Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.462
Filter
1.
Sci Rep ; 14(1): 12641, 2024 06 02.
Article in English | MEDLINE | ID: mdl-38825663

ABSTRACT

In many countries with wastewater irrigation and intensive use of fertilizers (minerals and organics), heavy metal deposition by crops is regarded as a major environmental concern. A study was conducted to determine the impact of mineral fertilizers, cow manure, poultry manure, leaf litter, and sugarcane bagasse on soil's trace Pb content and edible parts of vegetables. It also evaluated the risk of lead (Pb) contamination in water, soil, and food crops. Six vegetables (Daucus carota, Brassica oleracea, Pisum sativum, Solanum tuberosum, Raphanus sativus, and Spinacia oleracea) were grown in the field under twelve treatments with different nutrient and water inputs. The lead concentrations in soil, vegetables for all treatments and water samples ranged from 1.038-10.478, 0.09346-9.0639 mg/kg and 0.036-0.26448 mg/L, The concentration of lead in soil treated with wastewater in treatment (T6) and vegetable samples was significantly higher, exceeding the WHO's permitted limit. Mineral and organic fertilizers combined with wastewater treatment reduced lead (Pb) concentrations in vegetables compared to wastewater application without organic fertilizers. Health risk indexes for all treatments except wastewater treatment (T6) were less than one. Pb concentrations in mineral fertilizers, cow manure, poultry manure, leaf litter, and sugarcane bagasse treated were determined to pose no possible risk to consumers.


Subject(s)
Fertilizers , Lead , Manure , Vegetables , Wastewater , Fertilizers/analysis , Vegetables/metabolism , Vegetables/chemistry , Manure/analysis , Wastewater/chemistry , Wastewater/analysis , Lead/analysis , Lead/metabolism , Animals , Soil Pollutants/analysis , Soil/chemistry , Cattle , Crops, Agricultural/metabolism , Crops, Agricultural/growth & development , Crops, Agricultural/chemistry , Minerals/analysis
2.
Food Res Int ; 186: 114336, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729713

ABSTRACT

Alternative milk products such as A2 milk are gaining popular stand within consumer market, for their healthy profile and expected greater digestibility characteristics. However, total mineral content and its bioaccessible profile have lacked in studies through the years, even more because of their relevance in public health. The present study aimed to evaluate the mineral profile of commercial A2 bovine milk (AT) and estimate the bioaccessibility of calcium, phosphorus and magnesium using the INFOGEST protocol. Non-A2 samples (NAT) were evaluated for comparison purpose. The determination of Ca, Mg, Na and K was performed by FAAS and total P was quantified by colorimetric method. Total protein content was determined by Kjeldahl method. Free amino acids were quantified by OPA method along the in vitro digestion stages. Total content of Ca, Na and P exhibited equivalent results between samples, although A2 milk showed elevated levels of total Mg and K in the analyzed batches. AT showed protein content equivalent to NAT. In addition, levels of free NH2 were observed 2 times higher in AT, during the first hour of pancreatic phase in the intestinal digestion. Bioaccessibility of Ca showed equivalent percentages for AT (12-42 %) and NAT (10-39 %). The observed low values were possibly derived from interferences with saturated fatty acids and standardized electrolytes during digestion. Similar amounts of bioaccessible Mg were found for all milk samples (35-97 %), while A2 samples evidenced percentages of bioaccessible P exceeding 60 % across the three batches. Despite the health benefits associated to A2 milk, the study did not evidence clear distinction from non-A2 milk in terms of enhanced essential mineral solubility in digestive tract simulation, considering the association of greater digestibility expected for A2 milk.


Subject(s)
Amino Acids , Biological Availability , Digestion , Milk , Minerals , Animals , Milk/chemistry , Amino Acids/analysis , Minerals/analysis , Cattle , Magnesium/analysis
3.
Food Res Int ; 186: 114375, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729732

ABSTRACT

The proximal composition and its seasonal variation of the green seaweed Ulva sp. harvested in a traditional saline (earthen ponds used for marine salt extraction) from Cadiz Bay (Southern Spain) was evaluated. Ulva sp. was also collected in a reference location within the Bay in order to compare and evaluate the effects of the particular characteristics of the saline in the composition of the macroalgae. Moisture, protein, lipid, ash, carbohydrate, fiber and macro- (Na, K, Ca, Mg), micro-mineral contents (Fe, Zn, Cu) and heavy metals (As, Cd, Co, Cr, Hg, Ni, Pb, Sn) of harvested biomass samples as well as environmental parameters of seawater (temperature, salinity, pH, DO, NH4+, NO3-, NO2- and PO43-) were measured. The results showed that Ulva sp. from the earthen ponds in the traditional salina was a better source of proteins, lipids, K and Mg, highlighting in summer with values of 27.54 % versus 6.11 %; 6.71 % versus 3.26 %; 26.60 mg g-1 versus 14.21 mg g-1 and 23.13 mg g-1 versus 17.79 mg g-1, respectively. It also had Na/K and Ca/Mg ratios of less than one, suggesting a healthy food source. Considering the Commission Recommendation (EU) 2018/464 as a working reference, Ulva sp. did not exceed the limit of toxic metals for human consumption.A season and site-season significant interaction on the composition of the seaweeds was observed. The proximal and mineral composition of Ulva sp. was influenced by the special features and environmental conditions of the earthen ponds. Hence, significant differences were observed in the macroalgae collected in the earthen ponds in summer and autumn, in contrast to the winter and spring samples, whose characteristics were similar to those from the inner bay. The closure of the lock-gates in summer to favor the production of salt significantly modified the environmental characteristics of the saline, affecting the physiological capacity of Ulva sp. to assimilate and storage nutrients, and therefore its tissue composition. As a consequence, the highest contents of lipid, ash, Ca, K, Mg and Fe were estimated in the macroalgae.


Subject(s)
Metals, Heavy , Minerals , Nutritive Value , Seawater , Ulva , Ulva/chemistry , Minerals/analysis , Metals, Heavy/analysis , Seawater/chemistry , Humans , Spain , Seasons , Seaweed/chemistry , Lactuca/chemistry , Salinity
4.
Trop Anim Health Prod ; 56(4): 160, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730050

ABSTRACT

The rearing of calves is an essential activity of a dairy system, as it impacts the future production of these animals. This study aims to evaluate the incidence of diarrhea, performance, and blood parameters of suckling calves that received mineral-vitamin supplementation in milk plus virginiamycin that was offered in milk (via the abomasum) or by esophageal tube (via the rumen). Twenty-seven calves were used, from the first week to 60 days of age, submitted to the following treatments: CONTROL, without supplementation; MILK, supplementation of 20 g of a mineral-vitamin complex with 100 mg of virginiamycin, diluted in milk; RUMEN, supplementation of 20 g of a mineral-vitamin complex diluted in milk and 100 mg of virginiamycin in gelatin capsules via an esophageal applicator. MILK and RUMEN calves had lower fecal consistency scoring, fewer days with scores 2 and 3 throughout the experimental period, and lower spending on medication compared to the CONTROL animals. Supplemented calves had higher fat and protein intake and reached feed intake of 600 g earlier than CONTROL animals, but did not differ in performance and hematological parameters. Supplementation with virginiamycin and vitamin-mineral complex for suckling calves reduced the incidence and days of diarrhea, and reduced medication costs, with no difference in performance, but the supplemented animals had higher initial protein and fat intake and reached targeted feed intake earlier to begin the weaning process.


Subject(s)
Animal Feed , Cattle Diseases , Diarrhea , Dietary Supplements , Virginiamycin , Animals , Cattle , Dietary Supplements/analysis , Diarrhea/veterinary , Diarrhea/prevention & control , Diarrhea/epidemiology , Cattle Diseases/epidemiology , Cattle Diseases/prevention & control , Incidence , Animal Feed/analysis , Virginiamycin/administration & dosage , Virginiamycin/pharmacology , Vitamins/administration & dosage , Animals, Suckling , Male , Female , Minerals/administration & dosage , Minerals/analysis , Milk/chemistry , Diet/veterinary
5.
BMC Plant Biol ; 24(1): 378, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724893

ABSTRACT

Pakistan's economy greatly benefits from citrus production since these fruits are sold and consumed all over the world. Although citrus fruits are easy to cultivate, they are susceptible to diseases caused by bacteria, viruses, and fungi. These challenges, as well as difficulties in obtaining the proper nutrients, might negatively impact fruit yields and quality. Citrus canker is another complicated problem caused by the germ Xanthomonas axonopodis. This germ affects many types of citrus fruits all over the world. This study looked closely at how citrus canker affects the leaves and the quality of the fruit in places like Sargodha, Bhalwal, Kotmomin, and Silanwali, which are big areas for growing citrus in the Sargodha district. What we found was that plants without the disease had more chlorophyll in their leaves compared to the sick plants. Also, the healthy plants had better amounts of important minerals like calcium, magnesium, potassium, and phosphorus in their fruits. But the fruits with the disease had too much sodium, and the iron levels were a bit different. The fruits with the disease also didn't have as much of something that protects them called antioxidants, which made them more likely to get sick. This study helps us understand how citrus canker affects plants and fruit, so we can think of ways to deal with it.


Subject(s)
Citrus , Fruit , Plant Diseases , Plant Leaves , Xanthomonas axonopodis , Citrus/microbiology , Xanthomonas axonopodis/physiology , Plant Leaves/microbiology , Plant Leaves/metabolism , Plant Diseases/microbiology , Fruit/microbiology , Minerals/metabolism , Minerals/analysis , Chlorophyll/metabolism , Pakistan
6.
PLoS One ; 19(5): e0301092, 2024.
Article in English | MEDLINE | ID: mdl-38718028

ABSTRACT

Globally, the rapid aging of the population is predicted to become even more severe in the second half of the 21st century. Thus, it is expected to establish a growing expectation for innovative, non-invasive health indicators and diagnostic methods to support disease prevention, care, and health promotion efforts. In this study, we aimed to establish a new health index and disease diagnosis method by analyzing the minerals and free amino acid components contained in hair shaft. We first evaluated the range of these components in healthy humans and then conducted a comparative analysis of these components in subjects with diabetes, hypertension, androgenetic alopecia, major depressive disorder, Alzheimer's disease, and stroke. In the statistical analysis, we first used a student's t test to compare the hair components of healthy people and those of patients with various diseases. However, many minerals and free amino acids showed significant differences in all diseases, because the sample size of the healthy group was very large compared to the sample size of the disease group. Therefore, we attempted a comparative analysis based on effect size, which is not affected by differences in sample size. As a result, we were able to narrow down the minerals and free amino acids for all diseases compared to t test analysis. For diabetes, the t test narrowed down the minerals to 15, whereas the effect size measurement narrowed it down to 3 (Cr, Mn, and Hg). For free amino acids, the t test narrowed it down to 15 minerals. By measuring the effect size, we were able to narrow it down to 7 (Gly, His, Lys, Pro, Ser, Thr, and Val). It is also possible to narrow down the minerals and free amino acids in other diseases, and to identify potential health indicators and disease-related components by using effect size.


Subject(s)
Amino Acids , Hair , Humans , Hair/chemistry , Male , Amino Acids/analysis , Amino Acids/metabolism , Female , Middle Aged , Adult , Alopecia/diagnosis , Aged , Minerals/analysis , Minerals/metabolism , Alzheimer Disease/diagnosis , Alzheimer Disease/metabolism , Stroke , Hypertension , Depressive Disorder, Major/diagnosis , Diabetes Mellitus/diagnosis , Case-Control Studies
7.
Geobiology ; 22(3): e12594, 2024.
Article in English | MEDLINE | ID: mdl-38700397

ABSTRACT

Lehman Caves is an extensively decorated high desert cave that represents one of the main tourist attractions in Great Basin National Park, Nevada. Although traditionally considered a water table cave, recent studies identified abundant speleogenetic features consistent with a hypogenic and, potentially, sulfuric acid origin. Here, we characterized white mineral deposits in the Gypsum Annex (GA) passage to determine whether these secondary deposits represent biogenic minerals formed during sulfuric acid corrosion and explored microbial communities associated with these and other mineral deposits throughout the cave. Powder X-ray diffraction (pXRD), scanning electron microscopy with electron dispersive spectroscopy (SEM-EDS), and electron microprobe analyses (EPMA) showed that, while most white mineral deposits from the GA contain gypsum, they also contain abundant calcite, silica, and other phases. Gypsum and carbonate-associated sulfate isotopic values of these deposits are variable, with δ34SV-CDT between +9.7‰ and +26.1‰, and do not reflect depleted values typically associated with replacement gypsum formed during sulfuric acid speleogenesis. Petrographic observations show that the sulfates likely co-precipitated with carbonate and SiO2 phases. Taken together, these data suggest that the deposits resulted from later-stage meteoric events and not during an initial episode of sulfuric acid speleogenesis. Most sedimentary and mineral deposits in Lehman Caves have very low microbial biomass, with the exception of select areas along the main tour route that have been impacted by tourist traffic. High-throughput 16S rRNA gene amplicon sequencing showed that microbial communities in GA sediments are distinct from those in other parts of the cave. The microbial communities that inhabit these oligotrophic secondary mineral deposits include OTUs related to known ammonia-oxidizing Nitrosococcales and Thaumarchaeota, as well as common soil taxa such as Acidobacteriota and Proteobacteria. This study reveals microbial and mineralogical diversity in a previously understudied cave and expands our understanding of the geomicrobiology of desert hypogene cave systems.


Subject(s)
Bacteria , Caves , Minerals , Caves/microbiology , Minerals/analysis , Bacteria/classification , Bacteria/metabolism , Nevada , Archaea/metabolism , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Parks, Recreational , RNA, Ribosomal, 16S/genetics , Sulfuric Acids , Phylogeny , Microbiota , Calcium Sulfate/chemistry , Microscopy, Electron, Scanning
8.
Sci Rep ; 14(1): 9993, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38693201

ABSTRACT

Termites are widely distributed globally and serve as a valuable food source in many countries. However, information on the myriad nutritional benefits of processed termite products in African markets remain largely unexploited. This study evaluated the phytochemicals, fatty acids, amino acids, minerals, vitamins and proximate composition of the edible winged termites (Macrotermes spp.) from three major Counties of Kenya. A total of 9 flavonoids, 5 alkaloids, and 1 cytokinin were identified. The oil content varied from 33 to 46%, exhibiting significant levels of beneficial omega 3 fatty acids, such as methyl (9Z,12Z,15Z)-octadecatrienoate and methyl (5Z,8Z,11Z,14Z,17Z)-eicosapentaenoate, ranging from 82.7-95.1 to 6.3-8.1 µg/g, respectively, across the different regions. Four essential and cereal-limiting amino acids lysine (1.0-1.3 mg/g), methionine (0.08-0.1 mg/g), leucine (0.6-0.9 mg/g) and threonine (0.1-0.2 mg/g), were predominant. Moreover, termites had a rich profile of essential minerals, including iron (70.7-111.8 mg/100 g), zinc (4.4-16.2 mg/100 g) and calcium (33.1-53.0 mg/100 g), as well as vitamins A (2.4-6.4 mg/kg), C (0.6-1.9 mg/kg) and B12 (10.7-17.1 mg/kg). The crude protein (32.2-44.8%) and fat (41.2-49.1%) contents of termites from the various Counties was notably high. These findings demonstrated the promising nutrients potential of winged termites and advocate for their sustainable utilization in contemporary efficacious functional food applications to combat malnutrition.


Subject(s)
Amino Acids , Isoptera , Nutritive Value , Animals , Amino Acids/analysis , Minerals/analysis , Vitamins/analysis , Fatty Acids/analysis , Phytochemicals/analysis , Kenya , Africa , Humans
9.
Braz J Biol ; 84: 279851, 2024.
Article in English | MEDLINE | ID: mdl-38747856

ABSTRACT

The present study was conducted to determine the efficiency of organomineral fertilizer from cupuaçu residues (ORFCup) and dose of maximum technical efficiency of Azospirillum brasilense on the initial growth and morphophysiological quality of Mezilaurus itauba seedlings in the northern Amazon. The variables evaluated were: shoot height (H, cm), stem diameter (SD, mm), shoot dry mass (SDM, g plant-1), root dry mass (RDM, g plant-1) total dry mass (TDM, g plant-1), Dickson quality index (DQI), net assimilation rate (NAR, g m-2 day-1), leaf relative growth rate (RGR, g m-2 day-1), leaf area ratio (LAR, m2 g-1), leaf relative growth rate (RGR, g m-2 day-1), leaf area ratio (LAR, m2 g-1), specific leaf area (SLA, cm2 g-1), and leaf mass ratio (LMR, g g-1). Organomineral fertilizer from cupuaçu residues promotes better quality and robustness in M. itauba seedlings at the dose of maximum technical efficiency of 0.45 mL. L-1 of A. brasilense.


Subject(s)
Azospirillum brasilense , Fertilizers , Seedlings , Seedlings/growth & development , Seedlings/microbiology , Azospirillum brasilense/physiology , Minerals/analysis
10.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731897

ABSTRACT

Inspired by nature's remarkable ability to form intricate minerals, researchers have unlocked transformative strategies for creating next-generation biosensors with exceptional sensitivity, selectivity, and biocompatibility. By mimicking how organisms orchestrate mineral growth, biomimetic and bioinspired materials are significantly impacting biosensor design. Engineered bioinspired materials offer distinct advantages over their natural counterparts, boasting superior tunability, precise controllability, and the ability to integrate specific functionalities for enhanced sensing capabilities. This remarkable versatility enables the construction of various biosensing platforms, including optical sensors, electrochemical sensors, magnetic biosensors, and nucleic acid detection platforms, for diverse applications. Additionally, bioinspired materials facilitate the development of smartphone-assisted biosensing platforms, offering user-friendly and portable diagnostic tools for point-of-care applications. This review comprehensively explores the utilization of naturally occurring and engineered biominerals and materials for diverse biosensing applications. We highlight the fabrication and design strategies that tailor their functionalities to address specific biosensing needs. This in-depth exploration underscores the transformative potential of biominerals and materials in revolutionizing biosensing, paving the way for advancements in healthcare, environmental monitoring, and other critical fields.


Subject(s)
Biomimetic Materials , Biosensing Techniques , Biosensing Techniques/methods , Biomimetic Materials/chemistry , Humans , Minerals/chemistry , Minerals/analysis , Animals , Biomimetics/methods
11.
J Clin Pediatr Dent ; 48(3): 86-93, 2024 May.
Article in English | MEDLINE | ID: mdl-38755986

ABSTRACT

The aim of the study was to evaluate the severity of molar incisor hypomineralisation (MIH), related oral health and investigate salivary mineral composition. The study was conducted with 50 participants aged between 6-15 years who were effected with MIH and 50 without MIH. The International Caries Detection and Assessment System (ICDAS) scores, Decayed, Missing, Filled Teeth/Surface (DMFT/S), dft/s and gingival/plaque indices were evaluated. The pH, flow rate, buffering capacity and mineral composition of saliva was measured. "Student t" test, one-way analysis of variance in repeated measurements of groups, and Tukey multiplex in subgroup comparisons was used. Kruskal-Wallis, Mann-Whitney U, Wilcoxon and chi-square tests were used to analyze qualitative data and compare groups. A total of 100 children (57 females 43 males, mean age 10.12 ± 1.85) participated in the study. There was no difference between ICDAS, DMFT/S scores, but dft/s index values were statistically significant (p = 0.001). The simplified oral hygiene index of MIH patients were statistically higher, but no significant differences were found in modified gingival indices (p = 0.52). Although the salivary pH and flow rate of the patients in the study group were lower, the buffering capacity was higher than those in the control group, but no significant difference was observed (p = 0.64). The mean values of phosphorus, carbon and calcium content in the saliva samples of MIH patients were higher than those of patients without MIH, and this difference was low for phosphorus (p = 0.76) and carbon (p = 0.74), but significantly higher for calcium. To the best of our knowledge, this is the first study to evaluate the association between calcium, phosphate and carbon levels in saliva of children with MIH. The significantly high amount of calcium in the saliva of patients with MIH suggests that further investigations are needed.


Subject(s)
Dental Enamel Hypoplasia , Saliva , Humans , Saliva/chemistry , Child , Female , Male , Adolescent , Hydrogen-Ion Concentration , Minerals/analysis , Calcium/analysis , DMF Index , Severity of Illness Index , Phosphorus/analysis , Molar Hypomineralization
12.
Nutr Bull ; 49(2): 209-219, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38698740

ABSTRACT

This study aimed to characterise the market-driven fortification of vitamins and minerals in packaged foods targeted at children in Brazil. We analysed 535 food labels using data collected in a census-type method (n = 5620) of food labels in a Brazilian supermarket in 2013. Micronutrients declared in nutrition claims and the ingredients list (synthetic compounds) were considered to be added for commercial purposes. Analysis of the ingredients list and nutrition claims showed that market-driven fortification of vitamins and minerals was present in 27.1% of foods. The main vitamins and minerals were vitamins A, B complex, C, D, calcium, iron and zinc. The food groups 'Milk and dairy products' and 'Sugars, sugary foods and snacks' had the highest frequencies of micronutrients declared in the ingredients list. Calcium, iron, phosphorus, zinc and all vitamins, except B7, were found to be added for commercial purposes. Micronutrients were found to be commonly added to packaged foods as a marketing strategy directed at parents and their children. Future studies should assess the amount of vitamins and minerals added to packaged foods targeted at children and whether intakes of vitamins and minerals in children are potentially excessive.


Subject(s)
Food Labeling , Food, Fortified , Micronutrients , Minerals , Vitamins , Humans , Brazil , Food, Fortified/analysis , Minerals/administration & dosage , Minerals/analysis , Vitamins/administration & dosage , Vitamins/analysis , Child , Micronutrients/analysis , Micronutrients/administration & dosage , Nutritive Value , Food Packaging , Supermarkets , Dairy Products/analysis , Marketing
13.
Food Chem ; 453: 139701, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38781907

ABSTRACT

The current study offers the nanomolar quantification of gallic acid (GAL) based on gold nanoparticles (AuNps) and kaolinite minerals (KNT) modified on a screen-printed electrode (SPE). The electrochemical behavior of GAL was performed using differential pulse voltammetry (DPV) in Britton Robinson (BR) buffer solution at pH 2.0 as a supporting electrolyte. Under the optimized DPV mode parameters, the oxidation peak current of GAL (at 0.72 V vs Ag/AgCl) increased linearly in the range between 0.002 µmolL-1 and 40.0 µmolL-1 with a detection limit of 0.50 nmolL-1. The effect of common interfering agents was also investigated. Finally, the applicability of the proposed method was verified by quantification analysis of GAL in black tea and pomegranate juice samples.


Subject(s)
Electrochemical Techniques , Electrodes , Gallic Acid , Gold , Kaolin , Metal Nanoparticles , Metal Nanoparticles/chemistry , Gold/chemistry , Gallic Acid/analysis , Gallic Acid/chemistry , Kaolin/chemistry , Electrochemical Techniques/instrumentation , Limit of Detection , Pomegranate/chemistry , Tea/chemistry , Minerals/analysis , Minerals/chemistry , Fruit and Vegetable Juices/analysis , Camellia sinensis/chemistry , Food Contamination/analysis
14.
Sci Rep ; 14(1): 11908, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38789472

ABSTRACT

Common beans are a common staple food with valuable nutritional qualities, but their high contents in antinutritional factors (ANFs) can decrease the bioavailability of (i) fat-soluble micronutrients including carotenoids and (ii) minerals. Our objective was to select ANF-poor bean lines that would not interfere with carotenoid and mineral bioavailability. To achieve this objective, seeds of commercial and experimental Phaseolus vulgaris L. bean lines were produced for 2 years and the bean's content in ANFs (saponins, phytates, tannins, total polyphenols) was assessed. We then measured carotenoid bioaccessibility and mineral solubility (i.e. the fraction of carotenoid and mineral that transfer into the aqueous phase of the digesta and is therefore absorbable) from prepared beans using in vitro digestion. All beans contained at least 200 mg/100 g of saponins and 2.44 mg/100 g tannins. The low phytic acid (lpa) lines, lpa1 and lpa12 exhibited lower phytate levels (≈ - 80%, p = 0.007 and p = 0.02) than their control BAT-93. However, this decrease had no significant impact on mineral solubility. HP5/1 (lpa + phaseolin and lectin PHA-E free) bean line, induced an improvement in carotenoid bioaccessibility (i.e., + 38%, p = 0.02, and + 32%, p = 0.005, for phytofluene bioaccessibility in 2021 and 2022, respectively). We conclude that decrease in the phytate bean content should thus likely be associated to decreases in other ANFs such as tannins or polyphenols to lead to significant improvement of micronutrient bioaccessibility.


Subject(s)
Biological Availability , Carotenoids , Minerals , Phaseolus , Phytic Acid , Solubility , Tannins , Phaseolus/chemistry , Phaseolus/metabolism , Carotenoids/analysis , Carotenoids/metabolism , Phytic Acid/analysis , Minerals/analysis , Tannins/analysis , Seeds/chemistry , Seeds/metabolism , Polyphenols/analysis , Nutritive Value , Saponins/analysis
15.
Chemosphere ; 359: 142326, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763398

ABSTRACT

Accessory minerals in granitic rocks are unlikely significant radionuclide contributions to groundwater due to their remarkable durability. However, accessory minerals incorporating U and Th may suffer structural damages due to the radioactivity and become highly susceptible to alteration. This study investigates geochemistry coupled with textural analysis of the U-Th bearing accessory minerals using a field emission scanning electron microscope and an electron probe micro-analyzer. Altered zircons with numerous open structures related to the radioactive decay show higher contents of U and Th and low analytical totals. Some thorites show high contents of U and non-formula elements due to the hydrothermal alteration in the metamicted thorite. The cerianite including U occurs as micro-veinlet in fracture with trace of Fe and Mn oxides, which indicates secondary phase formation from the decomposed accessory minerals in an oxidizing environment. Some accessory minerals with the high content of U and Th have been found in Mesozoic granite terrain in South Korea, where high concentration levels of radionuclide in groundwater were also reported. The leaching of U may be more likely when the accessory minerals are highly metamicted or altered as found in our samples. The altered zircon and thorite of the study area could be major carriers of radioelement in Mesozoic granitic aquifers where the occurrence of soluble U-minerals has not been reported.


Subject(s)
Groundwater , Minerals , Silicon Dioxide , Water Pollutants, Radioactive , Groundwater/chemistry , Minerals/chemistry , Minerals/analysis , Water Pollutants, Radioactive/analysis , Silicon Dioxide/chemistry , Uranium/analysis , Radioisotopes/analysis , Radiation Monitoring , Thorium/analysis , Soil Pollutants, Radioactive/analysis , Zirconium , Silicates
16.
Sci Rep ; 14(1): 11282, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38760440

ABSTRACT

This study presents a thorough investigation into the concentration of heavy metals and mineral composition within four distinct coastal flora species: Cyperus conglomeratus, Halopyrum mucronatum, Sericostem pauciflorum, and Salvadora persica. Employing rigorous statistical methodologies such as Pearson coefficient correlation, principal component analysis (PCA), analysis of variance (ANOVA), and interclass correlation (ICC), we aimed to elucidate the bioavailability of heavy metals, minerals, and relevant physical characteristics. The analysis focused on essential elements including copper (Cu), iron (Fe), manganese (Mn), zinc (Zn), magnesium (Mg2+), calcium (Ca2+), sodium (Na+), potassium (K+), and chloride (Cl-), all of which are known to play pivotal roles in the ecological dynamics of coastal ecosystems. Through PCA, we discerned distinctive patterns within PC1 to PC4, collectively explaining an impressive 99.65% of the variance observed in heavy metal composition across the studied flora species. These results underscore the profound influence of environmental factors on the mineral composition of coastal flora, offering critical insights into the ecological processes shaping these vital ecosystems. Furthermore, significant correlations among mineral contents in H. mucronatum; K+ with content of Na+ (r = 0.989) and Mg2+ (r = 0.984); as revealed by ICC analyses, contributed to a nuanced understanding of variations in electrical conductivity (EC), pH levels, and ash content among the diverse coastal flora species. By shedding light on heavy metal and mineral dynamics in coastal flora, this study not only advances our scientific understanding but also provides a foundation for the development of targeted environmental monitoring and management strategies aimed at promoting the ecological sustainability and resilience of coastal ecosystems in the face of ongoing environmental challenges.


Subject(s)
Metals, Heavy , Minerals , Metals, Heavy/analysis , Metals, Heavy/metabolism , Minerals/analysis , Minerals/metabolism , Multivariate Analysis , Ecosystem , Biological Availability , Principal Component Analysis
17.
Environ Res ; 252(Pt 4): 119079, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38729408

ABSTRACT

The mineral composition of wild-growing mushroom species is influenced by various environmental factors, particularly the chemical properties of the soil/substrate. We hypothesised that element uptake might also correlate with taxonomic classification, potentially allowing us to predict contamination levels based on mushrooms within the same taxonomic rank. This study compared the mineral composition (Ag, As, Ba, Ca, Cd, Co, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, Pb, Se, and Zn) of 16 saprotrophic mushroom species from 11 genera across 4 families and 2 orders. Among these were 13 edible and 3 inedible mushrooms, all collected from natural, wild stands in a forest in central-western Poland between 2017 and 2020. Phallus impudicus exhibited the highest mean content of Ba (together with Phallus hadriani) (6.63 and 8.61 mg kg-1, respectively), Ca (with Paralepista gilva and Stropharia rugosoannulata) (803, 735 and 768 mg kg-1, respectively), Cd (with Lycoperdon perlatum) (3.59 and 3.12 mg kg-1, respectively), Co (0.635 mg kg-1), and Fe (with P. hadriani and S. rugosoannulata) (476, 427 and 477 mg kg-1, respectively), while Macrolepiota mastoidea showed the highest content of Ag (1.96 mg kg-1), As (with Coprinus comatus) (1.56 and 1.62 mg kg-1, respectively) and Cu (with Macrolepiota procera and Chlorophyllum rhacodes) (192, 175 and 180 mg kg-1, respectively). Comparing the content of the analysed elements in the genera represented by at least two species, a similarity was observed, the same as the mean concentration in soil under these species. Soil characteristics could be a superior factor that overshadows the impact of the mushroom genus on the elements accumulation, obscuring its role as a determinant in this process. The results are not definitive evidence that belonging to a particular taxonomic rank is a prerequisite condition affecting the accumulation of all elements. A closer focus on this issue is needed.


Subject(s)
Agaricales , Agaricales/chemistry , Agaricales/classification , Poland , Environmental Monitoring/methods , Soil Pollutants/analysis , Trace Elements/analysis , Minerals/analysis
18.
PeerJ ; 12: e17178, 2024.
Article in English | MEDLINE | ID: mdl-38590702

ABSTRACT

Gregory's diverticulum, a digestive tract structure unique to a derived group of sand dollars (Echinoidea: Scutelliformes), is filled with sand grains obtained from the substrate the animals inhabit. The simple methods of shining a bright light through a specimen or testing response to a magnet can reveal the presence of a mineral-filled diverticulum. Heavy minerals with a specific gravity of >2.9 g/cm3 are selectively concentrated inside the organ, usually at concentrations one order of magnitude, or more, greater than found in the substrate. Analyses of diverticulum content for thirteen species from nine genera, using optical mineralogy, powder X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy, as well as micro-computed tomography shows the preference for selection of five major heavy minerals: magnetite (Fe3O4), hematite (Fe2O3), ilmenite (FeTiO3), rutile (TiO2), and zircon (ZrSiO4). Minor amounts of heavy or marginally heavy amphibole, pyroxene and garnet mineral grains may also be incorporated. In general, the animals exhibit a preference for mineral grains with a specific gravity of >4.0 g/cm3, although the choice is opportunistic and the actual mix of mineral species depends on the mineral composition of the substrate. The animals also select for grain size, with mineral grains generally in the range of 50 to 150 µm, and do not appear to alter this preference during ontogeny. A comparison of analytical methods demonstrates that X-ray attenuation measured using micro-computed tomography is a reliable non-destructive method for heavy mineral quantification when supported by associated analyses of mineral grains extracted destructively from specimens or from substrate collected together with the specimens. Commonalities in the electro-chemical surface properties of the ingested minerals suggest that such characteristics play an important role in the selection process.


Subject(s)
Titanium , Zirconium , Animals , Titanium/chemistry , X-Ray Microtomography , Minerals/analysis , Iron/chemistry , Sea Urchins
19.
PLoS One ; 19(4): e0301362, 2024.
Article in English | MEDLINE | ID: mdl-38564515

ABSTRACT

Reproduction, especially impregnation, is a critical aspect of dairy cow management that directly influences herd milk productivity. We conducted a noninvasive hair mineral assay to compare the mineral profiles of two dairy cow groups: reproducible and repeat breeder, by investigating the levels of 11 essential minerals (Ca, Mg, Na, K, Fe, Cu, Mn, Zn, Cr, Se, and P) and 6 toxic elements (Hg, Pb, Cd, Al, As, and Ni) in both groups. We also conducted principal component and correlation matrix analyses to compare hair mineral patterns between the groups. Compared to their reproducible counterparts, repeat breeder cows had lower levels of Na, K, and Se. However, Fe, Cd, Al, and As levels were higher in repeat breeders than in their reproducible counterparts. The correlation matrix showed notable correlation patterns for each group. Ca, K, and Na levels were positively correlated in reproducible cows, whereas repeat breeder cows showed positive correlations only between Ca and K levels. Se showed positive correlations with Zn only in the reproducible cow group. Negative correlations were not found in the reproducible group, whereas the repeat breeder group exhibited 7 negative correlations. Despite the limitations of hair mineral analysis, this study provided useful insights into the reproductive potential of dairy cows. These findings aid in easing the prediction of repeat breeder occurrences in herds and are expected to facilitate timely mineral supplementation and other interventions to improve overall herd reproduction in dairy farms.


Subject(s)
Cadmium , Mercury , Female , Cattle , Animals , Minerals/analysis , Hair/chemistry , Sodium , Lactation
20.
J Food Sci ; 89(5): 2774-2786, 2024 May.
Article in English | MEDLINE | ID: mdl-38602038

ABSTRACT

Banana is one of the most consumed and popular fruits in all regions of the world, being cultivated mainly in tropical countries. It is not only a rich source of vitamins A, C, and B, calcium, iron, potassium, phosphorus, and other vitamins and nutrients, but it also contains several types of antioxidants with high nutritional value. In this context, the current study aimed to quantify the content of ascorbic acid, flavonoids, pigments, and minerals present in "Nanicão" bananas during the ripening process. As demonstrated, the level of flavonoids was higher in ripe and overripe fruits, whereas the mineral composition was high only at ripening stage 4 (more yellow than green) a stage that should be prioritized when recommending fruit consumption to the population deficient in these minerals. Regarding pigments, there was a reduction in chlorophylls a and b and an increase in carotenoids and anthocyanins in peels and pulps. PRACTICAL APPLICATION: Flavonoids are phenolic, bioactive compounds with proven antioxidant and anti-inflammatory activity and products of the plant's secondary metabolism. The degradation of chlorophylls and synthesis of carotenoids and anthocyanins, and as a consequence of the latter pigment, the increase in flavonoids in the pulp was evident during the monitoring of ripening, mainly in the fruit peels in relation to pigments. Minerals are essential elements, the main ones provided in balanced diets and important for dietary and nutritional health.


Subject(s)
Antioxidants , Carotenoids , Flavonoids , Fruit , Minerals , Musa , Flavonoids/analysis , Fruit/chemistry , Musa/chemistry , Minerals/analysis , Antioxidants/analysis , Carotenoids/analysis , Pigments, Biological/analysis , Chlorophyll/analysis , Ascorbic Acid/analysis , Nutritive Value , Anthocyanins/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...