Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.004
Filter
1.
An Acad Bras Cienc ; 96(3): e20221063, 2024.
Article in English | MEDLINE | ID: mdl-38865506

ABSTRACT

This study evaluated the influence of milk production, number of lactations, and days in milk (DIM) on the quality and composition of milk from dairy cows housed in a compost barn (CB) system. The study was carried out using a six-year database, counting 31,268 observations from 2,037 cows of European breeds. Multiparous cows showed higher fat and protein production. Lactose showed high levels for primiparous and the initial stage of lactation (4.65%) and was negatively influenced by somatic cell count (SCC). Milk urea nitrogen was higher (14.01%) from 106 to 205 days in milk, and the other components were higher at >305 days. Therefore, the solids content was higher in the first and second lactations due to the high contents of lactose, fat, and milk protein, but lactose was reduced over lactations. In contrast, high DIM increased SCC and concentrated solids due to lower milk production. The effect of milk production, stage, and lactation order on the composition and milk quality of herds housed in CB showed the same pattern as in other production systems.


Subject(s)
Dairying , Lactation , Milk , Animals , Lactation/physiology , Milk/chemistry , Milk/cytology , Female , Cattle , Dairying/methods , Composting , Lactose/analysis , Time Factors , Milk Proteins/analysis
2.
Int J Food Microbiol ; 419: 110751, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38781648

ABSTRACT

Nisin is the first FDA-approved antimicrobial peptide and shows significant antimicrobial activity against Gram-positive bacteria, but only a weakly inhibitory effect on Gram-negative bacteria. The aim of this study was to prepare whey protein-based edible films with the incorporation of milk-derived antimicrobial peptides (αs2-casein151-181 and αs2-casein182-207) and compare their mechanical properties and potential application in cheese packaging with films containing nisin. These two antimicrobial peptides showed similar activity against B. subtilis and much higher activity against E. coli than bacteriocin nisin, representing that these milk-derived peptides had great potential to be applied as food preservatives. Antimicrobial peptides in whey protein films caused an increase in film opaqueness and water vapor barrier properties but decreased the tensile strength and elongation at break. Compared to other films, the whey protein film containing αs2-casein151-181 had good stability in salt or acidic solution, as evidenced by the results from scanning electron microscope and Fourier transform infrared spectroscopy. Whey protein film incorporated with αs2-casein151-181 could inhibit the growth of yeasts and molds, and control the growth of psychrotrophic bacteria present originally in the soft cheese at refrigerated temperature. It also exhibited significant inhibitory activity against the development of mixed culture (E. coli and B. subtilis) in the cheese due to superficial contamination during storage. Antimicrobial peptides immobilized in whey protein films showed a higher effectiveness than their direct application in solution. In addition, films containing αs2-casein151-181 could act as a hurdle inhibiting the development of postprocessing contamination on the cheese surface during the 28 days of storage. The films in this study exhibited the characteristics desired for active packaging materials.


Subject(s)
Cheese , Whey Proteins , Cheese/microbiology , Whey Proteins/pharmacology , Whey Proteins/chemistry , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Food Preservation/methods , Food Packaging/methods , Nisin/pharmacology , Nisin/chemistry , Food Microbiology , Escherichia coli/drug effects , Escherichia coli/growth & development , Edible Films , Food Preservatives/pharmacology , Food Preservatives/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Milk Proteins/pharmacology , Milk Proteins/chemistry
3.
Food Chem ; 452: 139462, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38723563

ABSTRACT

The presence of various components in the food matrix makes allergen detection difficult and inaccurate, and pretreatment is an innovative breakthrough point. Food matrices were categorised based on their composition. Subsequently, a pretreatment method was established using a combination of ultrasound-assisted n-hexane degreasing and weakly alkaline extraction systems to enhance the detection accuracy of bovine milk allergens. Results showed that more allergens were obtained with less structural destruction, as demonstrated using immunological quantification and spectral analysis. Concurrently, allergenicity preservation was confirmed through liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, a KU812 cell degranulation model, and western blotting. The method exhibited good accuracy (bias, 8.47%), repeatability (RSDr, 1.52%), and stability (RSDR, 5.65%). In foods with high lipid content, such as chocolate, the allergen content was 2.29-fold higher than that of commercial kits. Laser confocal scanning microscopy (LCSM) and scanning electron microscopy (SEM) analyses revealed a significant decrease in fat content after post-pretreatment using our method. In addition, colloidal stability surpassed that achieved using commercial kits, as indicated through the PSA and zeta potential results. The results demonstrated the superiority of the extractability and allergenicity maintenance of lipid matrix-specific pretreatment methods for improving the accuracy of ELISA based allergen detection in real food.


Subject(s)
Allergens , Enzyme-Linked Immunosorbent Assay , Lipids , Milk , Animals , Allergens/immunology , Allergens/chemistry , Allergens/analysis , Cattle , Lipids/chemistry , Lipids/immunology , Milk/chemistry , Tandem Mass Spectrometry , Milk Hypersensitivity/immunology , Humans , Milk Proteins/chemistry , Milk Proteins/immunology
4.
Food Chem ; 452: 139473, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38723564

ABSTRACT

We had previously observed that adding pectin into milk before fermentation inhibited gelation of yogurt but did not affect the pH. Thus, this work aimed to prepare such liquid yogurt and clarify its formation mechanism. It was found that liquid yogurt was obtained in the presence of 0.10%-0.20% pectin. However, at lower or higher pectin concentrations, yogurt was gelled. Confocal laser scanning microscopy analysis demonstrated that 0.10%-0.20% pectin induced milk protein aggregating into separated particles rather than a continuous network, which explained why liquid yogurt was formed. Moreover, adding 0.10%-0.20% pectin into the casein micelle suspension induced aggregation of casein micelles at pH 6.8. After pH decreased to 4.3, casein micelles showed more aggregation but they were still separated particles, which was the same in the corresponding yogurt samples. These results suggested that pectin changed the aggregation mode of casein micelles and induced formation of liquid yogurt.


Subject(s)
Pectins , Yogurt , Yogurt/analysis , Pectins/chemistry , Hydrogen-Ion Concentration , Milk/chemistry , Animals , Micelles , Caseins/chemistry , Fermentation , Milk Proteins/chemistry , Food Handling
5.
J Dairy Res ; 91(1): 96-98, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38706325

ABSTRACT

We tested the hypothesis that milk proteins, through microencapsulation, guarantee protection against bioactive substances in coffee silverskin extracts. Therefore, the aim of this study was to carry out technological, nutritional and physicochemical characterisation of a coffee silverskin extract microencapsulated using instant skim milk powder and whey protein concentrate as wall materials. The aqueous extract of coffee silverskin was spray-dried using 10% (w/v) skim milk powder and whey protein concentrate. The samples were characterised by determining the water content, water activity, particle size distribution, colour analysis and total phenolic compound content as well as antioxidant activity using 2,2-diphenyl-radical 1-picrylhydrazyl scavenging methods, nitric oxide radical inhibition and morphological analysis. The product showed water activity within a range that ensured greater stability, and the reduced degradation of the dried coffee silverskin extract with whey protein concentrate resulted in better rehydration ability. The luminosity parameter was higher and the browning index was lower for the encapsulated samples than for the pure coffee silverskin extract. The phenolic compound content (29.23 ± 8.39 and 34.00 ± 8.38 mg gallic acid equivalents/g for the coffee silverskin extract using skimmed milk powder and whey protein concentrate, respectively) and the antioxidant activity of the new product confirmed its potential as a natural source of antioxidant phenolic compounds. We conclude that the dairy matrices associated with spray drying preserved the bioactive and antioxidant activities of coffee silverskin extracts.


Subject(s)
Antioxidants , Milk , Spray Drying , Whey Proteins , Whey Proteins/chemistry , Animals , Milk/chemistry , Plant Extracts/chemistry , Coffee/chemistry , Food Handling/methods , Milk Proteins/analysis , Milk Proteins/chemistry , Phenols/analysis , Particle Size , Powders , Drug Compounding/methods
6.
J Proteome Res ; 23(6): 2288-2297, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38805445

ABSTRACT

In the work presented herein, a simple serial-pelleting purification strategy combined with a mass spectrometry-based proteomics analysis was developed as a means of discerning differences in extracellular vesicle (EV) populations found in bovine milk samples. A sequence of ultracentrifugation speeds was used to generate changes in the abundances of EV populations, allowing for the identification of associated proteins. A metric was developed to determine the relative abundances of proteins in large EVs (>200 nm) and small EVs (<200 nm). Of the 476 proteins consistently found in this study, 340 are associated with vesicular components. Of these, 156 were heavily enriched in large EVs, 155 shared between large and small EVs, and 29 heavily enriched in small EVs. Additionally, out of 68 proteins annotated as exosome proteins, 32 were enriched in large EVs, 27 shared between large and small EVs, 5 enriched in small EVs, and 7 were found to be nonvesicular contaminant proteins. The top correlated proteins in the small EV group were predominantly membrane-bound proteins, whereas the top correlated proteins in the large EV group were mostly cytosolic enzymes for molecular processing. This method provides a means of assessing the origins of vesicle components and provides new potential marker proteins within discrete vesicle populations.


Subject(s)
Exosomes , Milk , Proteomics , Ultracentrifugation , Animals , Cattle , Exosomes/chemistry , Exosomes/metabolism , Proteomics/methods , Milk/chemistry , Ultracentrifugation/methods , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , Milk Proteins/analysis , Milk Proteins/metabolism , Milk Proteins/chemistry , Mass Spectrometry/methods
7.
Pharmacol Biochem Behav ; 240: 173789, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38735399

ABSTRACT

Milk varieties and specific proteins exhibit anxiolytic-like actions in mice and rats exposed to several tests, the most prominent being the elevated plus-maze. Administrations of αs1-casein, its 91-100 (α-casozepine), 91-97, 91-93, and 91-92 fragments, the 60-69 fragment of ß-casein, lactoferrin, ß-lactotensin, wheylin-1, wheylin-2, and α-lactalbumin have been reported to increase open arm exploration relative to enclosed arm exploration. Anxiolytic-like actions have also been described for 91-93 and 91-92 fragments of αs1-casein, wheylin-1, α-lactalbumin, and lactoferrin in the open-field. Some effects appear to be mediated by the GABAA receptor complex, since antagonists mitigated the anxiolytic-like actions of αs1-casein, the 91-92 fragment of αs1-casein, and wheylin-1. Other neurotransmitters purported to affect such behaviors include 5HT, dopamine, and neurotensin. Further research is needed to identify their neuropharmacological actions.


Subject(s)
Anti-Anxiety Agents , Milk Proteins , Animals , Anti-Anxiety Agents/pharmacology , Mice , Milk Proteins/pharmacology , Anxiety/drug therapy , Rats , Behavior, Animal/drug effects , Humans , Caseins/pharmacology , Caseins/administration & dosage
8.
Food Funct ; 15(10): 5613-5626, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38722062

ABSTRACT

Modification of dairy proteins during processing impacts structural assemblies, influencing textural and nutritional properties of dairy products, and release and availability of amino acids during digestion. By modifying only pH, acid heat-set bovine dairy gels with divergent textural properties were developed to alter protein digestion. In vitro assay confirmed faster digestion of protein from a firm gel (pH 5.65) versus a soft gel (pH 6.55). We hypothesised that firm gel (FIRM-G; pH 5.6) would result in greater indispensable amino acid (IAA) appearance in circulation over 5 h and corresponding differences in gastric myoelectrical activity relative to soft gel (SOFT-G; pH 6.2). In a randomised, single-blind cross-over trial, healthy females (n = 20) consumed 150 g of each gel; plasma amino acid appearance was assessed over 5 hours. Iso-nitrogenous, iso-caloric gels were prepared from identical mixtures of bovine milk and whey protein concentrates; providing 17.7 g (FIRM-G) and 18.9 g (SOFT-G) of protein per serving. Secondary outcomes included gastric myoelectrical activity measured by body surface gastric mapping, glycaemic, triglyceridaemic, and subjective appetite and digestive responses. Overall plasma IAA (area under the curve) did not differ between gels. However, plasma IAA concentrations were higher, and increased more rapidly over time after SOFT-G compared with FIRM-G (1455 ± 53 versus 1350 ± 62 µmol L-1 at 30 min, p = 0.024). Similarly, total, branched-chain and dispensable amino acids were higher at 30 min with SOFT-G than FIRM-G (total: 3939 ± 97 versus 3702 ± 127 µmol L-1, p = 0.014; branched-chain: 677 ± 30 versus 619 ± 34 µmol L-1, p = 0.047; dispensable: 2334 ± 53 versus 2210 ± 76 µmol L-1, p = 0.032). All other measured parameters were similar between gels. Peak postprandial aminoacidaemia was higher and faster following ingestion of SOFT-G. Customised plasma amino acid appearance from dairy is achievable by altering gel coagulum structure using pH during processing and may have minimal influence on related postprandial responses, with implications for targeting food design for optimal health. The Clinical Trial Registry number is ACTRN12622001418763 (https://www.anzctr.org.au) registered November 7, 2022.


Subject(s)
Amino Acids , Cross-Over Studies , Gels , Female , Humans , Adult , Hydrogen-Ion Concentration , Amino Acids/blood , Amino Acids/chemistry , Gels/chemistry , Animals , Young Adult , Cattle , Digestion , Hot Temperature , Milk Proteins/chemistry , Single-Blind Method , Stomach/physiology , Stomach/chemistry , Milk/chemistry
9.
Food Res Int ; 187: 114343, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763636

ABSTRACT

Human breast milk promotes maturation of the infant gastrointestinal barrier, including the promotion of mucus production. In the quest to produce next generation infant milk formula (IMF), we have produced IMF by membrane filtration (MEM-IMF). With a higher quantity of native whey protein, MEM-IMF more closely mimics human breast milk than IMF produced using conventional heat treatment (HT-IMF). After a 4-week dietary intervention in young pigs, animals fed a MEM-IMF diet had a higher number of goblet cells, acidic mucus and mucin-2 in the jejunum compared to pigs fed HT-IMF (P < 0.05). In the duodenum, MEM-IMF fed pigs had increased trypsin activity in the gut lumen, increased mRNA transcript levels of claudin 1 in the mucosal scrapings and increased lactase activity in brush border membrane vesicles than those pigs fed HT-IMF (P < 0.05). In conclusion, MEM-IMF is superior to HT-IMF in the promotion of mucus production in the young gut.


Subject(s)
Filtration , Infant Formula , Mucus , Animals , Infant Formula/chemistry , Mucus/metabolism , Swine , Whey Proteins/metabolism , Intestine, Small/metabolism , Trypsin/metabolism , Humans , Goblet Cells/metabolism , Claudin-1/metabolism , Claudin-1/genetics , Lactase/metabolism , Lactase/genetics , Mucin-2/metabolism , Mucin-2/genetics , Intestinal Mucosa/metabolism , Duodenum/metabolism , Jejunum/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , Milk Proteins/metabolism , Milk Proteins/analysis
10.
Food Chem Toxicol ; 189: 114761, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38796088

ABSTRACT

Infant formulas based on hydrolysed cow's milk proteins are used when breastfeeding is not feasible in cow's milk allergic infants. Camel milk has been shown to be well-tolerated by the majority of children with cow's milk allergy (CMA) and may be a substitute in management of CMA. Here we aimed to evaluate the impact of processing on immunogenicity, sensitising, antibody-binding and cross-reactive capacity of cow's and camel milk. Cow's and camel milk were processed by means of enzyme hydrolysis or heat treatment. Brown Norway rats were immunised with PBS, non-processed, enzyme hydrolysed or heat-treated cow's or camel milk. In vivo tests were performed for evaluation of clinical signs. Blood and faecal samples were analysed for levels and specificity of antibody responses. Cow's and camel milk showed similar sensitising capacity. Processing decreased the sensitising capacity of cow's milk, yet only enzyme hydrolysis but not heat treatment decreased the sensitising capacity of camel milk. Processing affected the specificity of antibodies raised in the rats, though the effect differed between cow's and camel milk. The study showed a low cross-reactivity between cow's and camel milk, which was decreased with processing, suggesting that processing of camel milk may improve its usefulness in CMA management.


Subject(s)
Camelus , Cross Reactions , Milk Hypersensitivity , Milk Proteins , Milk , Animals , Camelus/immunology , Milk Hypersensitivity/immunology , Milk Hypersensitivity/prevention & control , Rats , Cattle , Milk/chemistry , Milk/immunology , Milk Proteins/immunology , Female , Rats, Inbred BN , Food Handling/methods , Male
11.
Exp Cell Res ; 439(1): 114090, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38740167

ABSTRACT

Dopamine D2 receptors (D2Rs) play crucial roles in regulating diverse physiological functions of the central nervous system and peripheral organs. D2Rs are also expressed in mammary glands. However, which cell types express D2Rs and whether they are involved in milk production remains unclear. The present findings revealed that D2Rs are expressed in the apical regions of the lateral membranes of mammary epithelial cells (MECs) in lactating mice. We also investigated the effects of the D2R agonist bromocriptine and/or antagonist domperidone on intracellular cAMP levels, milk protein production, and apoptosis in a lactation culture model of MECs that produce major milk components like lactating MECs in vivo. We found that bromocriptine decreased intracellular cAMP levels, whereas domperidone dose-dependently neutralized this effect. Bromocriptine also inhibited casein and lactoferrin production and suppressed activities of STAT5 and glucocorticoid receptors (GRs). Domperidone neutralized the inhibition of casein production as well as STAT5 and GR inactivation induced by bromocriptine. Furthermore, D2R activation by bromocriptine induced apoptosis and inactivated ERK, a signaling molecule responsible for promoting cell proliferation and survival. Domperidone attenuated ERK inactivation and apoptosis induced by bromocriptine. These findings suggest that D2Rs play regulatory roles in milk protein production and apoptosis in MECs.


Subject(s)
Apoptosis , Bromocriptine , Domperidone , Epithelial Cells , Lactation , Mammary Glands, Animal , Milk Proteins , Receptors, Dopamine D2 , Animals , Female , Mice , Apoptosis/drug effects , Bromocriptine/pharmacology , Cells, Cultured , Cyclic AMP/metabolism , Domperidone/pharmacology , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Lactation/metabolism , Mammary Glands, Animal/cytology , Mammary Glands, Animal/metabolism , Milk Proteins/metabolism , Milk Proteins/genetics , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D2/genetics , STAT5 Transcription Factor/metabolism
12.
Nutrients ; 16(10)2024 May 12.
Article in English | MEDLINE | ID: mdl-38794693

ABSTRACT

Human milk (HM) contains the essential macronutrients and bioactive compounds necessary for the normal growth and development of newborns. The milk collected by human milk banks is stored frozen and pasteurized, reducing its nutritional and biological value. The purpose of this study was to determine the effect of hyperbaric storage at subzero temperatures (HS-ST) on the macronutrients and bioactive proteins in HM. As control samples, HM was stored at the same temperatures under 0.1 MPa. A Miris HM analyzer was used to determine the macronutrients and the energy value. The lactoferrin (LF), lysozyme (LYZ) and α-lactalbumin (α-LAC) content was checked using high-performance liquid chromatography, and an ELISA test was used to quantify secretory immunoglobulin A (sIgA). The results showed that the macronutrient content did not change significantly after 90 days of storage at 60 MPa/-5 °C, 78 MPa/-7 °C, 111 MPa/-10 °C or 130 MPa/-12 °C. Retention higher than 90% of LYZ, α-LAC, LF and sIgA was observed in the HM stored at conditions of up to 111 MPa/-10 °C. However, at 130 MPa/-12 °C, there was a reduction in LYZ and LF, by 39 and 89%, respectively. The storage of HM at subzero temperatures at 0.1 MPa did not affect the content of carbohydrates or crude and true protein. For fat and the energy value, significant decreases were observed at -5 °C after 90 days of storage.


Subject(s)
Food Storage , Lactoferrin , Milk, Human , Muramidase , Nutritive Value , Humans , Milk, Human/chemistry , Lactoferrin/analysis , Food Storage/methods , Muramidase/analysis , Muramidase/metabolism , Lactalbumin/analysis , Immunoglobulin A, Secretory/analysis , Immunoglobulin A, Secretory/metabolism , Nutrients/analysis , Milk Proteins/analysis , Female
13.
J Proteomics ; 301: 105194, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38723850

ABSTRACT

This study explores the disulfide bridges present in the human milk proteome by a novel approach permitting both positional identification and relative quantification of the disulfide bridges. Human milk from six donors was subjected to trypsin digestion without reduction. The digested human milk proteins were analyzed by nanoLC-timsTOF Pro combined with data analysis using xiSEARCH. A total of 85 unique disulfide bridges were identified in 25 different human milk proteins. The total relative abundance of disulfide bridge-containing peptides constituted approximately 5% of the total amount of tryptic-peptides. Seven inter-molecular disulfide bridges were identified between either α-lactalbumin and lactotransferrin (5) or αS1-casein and κ-casein (2). All cysteines involved in the observed disulfide bridges of α-lactalbumin and lactotransferrin were mapped onto protein models using AlphaFold2 Multimer to estimate the length of the observed disulfide bridges. The lengths of the disulfide bridges of lactotransferrin indicate a potential for multi- or poly-merization of lactotransferrin. The high number of intramolecular lactotransferrin disulfide bridges identified, suggests that these are more heterogeneous than previously presumed. SIGNIFICANCE: Disulfide-bridges in the human milk proteome are an often overseen post-transaltional modification. Thus, mapping the disulfide-bridges, their positions and relative abundance, are valuable new knowledge needed for an improved understanding of human milk protein behaviour. Although glycosylation and phosphorylation have been described, even less information is available on the disulfide bridges and the disulfide-bridge derived protein complexes. This is important for future work in precision fermentation for recombinant production of human milk proteins, as this will highlight which disulfide-bridges are naturally occouring in human milk proteins. Further, this knowledge would be of value for the infant formula industry as it provides more information on how to humanize bovine-milk based infant formula. The novel method developed here can be broadly applied in other biological systems as the disulfid-brigdes are important for the structure and functionality of proteins.


Subject(s)
Disulfides , Milk, Human , Proteome , Proteomics , Humans , Milk, Human/chemistry , Disulfides/chemistry , Disulfides/analysis , Proteomics/methods , Proteome/analysis , Lactoferrin/analysis , Lactoferrin/chemistry , Milk Proteins/analysis , Milk Proteins/chemistry , Lactalbumin/chemistry , Lactalbumin/analysis , Female
14.
Allergol Immunopathol (Madr) ; 52(3): 42-52, 2024.
Article in English | MEDLINE | ID: mdl-38721954

ABSTRACT

INTRODUCTION AND OBJECTIVES: Food allergy has several negative nutritional consequences and may persist beyond the first year of lives. This study aimed to assess the role of a complete oral amino acid-based supplement in the diet of children on cow's milk protein elimination diet because of food allergy. MATERIALS AND METHODS: This study included two groups of children aged 1-5 years paired by age and socioeconomic status: (1) study group, on cow's milk protein elimination diet plus an oral amino acid-based supplement, and (2) control group, on cow's milk protein elimination diet. Sociodemographic, clinical, anthropometric, and dietary data were obtained through online interviews. Two 24-h dietary recalls were collected on nonconsecutive days. Both groups comprised mostly boys. RESULTS: The study group presented lower values of body mass index. The frequency of feeding difficulties was similar between groups. The study group had a higher intake of energy, protein, carbohydrates, calcium, iron, zinc, phosphorus, magnesium, copper, selenium, vitamins D, E, B1, B2, B6, and B12, niacin, and folic acid compared to the control group. A higher proportion of children in the study group had adequate intake according to the recommendations made for energy, carbohydrates, iron, phosphorus, selenium, vitamins A, D, E, B1, B2, and B6, and folic acid. CONCLUSIONS: The use of a complete oral amino acid-based supplement has a positive effect on the diet quality of preschoolers on cow's milk elimination diet because of food allergy, promoting higher intake of energy, calcium, vitamin D, and other essential nutrients.


Subject(s)
Amino Acids , Dietary Supplements , Milk Hypersensitivity , Humans , Child, Preschool , Male , Female , Animals , Cross-Sectional Studies , Infant , Amino Acids/administration & dosage , Milk/immunology , Cattle , Milk Proteins/administration & dosage , Milk Proteins/immunology , Diet , Elimination Diets
15.
Food Chem ; 451: 139295, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38729042

ABSTRACT

Information regarding protein expression and phosphorylation modifications in the bovine milk fat globule membrane is scarce, particularly throughout various lactation periods. This study employed a complete proteome and phosphoproteome between bovine colostrum and mature milk. A total of 11 proteins were seen in both protein expression and phosphorylation levels. There were 400 proteins identified in only protein expression, and 104 phosphoproteins identified in only phosphorylation levels. A total of 232 significant protein characteristics were identified within the proteome and significant phosphorylation sites within 86 phosphoproteins of the phosphoproteome. Biological activities and pathways primarily exhibited associations with the immune system. Simultaneously, a comprehensive analysis of proteins and phosphorylation sites using a multi-omics approach. Hence, the data we have obtained has the potential to expand our understanding of how the bovine milk fat globule membrane might be utilized as a beneficial component in dairy products.


Subject(s)
Glycolipids , Glycoproteins , Lactation , Lipid Droplets , Milk , Phosphoproteins , Proteomics , Animals , Cattle , Glycoproteins/chemistry , Glycoproteins/immunology , Glycoproteins/metabolism , Lipid Droplets/chemistry , Lipid Droplets/metabolism , Glycolipids/chemistry , Glycolipids/metabolism , Female , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Phosphoproteins/genetics , Phosphoproteins/immunology , Milk/chemistry , Milk Proteins/chemistry , Milk Proteins/metabolism , Milk Proteins/immunology , Phosphorylation , Proteome/chemistry , Proteome/immunology , Proteome/analysis
16.
Food Res Int ; 183: 114175, 2024 May.
Article in English | MEDLINE | ID: mdl-38760120

ABSTRACT

Lactose hydrolysed concentrated milk was prepared using ß-galactosidase enzyme (4.76U/mL) with a reaction period of 12 h at 4 °C. Addition of polysaccharides (5 % maltodextrin/ß-cyclodextrin) to concentrated milk either before or after lactose hydrolysis did not result in significant differences (p > 0.05) in degree of hydrolysis (% DH) of lactose and residual lactose content (%). Three different inlet temperatures (165 °C, 175 °C and 185 °C) were used for the preparation of powders which were later characterised based on physico-chemical and maillard browning characteristics. Moisture content, solubility and available lysine content of the powders decreased significantly, whereas, browning parameters i.e., browning index, 5-hydroxymethylfurfural, furosine content increased significantly (p < 0.05) with an increase in inlet air temperature. The powder was finally prepared with 5 % polysaccharide and an inlet air temperature of 185 °C which reduced maillard browning. Protein-polysaccharide interactions were identified using Fourier Transform infrared spectroscopy, fluorescence spectroscopy and determination of free amino groups in the powder samples. Maltodextrin and ß-cyclodextrin containing powder samples exhibited lower free amino groups and higher degree of graft value as compared to control sample which indicated protein-polysaccharide interactions. Results obtained from Fourier Transform infrared spectroscopy also confirmed strong protein-polysaccharide interactions, moreover a significant decrease in fluorescence intensity was also observed in the powder samples. These interactions between the proteins and polysaccharides reduced the maillard browning in powders.


Subject(s)
Furaldehyde , Lactose , Maillard Reaction , Milk , Polysaccharides , Powders , Lactose/chemistry , Polysaccharides/chemistry , Milk/chemistry , Animals , Spectroscopy, Fourier Transform Infrared , Furaldehyde/analogs & derivatives , Furaldehyde/chemistry , beta-Galactosidase/metabolism , beta-Cyclodextrins/chemistry , Hydrolysis , Spray Drying , Temperature , Lysine/chemistry , Lysine/analogs & derivatives , Solubility , Spectrometry, Fluorescence , Milk Proteins/chemistry , Food Handling/methods
17.
J Agric Food Chem ; 72(21): 12198-12208, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38752986

ABSTRACT

Holder pasteurization (HoP) enhances donor human milk microbiological safety but damages many bioactive milk proteins. Though ultraviolet-C irradiation (UV-C) can enhance safety while better preserving some milk proteins, it has not been optimized for dose or effect on a larger array of bioactive proteins. We determined the minimal UV-C parameters that provide >5-log reductions of relevant bacteria in human milk and how these treatments affect an array of bioactive proteins, vitamin E, and lipid oxidation. Treatment at 6000 and 12 000 J/L of UV-C resulted in >5-log reductions of all vegetative bacteria and bacterial spores, respectively. Both dosages improved retention of immunoglobulin A (IgA), IgG, IgM, lactoferrin, cathepsin D, and elastase and activities of bile-salt-stimulated lipase and lysozyme compared with HoP. These UV-C doses caused minor reductions in α-tocopherol but not γ-tocopherol and no increases in lipid oxidation products. UV-C treatment is a promising approach for donor human milk processing.


Subject(s)
Bacteria , Milk, Human , Pasteurization , Ultraviolet Rays , Humans , Milk, Human/chemistry , Milk, Human/radiation effects , Pasteurization/methods , Bacteria/radiation effects , Bacteria/metabolism , Bacteria/isolation & purification , Milk Proteins/chemistry , Food Irradiation/methods , Lipids/chemistry , Vitamins/analysis , Vitamin E/pharmacology
18.
Mol Nutr Food Res ; 68(10): e2300796, 2024 May.
Article in German | MEDLINE | ID: mdl-38704747

ABSTRACT

Alpha-gal syndrome (AGS) is a mammalian meat allergy associated with tick bites and specific IgE to the oligosaccharide galactose-α-1,3-galactose (α-gal). Recent studies have shown that 10-20% of AGS patients also react to the dairy proteins. Considering the already described role of the meat lipid fraction in AGS manifestations, the aim of this work has been to investigate whether the milk fat globule proteins (MFGPs) could be involved in AGS. The MFGPs are extracted and their recognition by the IgE of AGS patients is proved through immunoblotting experiments. The identification of the immunoreactive proteins by LC-HRMS analysis allows to demonstrate for the first time that butyrophillin, lactadherin, and xanthine oxidase (XO) are α-gal glycosylated. The role of xanthine oxidase seems to be prevalent since it is highly recognized by both the anti-α-gal antibody and AGS patient sera. The results obtained in this study provide novel insights in the characterization of α-Gal carrying glycoproteins in bovine milk, supporting the possibility that milk, especially in its whole form, may give reactions in AGS patients. Although additional factors are probably associated with the clinical manifestations, the avoidance of milk and milk products should be considered in individuals with AGS showing symptoms related to milk consumption.


Subject(s)
Glycolipids , Glycoproteins , Lipid Droplets , Milk , Humans , Animals , Cattle , Milk/chemistry , Allergens/immunology , Butyrophilins/metabolism , Female , Milk Proteins/immunology , Immunoglobulin E/immunology , Food Hypersensitivity/immunology , Tick Bites , Adult , Male , Antigens, Surface/immunology , Middle Aged , alpha-Galactosidase , Disaccharides
19.
J Dairy Res ; 91(1): 84-88, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38584304

ABSTRACT

The protein composition in goat milk undergoes changes throughout the different lactation periods, displaying distinct characteristics that are influenced by the dynamic nature of protein composition and concentration during the transition from colostrum secretion to mature milk. To evaluate the dynamics of whey proteins of Saanen goats during the colostral phase and the first month of lactation, 110 milk samples from 11 healthy mammary halves of seven Saanen goats were selected through a clinical evaluation. Whey was obtained by rennet coagulation of the mammary secretion. The biuret method determined total protein concentration, and their fractions were identified by 12% dodecyl sulfate-polyacrylamide gel electrophoresis. Maximum concentrations of all protein fractions were observed in the first 12 h of lactation, reducing throughout the study. Modification of the protein predominance was also observed. The transition from colostrum secretion to milk occurred 5 or 7 d postpartum.


Subject(s)
Colostrum , Goats , Lactation , Mammary Glands, Animal , Milk , Whey Proteins , Animals , Colostrum/chemistry , Female , Lactation/physiology , Whey Proteins/analysis , Milk/chemistry , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/chemistry , Milk Proteins/analysis , Postpartum Period
20.
J Dairy Res ; 91(1): 38-43, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38584303

ABSTRACT

Our aims were to evaluate changes in body characteristics, milk yield and milk constituents as well as to determine the relationship between the thermal environment and production characteristics during the first lactation of dairy Gyr cows managed on pasture. Between 2013 and 2015, forty-five primiparous dairy Gyr cows were evaluated from prepartum to 10 months of lactation in Southeast of Brazil. Body weight, body condition score (BCS), subcutaneous fat thickness (SFT), milk yield (305 d), and milk constituents were collected monthly and progesterone was collected weekly. Additionally, we determined the temperature humidity index (THI) based on microclimate data. Overall, the cows lost body weight until six months of lactation and there was a progressive decrease in BCS, SFT, milk yield and milk lactose as the months in lactation progressed. In contrast, there was an increase in milk fat, milk protein and milk solids. The thermal environment did not pose a consistent heat challenge, nevertheless, we found a positive correlation between the average THI two days before milk collection with milk yield, fat and lactose contents, but in contrast a negative correlation was found with total solids and protein. In conclusion, the THI and months of lactation affected the yield and constituents of milk. However, more studies are necessary to understand the impacts of body characteristics and thermal environment on yield and milk constituents throughout the productive life of Gyr dairy cows.


Subject(s)
Humidity , Lactation , Lactose , Milk , Animals , Lactation/physiology , Female , Cattle/physiology , Milk/chemistry , Lactose/analysis , Milk Proteins/analysis , Temperature , Body Weight , Brazil , Dairying/methods , Subcutaneous Fat/chemistry , Body Composition
SELECTION OF CITATIONS
SEARCH DETAIL
...