respectively. CFR did not differ between MVD and CTRL. Ca2+ transients during excitation-contraction coupling in isolated ventricular cardiomyocytes from a subset of patients showed unaltered amplitudes. In addition, Ca2+ release and Ca2+ removal were not significantly different between MVD and CTRL. However, mitochondrial density was significantly increased in MVD vs. CTRL (34±1 vs. 29±2%), indicating subcellular changes associated with MVD. CONCLUSION: In-vivo ventricular microvascular dysfunction post OHT is associated with preserved excitation-contraction coupling in-vitro, potentially owing to compensatory changes on the mitochondrial level or due to the potentially reversible cause of the disease.


Subject(s)
Heart Transplantation , Myocytes, Cardiac , Humans , Male , Heart Transplantation/adverse effects , Middle Aged , Female , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Adult , Excitation Contraction Coupling , Microvessels/pathology , Microvessels/physiopathology , Calcium/metabolism , Mitochondria, Heart/metabolism , Calcium Signaling
9.
Ann Clin Lab Sci ; 54(2): 179-189, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38802152

ABSTRACT

OBJECTIVE: Cerebral microbleeds (CMBs) are punctate hemorrhagic lesions within the brain parenchyma and are a classic manifestation of cerebral small vessel disease (CSVD). The primary objective of this study is to investigate the potential role of miR-4685-3p and underlying mechanisms by which miR-4685-3p modulates matrix metalloproteinase-9 (MMP9) in cerebral microvascular endothelial cell injury. METHODS: We employed high-throughput sequencing to screen for differentially expressed miRNAs in the peripheral blood of patients with CMBs and healthy controls. Employing lipopolysaccharide (LPS) to induce cellular damage, we aim to establish a model of human brain microvascular endothelial cells (hCMEC/D3) injury. We also had cells transfected with miR-4685-3p mimic and MMP9 overexpression plasmid. We utilized quantitative polymerase chain reaction (qPCR) to assess the expression levels of miR-4685-3p and performed Western blot analysis to examine MMP9 expression levels in the cells. We employed the CCK-8 assay, TUNEL assay, and tube formation assay to evaluate cellular viability, apoptotic rates, and angiogenic capabilities. Furthermore, dual-luciferase reporter assay analysis was conducted to confirm the relationship between miR-4685-3p and MMP9. RESULTS: The sequencing results indicated a downregulation of miR-4685-3p in the peripheral blood of patients with CMBs. Within the context of LPS-induced injury to hCMEC/D3 cells, miR-4685-3p exhibits reduced expression, whereas MMP9 expression levels are elevated. The elevation of miR-4685-3p expression levels attenuates LPS-induced cellular apoptosis and enhances the viability and tube-forming capacity of hCMEC/D3 cells. Concomitant transfection with MMP9 overexpression constructs effectively reversed the detrimental effects of LPS on hCMEC/D3 cell integrity. We further confirmed that miR-4685-3p overexpression directly targets MMP9, leading to negative regulation of MMP9 expression. CONCLUSION: Upregulating miR-4685-3p, which targets the MMP9 axis, mitigated LPS-induced cerebral microvascular endothelial cell injury, potentially playing a protective role in the progression of CMBs.


Subject(s)
Brain , Endothelial Cells , Matrix Metalloproteinase 9 , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics , Endothelial Cells/metabolism , Brain/pathology , Brain/blood supply , Brain/metabolism , Male , Apoptosis/genetics , Microvessels/pathology , Lipopolysaccharides/pharmacology , Cerebral Hemorrhage/genetics , Cerebral Hemorrhage/pathology , Cerebral Hemorrhage/metabolism , Female , Middle Aged , Cell Line
10.
In Vivo ; 38(3): 1192-1198, 2024.
Article in English | MEDLINE | ID: mdl-38688651

ABSTRACT

BACKGROUND/AIM: Probing brain tumor microvasculature holds significant importance in both basic cancer research and medical practice for tracking tumor development and assessing treatment outcomes. However, few imaging methods commonly used in clinics can noninvasively monitor the brain microvascular network at high precision and without exogenous contrast agents in vivo. The present study aimed to investigate the characteristics of microvasculature during brain tumor development in an orthotopic glioma mouse model. MATERIALS AND METHODS: An orthotopic glioma mouse model was established by surgical orthotopic implantation of U87-MG-luc cells into the mouse brain. Then, optical coherence tomography angiography (OCTA) was utilized to characterize the microvasculature progression within 14 days. RESULTS: The orthotopic glioma mouse model evaluated by bioluminescence imaging and MRI was successfully generated. As the tumor grew, the microvessels within the tumor area slowly decreased, progressing from the center to the periphery for 14 days. CONCLUSION: This study highlights the potential of OCTA as a useful tool to noninvasively visualize the brain microvascular network at high precision and without any exogenous contrast agents in vivo.


Subject(s)
Brain Neoplasms , Disease Models, Animal , Glioma , Tomography, Optical Coherence , Animals , Tomography, Optical Coherence/methods , Mice , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Glioma/diagnostic imaging , Glioma/pathology , Cell Line, Tumor , Humans , Microvessels/diagnostic imaging , Microvessels/pathology , Magnetic Resonance Imaging/methods , Neovascularization, Pathologic/diagnostic imaging , Neovascularization, Pathologic/pathology , Angiography/methods
11.
J Orthop Surg Res ; 19(1): 265, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671500

ABSTRACT

Hormonal necrosis of the femoral head is caused by long-term use of glucocorticoids and other causes of abnormal bone metabolism, lipid metabolism imbalance and blood microcirculation disorders in the femoral head, resulting in bone trabecular fracture, bone tissue necrosis collapse, and hip dysfunction. It is the most common type of non-traumatic necrosis of the femoral head, and its pathogenesis is complex, while impaired blood circulation is considered to be the key to its occurrence. There are a large number of microvessels in the femoral head, among which H-type vessels play a decisive role in the "angiogenesis and osteogenesis coupling", and thus have an important impact on the occurrence and development of femoral head necrosis. Glucocorticoids can cause blood flow injury of the femoral head mainly through coagulation dysfunction, endothelial dysfunction and impaired angiogenesis. Glucocorticoids may inhibit the formation of H-type vessels by reducing the expression of HIF-1α, PDGF-BB, VGEF and other factors, thus causing damage to the "angiogenesis-osteogenesis coupling" and reducing the ability of necrosis reconstruction and repair of the femoral head. Leads to the occurrence of hormonal femoral head necrosis. Therefore, this paper reviewed the progress in the study of the mechanism of hormone-induced femoral head necrosis based on microvascular blood flow at home and abroad, hoping to provide new ideas for the study of the mechanism of femoral head necrosis and provide references for clinical treatment of femoral head necrosis.


Subject(s)
Femur Head Necrosis , Glucocorticoids , Microvessels , Humans , Femur Head Necrosis/chemically induced , Femur Head Necrosis/etiology , Microvessels/pathology , Glucocorticoids/adverse effects , Femur Head/blood supply , Femur Head/pathology , Microcirculation , Neovascularization, Pathologic/etiology
12.
Thromb Res ; 237: 112-128, 2024 May.
Article in English | MEDLINE | ID: mdl-38579513

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) in sepsis patients increases patient mortality. Endothelial cells are important players in the pathophysiology of sepsis-associated AKI (SA-AKI), yet knowledge regarding their spatiotemporal involvement in coagulation disbalance and leukocyte recruitment is lacking. This study investigated the identity and kinetics of responses of different microvascular compartments in kidney cortex in response to SA-AKI. METHODS: Laser microdissected arterioles, glomeruli, peritubular capillaries, and postcapillary venules from kidneys of mice subjected to cecal ligation and puncture (CLP) were analyzed using RNA sequencing. Differential expression and pathway enrichment analyses identified genes involved in coagulation and inflammation. A selection of these genes was evaluated by RT-qPCR in microvascular compartments of renal biopsies from patients with SA-AKI. The role of two identified genes in lipopolysaccharide-induced endothelial coagulation and inflammatory activation were determined in vitro in HUVEC using siRNA-based gene silencing. RESULTS: CLP-sepsis in mice induced altered expression of approximately 400 genes in the renal microvasculature, with microvascular compartments exhibiting unique spatiotemporal responses. In mice, changes in gene expression related to coagulation and inflammation were most extensive in glomeruli at early and intermediate time points, with high induction of Plat, Serpine1, Thbd, Icam1, Stat3, and Ifitm3. In human SA-AKI, PROCR and STAT3 were induced in postcapillary venules, while SERPINE1 expression was diminished. IFITM3 was increased in arterioles and glomeruli. In vitro studies revealed that STAT3 and IFITM3 partly control endothelial coagulation and inflammatory activation. CONCLUSION: Renal microvascular compartments in mice and humans exhibited heterogeneous changes in coagulation- and inflammation-related gene expression in response to SA-AKI. Additional research should aim at understanding the functional consequences of the here described heterogeneous microvascular responses to establish the usefulness of identified genes as therapeutic targets in SA-AKI.


Subject(s)
Blood Coagulation , Inflammation , Microvessels , Sepsis , Animals , Sepsis/complications , Sepsis/genetics , Mice , Humans , Inflammation/genetics , Inflammation/pathology , Microvessels/pathology , Microvessels/metabolism , Male , Kidney/metabolism , Kidney/pathology , Kidney/blood supply , Mice, Inbred C57BL , Acute Kidney Injury/genetics , Acute Kidney Injury/metabolism , Acute Kidney Injury/etiology , Acute Kidney Injury/pathology
13.
Asian J Surg ; 47(5): 2138-2143, 2024 May.
Article in English | MEDLINE | ID: mdl-38443255

ABSTRACT

Hepatectomy is widely considered a potential treatment for hepatocellular carcinoma (HCC). Unfortunately, one-third of HCC patients have tumor recurrence within 2 years after surgery (early recurrence), accounting for more than 60% of all recurrence patients. Early recurrence is associated with a worse prognosis. Previous studies have shown that microvascular invasion (MVI) is one of the key factors for early recurrence and poor prognosis in patients with HCC after surgery. This paper reviews the latest literature and summarizes the predictors of MVI, the correlation between MVI and early recurrence, the identification of suspicious nodules or subclinical lesions, and the treatment strategies for MVI-positive HCC. The aim is to explore the management of patients with MVI-positive HCC.


Subject(s)
Carcinoma, Hepatocellular , Hepatectomy , Liver Neoplasms , Microvessels , Neoplasm Invasiveness , Neoplasm Recurrence, Local , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/surgery , Humans , Liver Neoplasms/surgery , Liver Neoplasms/pathology , Neoplasm Recurrence, Local/pathology , Microvessels/pathology , Prognosis , Time Factors
15.
Br J Radiol ; 97(1157): 938-946, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38552308

ABSTRACT

OBJECTIVES: Based on enhanced MRI, a prediction model of microvascular invasion (MVI) for hepatocellular carcinoma (HCC) was developed using graph convolutional network (GCN) combined nomogram. METHODS: We retrospectively collected 182 HCC patients confirmed histopathologically, all of them performed enhanced MRI before surgery. The patients were randomly divided into training and validation groups. Radiomics features were extracted from the arterial phase (AP), portal venous phase (PVP), and delayed phase (DP), respectively. After removing redundant features, the graph structure by constructing the distance matrix with the feature matrix was built. Screening the superior phases and acquired GCN Score (GS). Finally, combining clinical, radiological and GS established the predicting nomogram. RESULTS: 27.5% (50/182) patients were with MVI positive. In radiological analysis, intratumoural artery (P = 0.007) was an independent predictor of MVI. GCN model with grey-level cooccurrence matrix-grey-level run length matrix features exhibited area under the curves of the training group was 0.532, 0.690, and 0.885 and the validation group was 0.583, 0.580, and 0.854 for AP, PVP, and DP, respectively. DP was selected to develop final model and got GS. Combining GS with diameter, corona enhancement, mosaic architecture, and intratumoural artery constructed a nomogram which showed a C-index of 0.884 (95% CI: 0.829-0.927). CONCLUSIONS: The GCN model based on DP has a high predictive ability. A nomogram combining GS, clinical and radiological characteristics can be a simple and effective guiding tool for selecting HCC treatment options. ADVANCES IN KNOWLEDGE: GCN based on MRI could predict MVI on HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Magnetic Resonance Imaging , Neoplasm Invasiveness , Nomograms , Humans , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/blood supply , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/pathology , Liver Neoplasms/blood supply , Male , Female , Magnetic Resonance Imaging/methods , Middle Aged , Retrospective Studies , Microvessels/diagnostic imaging , Microvessels/pathology , Aged , Adult
16.
Chin J Integr Med ; 30(6): 543-550, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38532151

ABSTRACT

OBJECTIVE: To observe the angiogenesis effect of electroacupuncture (EA) at Shuigou acupoint (GV 26) in the treatment of cerebral ischemia, and explore the value of miRNA-7 (miR-7) in it. METHODS: First, 48 mice were randomly divided into sham operation, middle cerebral artery occlusion (MCAO) model, and EA treatment groups. Then 9 mice were divided into carrier control group, miR-7 knockout group and miR-7 overexpression group (n=3 each group). Finally, 20 mice were divided into model and carrier control group, model and miR-7 knockout group, EA treatment and carrier control group and EA treatment and miR-7 overexpression group, with 3-6 mice in each group. The MCAO model was established in the MCAO and EA groups. Neurological deficit score and 2,3,5-triphenyltetrazolium chloride (TTC) staining were used to evaluate the severity of cerebral ischemia. Hematoxylin-eosin staining was used to describe basic pathological changes. Immunohistochemistry was used to quantify cerebral microvessel density. Real-time PCR and Western blot were used to detect the expression of miR-7 and its downstream target genes Krüppel-like factor 4/vascular endothelial growth factor (KLF4/VEGF) and angiopoietin-2 (ANG-2) in the ischemic cerebral cortex. RESULTS: After EA, neurological deficit scores and infarction volumes decreased, and the density of cerebral microvessels increased. In the MCAO group, miR-7 expression was higher than that in the sham group (P<0.01). After EA at GV 26, miR-7 expression decreased (P<0.01) and the expression of downstream target genes KLF4/VEGF and ANG-2 increased as compared with the MCAO group (P<0.01). After EA combined with overexpression of miR-7, the expression of downstream target genes KLF4/VEGF and ANG-2 decreased compared to the control EA group (P<0.01). After miR-7 knockdown, the expression of KLF4/VEGF and ANG-2 increased (P<0.05 or P<0.01). CONCLUSIONS: EA could promote angiogenesis in MCAO mice likely by inhibiting the expression of miR-7 and relieving inhibition of downstream target genes KLF4/VEGF and ANG-2.


Subject(s)
Brain Ischemia , Electroacupuncture , Kruppel-Like Factor 4 , MicroRNAs , Neovascularization, Physiologic , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Neovascularization, Physiologic/genetics , Male , Brain Ischemia/therapy , Brain Ischemia/genetics , Brain Ischemia/pathology , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Mice , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Mice, Inbred C57BL , Infarction, Middle Cerebral Artery/therapy , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/genetics , Microvessels/pathology , Disease Models, Animal , Angiogenesis
17.
Clin Cancer Res ; 30(10): 2206-2224, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38470497

ABSTRACT

PURPOSE: Microvascular invasion (MVI) is a major unfavorable prognostic factor for intrahepatic metastasis and postoperative recurrence of hepatocellular carcinoma (HCC). However, the intervention and preoperative prediction for MVI remain clinical challenges due to the absent precise mechanism and molecular marker(s). Herein, we aimed to investigate the mechanisms underlying vascular invasion that can be applied to clinical intervention for MVI in HCC. EXPERIMENTAL DESIGN: The histopathologic characteristics of clinical MVI+/HCC specimens were analyzed using multiplex immunofluorescence staining. The liver orthotopic xenograft mouse model and mechanistic experiments on human patient-derived HCC cell lines, including coculture modeling, RNA-sequencing, and proteomic analysis, were used to investigate MVI-related genes and mechanisms. RESULTS: IQGAP3 overexpression was correlated significantly with MVI status and reduced survival in HCC. Upregulation of IQGAP3 promoted MVI+-HCC cells to adopt an infiltrative vessel co-optive growth pattern and accessed blood capillaries by inducing detachment of activated hepatic stellate cells (HSC) from the endothelium. Mechanically, IQGAP3 overexpression contributed to HCC vascular invasion via a dual mechanism, in which IQGAP3 induced HSC activation and disruption of the HSC-endothelial interaction via upregulation of multiple cytokines and enhanced the trans-endothelial migration of MVI+-HCC cells by remodeling the cytoskeleton by sustaining GTPase Rac1 activity. Importantly, systemic delivery of IQGAP3-targeting small-interfering RNA nanoparticles disrupted the infiltrative vessel co-optive growth pattern and reduced the MVI of HCC. CONCLUSIONS: Our results revealed a plausible mechanism underlying IQGAP3-mediated microvascular invasion in HCC, and provided a potential target to develop therapeutic strategies to treat HCC with MVI.


Subject(s)
Carcinoma, Hepatocellular , Gene Expression Regulation, Neoplastic , Liver Neoplasms , Neoplasm Invasiveness , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Humans , Animals , Mice , Cell Line, Tumor , ras GTPase-Activating Proteins/genetics , ras GTPase-Activating Proteins/metabolism , Microvessels/pathology , Microvessels/metabolism , Male , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Neovascularization, Pathologic/metabolism , Xenograft Model Antitumor Assays , Female , Cell Proliferation , Prognosis , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Cell Movement/genetics
18.
J Histochem Cytochem ; 72(3): 131-148, 2024 03.
Article in English | MEDLINE | ID: mdl-38454609

ABSTRACT

Diabetes is not only an endocrine but also a vascular disease. Vascular defects are usually seen as consequence of diabetes. However, at the level of the pancreatic islet, vascular alterations have been described before symptom onset. Importantly, the cellular and molecular mechanisms underlying these early vascular defects have not been identified, neither how these could impact the function of islet endocrine cells. In this review, we will discuss the possibility that dysfunction of the mural cells of the microvasculature-known as pericytes-underlies vascular defects observed in islets in pre-symptomatic stages. Pericytes are crucial for vascular homeostasis throughout the body, but their physiological and pathophysiological functions in islets have only recently started to be explored. A previous study had already raised interest in the "microvascular" approach to this disease. With our increased understanding of the crucial role of the islet microvasculature for glucose homeostasis, here we will revisit the vascular aspects of islet function and how their deregulation could contribute to diabetes pathogenesis, focusing in particular on type 1 diabetes (T1D).


Subject(s)
Diabetes Mellitus, Type 1 , Islets of Langerhans , Humans , Pericytes , Islets of Langerhans/blood supply , Diabetes Mellitus, Type 1/pathology , Microvessels/pathology
19.
Liver Int ; 44(6): 1351-1362, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38436551

ABSTRACT

BACKGROUND AND AIMS: Accurate preoperative prediction of microvascular invasion (MVI) and recurrence-free survival (RFS) is vital for personalised hepatocellular carcinoma (HCC) management. We developed a multitask deep learning model to predict MVI and RFS using preoperative MRI scans. METHODS: Utilising a retrospective dataset of 725 HCC patients from seven institutions, we developed and validated a multitask deep learning model focused on predicting MVI and RFS. The model employs a transformer architecture to extract critical features from preoperative MRI scans. It was trained on a set of 234 patients and internally validated on a set of 58 patients. External validation was performed using three independent sets (n = 212, 111, 110). RESULTS: The multitask deep learning model yielded high MVI prediction accuracy, with AUC values of 0.918 for the training set and 0.800 for the internal test set. In external test sets, AUC values were 0.837, 0.815 and 0.800. Radiologists' sensitivity and inter-rater agreement for MVI prediction improved significantly when integrated with the model. For RFS, the model achieved C-index values of 0.763 in the training set and ranged between 0.628 and 0.728 in external test sets. Notably, PA-TACE improved RFS only in patients predicted to have high MVI risk and low survival scores (p < .001). CONCLUSIONS: Our deep learning model allows accurate MVI and survival prediction in HCC patients. Prospective studies are warranted to assess the clinical utility of this model in guiding personalised treatment in conjunction with clinical criteria.


Subject(s)
Carcinoma, Hepatocellular , Deep Learning , Liver Neoplasms , Magnetic Resonance Imaging , Neoplasm Invasiveness , Humans , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/mortality , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/pathology , Liver Neoplasms/mortality , Magnetic Resonance Imaging/methods , Retrospective Studies , Female , Male , Middle Aged , Aged , Microvessels/diagnostic imaging , Microvessels/pathology , Disease-Free Survival , Neoplasm Recurrence, Local
20.
J Bioenerg Biomembr ; 56(3): 193-204, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38446318

ABSTRACT

Blood-brain barrier breakdown and ROS overproduction are important events during the progression of ischemic stroke aggravating brain damage. Geraniol, a natural monoterpenoid, possesses anti-apoptotic, cytoprotective, anti-oxidant, and anti-inflammatory activities. Our study aimed to investigate the effect and underlying mechanisms of geraniol in oxygen-glucose deprivation/reoxygenation (OGD/R)-induced human brain microvascular endothelial cells (HBMECs). Apoptosis, caspase-3 activity, and cytotoxicity of HBMECs were evaluated using TUNEL, caspase-3 activity, and CCK-8 assays, respectively. The permeability of HBMECs was examined using FITC-dextran assay. Reactive oxygen species (ROS) production was measured using the fluorescent probe DCFH-DA. The protein levels of zonula occludens-1 (ZO-1), occludin, claudin-5, ß-catenin, nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) were determined by western blotting. Geraniol showed no cytotoxicity in HBMECs. Geraniol and ROS scavenger N-acetylcysteine (NAC) both attenuated OGD/R-induced apoptosis and increase of caspase-3 activity and the permeability to FITC-dextran in HBMECs. Geraniol relieved OGD/R-induced ROS accumulation and decrease of expression of ZO-1, occludin, claudin-5, and ß-catenin in HBMECs. Furthermore, we found that geraniol activated Nrf2/HO-1 pathway to inhibit ROS in HBMECs. In conclusion, geraniol attenuated OGD/R-induced ROS-dependent apoptosis and permeability in HBMECs through activating the Nrf2/HO-1 pathway.


Subject(s)
Acyclic Monoterpenes , Apoptosis , Endothelial Cells , Glucose , Heme Oxygenase-1 , NF-E2-Related Factor 2 , Reactive Oxygen Species , Humans , Apoptosis/drug effects , Acyclic Monoterpenes/pharmacology , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/metabolism , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Glucose/metabolism , Heme Oxygenase-1/metabolism , Oxygen/metabolism , Brain/metabolism , Brain/blood supply , Microvessels/metabolism , Microvessels/pathology , Microvessels/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...