Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cerebellum ; 19(6): 771-777, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32642932

ABSTRACT

Reading in children has been associated with microstructural properties of the cerebellar peduncles, the white matter pathways connecting the cerebellum to the cerebrum. In this study, we used two independent neuroimaging modalities to assess which features of the cerebellar peduncles would be associated with reading. Twenty-three 8-year-old children were evaluated on word reading efficiency and imaged using diffusion MRI (dMRI) and quantitative T1 relaxometry (qT1). We segmented the superior (SCP), middle, and inferior cerebellar peduncles and extracted two metrics: fractional anisotropy (FA) from dMRI and R1 from qT1. Tract-FA was significantly correlated with tract-R1 in left and right SCPs (left: rP(21) = .63, right: rP(21) = .76, p ≤ .001) suggesting that FA of these peduncles, at least in part, indexed myelin content. Tract-FA and tract R1 were not correlated in the other cerebellar peduncles. Reading efficiency negatively correlated with tract-FA of the left (rP(21) = - .43, p = .040) and right SCP (rP(21) = - .37, p = .079). Reading efficiency did not correlate with tract-R1 in the SCPs. The negative association of reading efficiency with tract-FA and the lack of association of reading efficiency with tract-R1 implicate properties other than myelin content as relevant to the information flow between the cerebellum and the cerebrum for individual differences in reading skills in children.


Subject(s)
Cerebellum/diagnostic imaging , Cerebellum/physiology , Reading , White Matter/diagnostic imaging , White Matter/physiology , Anisotropy , Child , Female , Humans , Longitudinal Studies , Magnetic Resonance Imaging/methods , Male , Middle Cerebellar Peduncle/diagnostic imaging , Middle Cerebellar Peduncle/physiology
2.
Learn Mem ; 21(12): 696-708, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25403458

ABSTRACT

Eyeblink conditioning is a well-established model for studying the developmental neurobiology of associative learning and memory. However, age differences in extinction and subsequent reacquisition have yet to be studied using this model. The present study examined extinction and reacquisition of eyeblink conditioning in developing rats. In Experiment 1, post-natal day (P) 17 and 24 rats were trained to a criterion of 80% conditioned responses (CRs) using stimulation of the middle cerebellar peduncle (MCP) as a conditioned stimulus (CS). Stimulation CS-alone extinction training commenced 24 h later, followed by reacquisition training after the fourth extinction session. Contrary to expected results, rats trained starting on P17 showed significantly fewer CRs to stimulation CS-alone presentations relative to P24s, including fewer CRs as early as the first block of extinction session 1. Furthermore, the P17 group was slower to reacquire following extinction. Experiment 2 was run to determine the extent to which the low CR percentage observed in P17s early in extinction reflected rapid forgetting versus rapid extinction. Twenty-four hours after reaching criterion, subjects were trained in a session split into 50 stimulation CS-unconditioned stimulus paired trials followed immediately by 50 stimulation CS-alone trials. With this "immediate" extinction protocol, CR percentages during the first block of stimulation CS-alone presentations were equivalent to terminal acquisition levels at both ages but extinction was more rapid in the P17 group. These findings indicate that forgetting is observed in P17 relative to P24 rats 24 h following acquisition. The forgetting in P17 rats has important implications for the neurobiological mechanisms of memory in the developing cerebellum.


Subject(s)
Conditioning, Eyelid/physiology , Extinction, Psychological/physiology , Middle Cerebellar Peduncle/growth & development , Middle Cerebellar Peduncle/physiology , Animals , Electric Stimulation , Electromyography , Eyelids/physiology , Female , Implantable Neurostimulators , Male , Rats, Long-Evans
3.
J Vestib Res ; 24(5-6): 375-85, 2014.
Article in English | MEDLINE | ID: mdl-25564080

ABSTRACT

Most of our knowledge concerning central vestibular pathways is derived from animal studies while evidence of the functional importance and localization of these pathways in humans is less well defined. The termination of these pathways at the thalamic level in humans is even less known. In this review we summarize the findings concerning the central subcortical vestibular pathways in humans and the role of these structures in the central vestibular system with regard to anatomical localization and function. Also, we review the role of the thalamus in the pathogenesis of higher order sensory deficits such as spatial neglect, pusher syndrome or thalamic astasia and the correlation of these phenomena with findings of a vestibular tone imbalance at the thalamic level. By highlighting thalamic structures involved in vestibular signal processing and relating the different nomenclatures we hope to provide a base for future studies on thalamic sensory signal processing.


Subject(s)
Thalamus/physiology , Vestibule, Labyrinth/physiology , Afferent Pathways/physiology , Brain/physiopathology , Humans , Middle Cerebellar Peduncle/physiology , Neural Pathways/physiology , Ventral Tegmental Area/physiology , Vestibular Diseases/physiopathology , Vestibular Nucleus, Lateral/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...