Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.611
Filter
1.
Environ Monit Assess ; 196(6): 582, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806872

ABSTRACT

IoT is a game-changer across all fields, including chemistry. Embracing sustainable practices and green chemistry, the miniaturization and automation of systems, and their integration into IoT is key to achieving these principles, as a rising trend with momentum. Particularly, IoT and analytical chemistry are linked in the rapid exchange of analytical data for environmental, industrial, healthcare, and educational applications. Meanwhile, cooperation with other fields of science is evident, and there is a prompt and subjective analysis of information related to analytical systems and methodologies. This paper will review the concepts, requirements, and architecture of IoT and its role in the miniaturization and automation of analytical tools using electronic modules and sensors. The aim is to explore the standards and perspectives of IoT and its interaction with different aspects of analytical chemistry. Additionally, it aimed to explain the basics and applications of IoT for chemists, and its relevance to different subfields of analytical chemistry, particularly in the field of environmental chemical surveillance. The article also covers updating IoT devices and creating DIY-based degradation devices to enhance the educational aspect of chemistry and reduce barriers to lab facilities and equipment. Lastly, it will explore how IoT is really important and how it's going to significantly impact analytical chemistry.


Subject(s)
Environmental Monitoring , Internet of Things , Miniaturization , Environmental Monitoring/methods
2.
Sci Transl Med ; 16(747): eadl4497, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748771

ABSTRACT

Endovascular interventions are increasingly becoming the preferred approach for treating strokes and cerebral artery diseases. These procedures rely on sophisticated angiographical imaging guidance, which encounters challenges because of limited contrast and spatial resolution. Achieving a more precise visualization of the underlying arterial pathology and neurovascular implants is crucial for accurate procedural decision-making. In a human study involving 32 patients, we introduced the clinical application of a miniaturized endovascular neuro optical coherence tomography (nOCT) imaging probe. This technology was designed to navigate the tortuous paths of the cerebrovascular circulation and to offer high-resolution imaging in situ. The nOCT probe is compatible with standard neurovascular microcatheters, integrating with the procedural workflow used in clinical routine. Equipped with a miniaturized optical fiber and a distal lens, the probe illuminates the tissue and collects the backscattered, near-infrared light. While rotating the fiber and the lens at high speed, the probe is rapidly retracted, creating a spiral-shaped light pattern to comprehensively capture the arterial wall and implanted devices. Using nOCT, we demonstrated volumetric microscopy of cerebral arteries in patients undergoing endovascular procedures. We imaged the anterior and posterior circulation of the brain, including distal segments of the internal carotid and middle-cerebral arteries, as well as the vertebral, basilar, and posterior cerebral arteries. We captured a broad spectrum of neurovascular pathologies, such as brain aneurysms, ischemic stroke, arterial stenoses, dissections, and intracranial atherosclerotic disease. nOCT offered artifact-free, high-resolution visualizations of intracranial artery pathology and neurovascular devices.


Subject(s)
Cerebral Arteries , Tomography, Optical Coherence , Tomography, Optical Coherence/methods , Humans , Cerebral Arteries/diagnostic imaging , Microscopy/methods , Miniaturization , Endovascular Procedures/instrumentation , Endovascular Procedures/methods
3.
J Heart Lung Transplant ; 43(6): 889-900, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38713124

ABSTRACT

BACKGROUND: There is no FDA-approved left ventricular assist device (LVAD) for smaller children permitting routine hospital discharge. Smaller children supported with LVADs typically remain hospitalized for months awaiting heart transplant-a major burden for families and a challenge for hospitals. We describe the initial outcomes of the Jarvik 2015, a miniaturized implantable continuous flow LVAD, in the NHLBI-funded Pumps for Kids, Infants, and Neonates (PumpKIN) study, for bridge-to-heart transplant. METHODS: Children weighing 8 to 30 kg with severe systolic heart failure and failing optimal medical therapy were recruited at 7 centers in the United States. Patients with severe right heart failure and single-ventricle congenital heart disease were excluded. The primary feasibility endpoint was survival to 30 days without severe stroke or non-operational device failure. RESULTS: Of 7 children implanted, the median age was 2.2 (range 0.7, 7.1) years, median weight 10 (8.2 to 20.7) kilograms; 86% had dilated cardiomyopathy; 29% were INTERMACS profile 1. The median duration of Jarvik 2015 support was 149 (range 5 to 188) days where all 7 children survived including 5 to heart transplant, 1 to recovery, and 1 to conversion to a paracorporeal device. One patient experienced an ischemic stroke on day 53 of device support in the setting of myocardial recovery. One patient required ECMO support for intractable ventricular arrhythmias and was eventually transplanted from paracorporeal biventricular VAD support. The median pump speed was 1600 RPM with power ranging from 1-4 Watts. The median plasma free hemoglobin was 19, 30, 19 and 30 mg/dL at 7, 30, 90 and 180 days or time of explant, respectively. All patients reached the primary feasibility endpoint. Patient-reported outcomes with the device were favorable with respect to participation in a full range of activities. Due to financial issues with the manufacturer, the study was suspended after consent of the eighth patient. CONCLUSION: The Jarvik 2015 LVAD appears to hold important promise as an implantable continuous flow device for smaller children that may support hospital discharge. The FDA has approved the device to proceed to a 22-subject pivotal trial. Whether this device will survive to commercialization remains unclear because of the financial challenges faced by industry seeking to develop pediatric medical devices. (Supported by NIH/NHLBI HHS Contract N268201200001I, clinicaltrials.gov 02954497).


Subject(s)
Feasibility Studies , Heart Failure , Heart-Assist Devices , Humans , Child, Preschool , Child , Male , Infant , Female , Prospective Studies , Heart Failure/therapy , Heart Failure/surgery , Heart Failure/physiopathology , Miniaturization , Prosthesis Design , Treatment Outcome , United States
4.
Sci Rep ; 14(1): 11923, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38789470

ABSTRACT

Reliable in-vitro digestion models that are able to successfully replicate the conditions found in the human gastrointestinal tract are key to assess the fate and efficiency of new formulations aimed for oral consumption. However, current in-vitro models either lack the capability to replicate crucial dynamics of digestion or require large volumes of sample/reagents, which can be scarce when working with nanomaterials under development. Here, we propose a miniaturised digestion system, a digestion-chip, based on incubation chambers integrated on a polymethylmethacrylate device. The digestion-chip incorporates key dynamic features of human digestion, such as gradual acidification and gradual addition of enzymes and simulated fluids in the gastric phase, and controlled gastric emptying, while maintaining low complexity and using small volumes of sample and reagents. In addition, the new approach integrates real-time automated closed-loop control of two key parameters, pH and temperature, during the two main phases of digestion (gastric and intestinal) with an accuracy down to ± 0.1 °C and ± 0.2 pH points. The experimental results demonstrate that the digestion-chip successfully replicates the gold standard static digestion INFOGEST protocol and that the semi-dynamic digestion kinetics can be reliably fitted to a first kinetic order model. These devices can be easily adapted to dynamic features in an automated, sensorised, and inexpensive platform and will enable reliable, low-cost and efficient assessment of the bioaccessibility of new and expensive drugs, bioactive ingredients or nanoengineered materials aimed for oral consumption, thereby avoiding unnecessary animal testing.


Subject(s)
Digestion , Models, Biological , Humans , Digestion/physiology , Hydrogen-Ion Concentration , Kinetics , Gastrointestinal Tract/metabolism , Temperature , Miniaturization , Lab-On-A-Chip Devices
5.
Talanta ; 275: 126154, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38703477

ABSTRACT

Additive manufacturing is a technique that allows the construction of prototypes and has evolved a lot in the last 20 years, innovating industrial fabrication processes in several areas. In chemistry, additive manufacturing has been used in several functionalities, such as microfluidic analytical devices, energy storage devices, and electrochemical sensors. Theophylline and paracetamol are important pharmaceutical drugs where overdosing can cause adverse effects, such as tachycardia, seizures, and even renal failure. Therefore, this paper aims at the development of miniaturized electrochemical sensors using 3D printing and polylactic acid-based conductive carbon black commercial filament for theophylline and paracetamol detection. Electrochemical characterizations of the proposed sensor were performed to prove the functionality of the device. Morphological characterizations were carried out, in which chemical treatment could change the surface structure, causing the improvement of the analytical signal. Thus, the detection of theophylline at a linear range of 5.00-150 µmol L-1 with a limit of detection of 1.2 µmol L-1 was attained, and the detection of paracetamol at a linear range of 1.00-200 µmol L-1 with a limit of detection of 0.370 µmol L-1 was obtained, demonstrating the proposed sensor effectively detected pharmaceutical drugs.


Subject(s)
Acetaminophen , Electrochemical Techniques , Polyesters , Soot , Theophylline , Acetaminophen/analysis , Soot/chemistry , Electrochemical Techniques/methods , Theophylline/analysis , Polyesters/chemistry , Limit of Detection , Printing, Three-Dimensional , Miniaturization
6.
Biosens Bioelectron ; 257: 116322, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38678789

ABSTRACT

Electrochemiluminescence (ECL) is a bioanalytical technique with numerous advantages, including the potential for high temporal and spatial resolution, a high signal-to-noise ratio, a broad dynamic range, and rapid measurement capabilities. To reduce the complexity of a multi-electrode approach, we use a single-electrode electrochemiluminescence (SE-ECL) configuration to achieve the simultaneous emission and detection of multiple colors for applications that require multiplexed detection of several analytes. This method exploits intrinsic differences in the electric potential applied along single electrodes built into electrochemical cells, enabling the achievement of distinct colors through selective excitation of ECL luminophores. We present results on the optimization of SE-ECL intensity for different channel lengths and widths, with sum intensities being 5 times larger for 6 cm vs. 2 cm channels and linearly increasing with the width of the channels. Furthermore, we demonstrated for the first time that applying Alternating Current (AC) voltage within the single electrode setup for driving the ECL reactions has a dramatic effect on the emitted light intensity, with square waveforms resulting in higher intensities vs sine waveforms. Additionally, multiplexed multicolor SE-ECL on a 6.5 mm × 3.6 mm CMOS semiconductor image sensor was demonstrated for the first time, with the ability to simultaneously distinguish four different colors, leading to the ability to measure multiple analytes.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Equipment Design , Luminescent Measurements , Biosensing Techniques/instrumentation , Luminescent Measurements/instrumentation , Electrochemical Techniques/instrumentation , Miniaturization , Color , Electrodes , Semiconductors , Humans
7.
Bioelectrochemistry ; 158: 108700, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38582009

ABSTRACT

The timely control of infectious diseases can prevent the spread of infections and mitigate the significant socio-economic damage witnessed during recent pandemics. Diagnostic methods play a significant role in detecting highly contagious agents, such as viruses, to prevent further transmission. The emergence of advanced point-of-care techniques offers several advantages over conventional approaches for detecting infectious agents. These techniques are highly sensitive, rapid, can be miniaturized, and are cost-effective. Recently, MXene-based 2D nanocomposites have proven beneficial for fabricating electrochemical biosensors due to their suitable electrical, optical, and mechanical properties. This article covers electrochemical biosensors based on MXene nanocomposite for the detection of viruses, along with the associated challenges and future possibilities. Additionally, we highlight various conventional techniques for the detection of infectious agents, discussing their pros and cons. We delve into the challenges faced during the fabrication of MXene-based biosensors and explore future endeavors. It is anticipated that the information presented in this work will pave the way for the development of Point-of-Care (POC) devices capable of sensitive and selective virus detection, enhancing preparedness for ongoing and future pandemics.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Humans , Viruses/isolation & purification , Nanocomposites/chemistry , Point-of-Care Systems , Miniaturization
8.
Talanta ; 274: 126011, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38574537

ABSTRACT

In this article, we have studied the potential of flexible microtube plasma (FµTP) as ionization source for the liquid chromatography high-resolution mass spectrometry detection of non-easily ionizable pesticides (viz. nonpolar and non-ionizable by acid/basic moieties). Phthalimide-related compounds such as dicofol, dinocap, o-phenylphenol, captan, captafol, folpet and their metabolites were studied. Dielectric barrier discharge ionization (DBDI) was examined using two electrode configurations, including the miniaturized one based on a single high-voltage (HV) electrode and a virtual ground electrode configuration (FµTP), and also the two-ring electrode DBDI configuration. Different ionization pathways were observed to ionize these challenging, non-easily ionizable nonpolar compounds, involving nucleophilic substitutions and proton abstraction, with subtle differences in the spectra obtained compared with APCI. An average sensitivity increase of 5-fold was attained compared with the standard APCI source. In addition, more tolerance with matrix effects was observed in both DBDI sources. The importance of the data reported is not just limited to the sensitivity enhancement compared to APCI, but, more notably, to the ability to effectively ionize nonpolar, late-eluting (in reverse-phase chromatography) non-ionizable compounds. Besides o-phenylphenol ([M - H]-), all the parent species were efficiently ionized through different mechanisms involving bond cleavages through the effect of plasma reagent species or its combination with thermal degradation and subsequent ionization. This tool can be used to figure out overlooked nonpolar compounds in different environmental samples of societal interest through non-target screening (NTS) strategies.


Subject(s)
Mass Spectrometry , Pesticides , Pesticides/analysis , Pesticides/chemistry , Pesticides/blood , Chromatography, Liquid/methods , Mass Spectrometry/methods , Phthalimides/chemistry , Phthalimides/analysis , Food Contamination/analysis , Miniaturization , Captan/analysis , Captan/blood , Captan/chemistry , Food Analysis/methods
9.
Klin Monbl Augenheilkd ; 241(4): 533-537, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38653305

ABSTRACT

Electroretinography (ERG) provides crucial insights into retinal function and the integrity of the visual pathways. However, ERG assessments classically require a complicated technical background with costly equipment. In addition, the placement of corneal or conjunctival electrodes is not always tolerated by the patients, which restricts the measurement for pediatric evaluations. In this short review, we give an overview of the use of the RETeval portable ERG device (LKC Technologies, Inc., Gaithersburg, MD, USA), a modern portable ERG device that can facilitate screening for diseases involving the retina and the optic nerve. We also review its potential to provide ocular biomarkers in systemic pathologies, such as Alzheimer's disease and central nervous system alterations, within the framework of oculomics.


Subject(s)
Electroretinography , Equipment Design , Retinal Diseases , Humans , Electroretinography/instrumentation , Electroretinography/economics , Retinal Diseases/diagnosis , Equipment Failure Analysis , Miniaturization , Reproducibility of Results , Sensitivity and Specificity , Mass Screening/instrumentation , Mass Screening/economics , Vision Screening/instrumentation , Vision Screening/economics , Health Care Costs
10.
Anal Chem ; 96(18): 7187-7193, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38671557

ABSTRACT

Despite the significant importance of blood lithium (Li) detection in the treatment of bipolar disorder (BD), its point-of-care testing (POCT) remains a great challenge due to tedious sample preparation and the use of large-footprint atomic spectrometers. Herein, a system coupling dried blood spots (DBS) with a point discharge optical emission spectrometer equipped with a miniaturized ultrasonic nebulizer (MUN-µPD-OES) was developed for POCT of blood Li. Three microliters of whole blood were used to prepare a dried blood spot on a piece of filter paper to which 10 µL of eluent (1% (v/v) formic acid and 0.05% (v/v) Triton-X) was added. Subsequently, the paper was placed onto the vibrating steel membrane of the ultrasonic nebulizer and powered on to generate aerosol. The aerosol was directly introduced to the µPD-OES for quantification of Li by monitoring its atomic emission line at 670.8 nm. The proposed method minimized matrix interference caused by high levels of salts and protein. It is worth noting that the MUN suitably matches the needs of DBS sampling and can provide aerosolized introduction of Li into the assembled µPD-OES, thus eliminating all tedious sample preparation and the need for a commercial atomic spectrometer. Calibration response is linear in the therapeutic range and a limit of detection (LOD) of 1.3 µg L-1 is well below the Li minimum therapeutic concentration (2800 µg L-1). Li in mouse blood was successfully detected in real-time using MUN-µPD-OES after intraperitoneal injection of lithium carbonate, confirming that the system holds great potential for POCT of blood Li for patients with BD.


Subject(s)
Dried Blood Spot Testing , Lithium , Point-of-Care Testing , Lithium/blood , Humans , Dried Blood Spot Testing/instrumentation , Dried Blood Spot Testing/methods , Animals , Mice , Nebulizers and Vaporizers , Miniaturization , Ultrasonics , Limit of Detection
11.
Talanta ; 273: 125896, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38479027

ABSTRACT

Bioanalysis faces challenges in achieving fast, reliable, and point-of-care (POC) determination methods for timely diagnosis and prognosis of diseases. POC devices often display lower sensitivity compared to laboratory-based methods, limiting their ability to quantify low concentrations of target analytes. To enhance sensitivity, the synthesis of new materials and improvement of the efficiency of the analytical strategies are necessary. Enzyme-mimicking materials have revolutionized the field of the fabrication of new high-throughput sensing devices. The integration of microfluidic chips with analytical techniques offers several benefits, such as easy miniaturization, need for low biological sample volume, etc., while also enhancing the sensitivity of the probe. The use enzyme-like nanomaterials in microfluidic systems can offer portable strategies for real-time and reliable detection of biological agents. Colorimetry and electrochemical methods are commonly utilized in the fabrication of nanozyme-based microfluidic systems. The review summarizes recent developments in enzyme-mimicking materials-integrated microfluidic analytical methods in biomedical analysis and discusses the current challenges, advantages, and potential future directions.


Subject(s)
Biosensing Techniques , Microfluidic Analytical Techniques , Nanostructures , Microfluidics/methods , Point-of-Care Systems , Miniaturization , Biosensing Techniques/methods , Lab-On-A-Chip Devices
12.
Eur J Ophthalmol ; 34(3): 888-892, 2024 May.
Article in English | MEDLINE | ID: mdl-38409807

ABSTRACT

BACKGROUND: Various ocular implants were suggested as a means of enhancing vision in patients with advanced age related macular degeneration. Recently, a new generation of implantable telescopes has been released. The purpose of this study is to report the surgical technique of implantation along with patient outcomes. METHODS: This work focuses on the surgical technique. Crucial surgical steps are carefully reported along with discussion on main drawbacks and limitations. RESULTS: This approach uses a preloaded delivery system with improved features and requires a smaller incision. First patient outcomes are also reported. CONCLUSIONS: Surgical steps to implant this preloaded intraocular telescope are easier than previous versions, however this remains a complex procedure. Initial patient functional outcomes look promising.


Subject(s)
Telescopes , Visual Acuity , Humans , Visual Acuity/physiology , Macular Degeneration/surgery , Aged , Miniaturization
13.
Anal Bioanal Chem ; 416(9): 2117-2124, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38246907

ABSTRACT

Analytical chemistry is a broad area of science comprised of many sub-disciplines. Although each sub-discipline has its own dominant trends, one trend is common to all of them: greenness and sustainability. Efforts to develop more ecological and environmentally friendly methods have been ongoing for over a decade with initial attempts largely focusing on limiting the necessary volume of solvents required and eliminating the use of toxic solvents. Over time, the miniaturization of analytical devices gained popularity as a way of not only reducing chemical usage, but also enabling analyses using smaller sample volumes and more "remote" applications (e.g., on-site sampling and analysis). Of course, miniaturization poses numerous challenges for researchers, for instance, in relation to the method's sensitivity and reproducibility. Developments in the design of detection systems have largely helped to mitigate these issues, but they also often restrict the potential for on-site analysis. Therefore, attempts have been made to improve analysis throughout the entire analytical process, from sampling through sample preparation and instrumental analysis to data handling. Furthermore, clinical chemistry labs must adhere to certain regulations and use certified protocols and materials, which precludes the rapid implementation of solutions developed in research labs. What are the obstacles in translating such innovations to practical applications, and what inventions can make a difference in the future? The answers to these two questions define the trends in analytical chemistry in the field of medical analysis.


Subject(s)
Goals , Reproducibility of Results , Solvents , Miniaturization
14.
Heart Fail Rev ; 29(3): 615-630, 2024 May.
Article in English | MEDLINE | ID: mdl-38289525

ABSTRACT

Acute decompensated heart failure and fluid overload are the most common causes of hospitalization in heart failure patients, and often, they contribute to disease progression. Initial treatment encompasses intravenous diuretics although there might be a percentual of patients refractory to this pharmacological approach. New technologies have been developed to perform extracorporeal ultrafiltration in fluid overloaded patients. Current equipment allows to perform ultrafiltration in most hospital and acute care settings. Extracorporeal ultrafiltration is then prescribed and conducted by specialized teams, and fluid removal is planned to restore a status of hydration close to normal. Recent clinical trials and European and North American practice guidelines suggest that ultrafiltration is indicated for patients with refractory congestion not responding to medical therapy. Close interaction between nephrologists and cardiologists may be the key to a collaborative therapeutic effort in heart failure patients. Further studies are today suggesting that wearable technologies might become available soon to treat patients in ambulatory and de-hospitalized settings. These new technologies may help to cope with the increasing demand for the care of chronic heart failure patients. Herein, we provide a state-of-the-art review on extracorporeal ultrafiltration and describe the steps in the development of a new miniaturized system for ultrafiltration, called AD1 (Artificial Diuresis).


Subject(s)
Heart Failure , Ultrafiltration , Humans , Heart Failure/therapy , Ultrafiltration/methods , Ultrafiltration/instrumentation , Miniaturization , Equipment Design , Hemofiltration/instrumentation , Hemofiltration/methods
15.
IEEE Trans Biomed Circuits Syst ; 18(3): 679-690, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38285578

ABSTRACT

Three-coil inductive power transfer is the state-of-the-art solution to power multiple miniaturised neural implants. However, the maximum delivered power is limited by the efficiency of the powering link and safety constrains. Here we propose a frequency-switching inductive link, where the passive resonator normally used in a three-coil link is replaced by an active resonator. It receives power from the external transmitter via a two-coil inductive link at the low frequency of 13.56 MHz. Then, it switches the operating frequency to the higher frequency of 433.92 MHz through a dedicated circuitry. Last, it transmits power to 1024 miniaturised implants via a three-coil inductive link using an array of 37 focusing resonators for a brain coverage of 163.84 mm 2. Our simulations reported a power transfer efficiency of 0.013 % and a maximum power delivered to the load of 1970 µW under safety-constrains, which are respectively two orders of magnitude and more than six decades higher compared to an equivalent passive three-coil link. The frequency-switching inductive system is a scalable and highly versatile solution for wireless, miniaturised and large-scale neural interfaces.


Subject(s)
Equipment Design , Wireless Technology , Wireless Technology/instrumentation , Humans , Electric Power Supplies , Miniaturization , Brain-Computer Interfaces , Brain/physiology
16.
Microsc Res Tech ; 87(5): 1044-1051, 2024 May.
Article in English | MEDLINE | ID: mdl-38217330

ABSTRACT

Recent developments in real-time, in vivo micro-imaging have allowed for the visualization of tissue pathological changes, facilitating rapid diagnosis. However, miniaturization, magnification, the field of view, and in vivo image stabilization remain challenging factors to reconcile. A key issue for this technology is ensuring it is user friendly for surgeons, enabling them to use the device manually and obtain instantaneous information necessary for surgical decision-making. This descriptive study introduces a handheld, actively stabilized, miniaturized epi-fluorescence widefield microscope (MEW-M) for real-time observation in vivo with high resolution. The methodology of MEW-M system includes high resolution microscopy miniaturization technology, thousandfold shaking suppression (actively stabilized), ultra-photosensitivity, and tailored image signal processing cell image capture and processing technology, which support for the excellent real-time imaging performance of MEW-M system in brain, mammary, liver, lung, and kidney tissue imaging of rats in vivo. With a single-objective and high-frame-rate imaging, the MEW-M system facilitates roving image acquisition, enabling contiguous analysis of large tissue areas. RESEARCH HIGHLIGHTS: A handheld, actively stabilized MEW-M system was introduced. Excellent real-time, in vivo imaging with high resolution and active stabilization in brain, mammary, liver, lung, and kidney tissue of rats.


Subject(s)
Microscopy, Fluorescence , Rats , Animals , Microscopy, Fluorescence/methods , Miniaturization
17.
Adv Sci (Weinh) ; 11(11): e2307369, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38196276

ABSTRACT

Implantable bioelectronic devices (IBDs) have gained attention for their capacity to conformably detect physiological and pathological signals and further provide internal therapy. However, traditional power sources integrated into these IBDs possess intricate limitations such as bulkiness, rigidity, and biotoxicity. Recently, artificial "tissue batteries" (ATBs) have diffusely developed as artificial power sources for IBDs manufacturing, enabling comprehensive biological-activity monitoring, diagnosis, and therapy. ATBs are on-demand and designed to accommodate the soft and confining curved placement space of organisms, minimizing interface discrepancies, and providing ample power for clinical applications. This review presents the near-term advancements in ATBs, with a focus on their miniaturization, flexibility, biodegradability, and power density. Furthermore, it delves into material-screening, structural-design, and energy density across three distinct categories of TBs, distinguished by power supply strategies. These types encompass innovative energy storage devices (chemical batteries and supercapacitors), power conversion devices that harness power from human-body (biofuel cells, thermoelectric nanogenerators, bio-potential devices, piezoelectric harvesters, and triboelectric devices), and energy transfer devices that receive and utilize external energy (radiofrequency-ultrasound energy harvesters, ultrasound-induced energy harvesters, and photovoltaic devices). Ultimately, future challenges and prospects emphasize ATBs with the indispensability of bio-safety, flexibility, and high-volume energy density as crucial components in long-term implantable bioelectronic devices.


Subject(s)
Biomimetics , Electric Power Supplies , Humans , Prostheses and Implants , Physical Phenomena , Miniaturization
18.
IEEE Trans Biomed Circuits Syst ; 18(2): 438-450, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37999967

ABSTRACT

This work experimentally demonstrates the operation of a miniaturized magnetoelectric (ME) wireless power transfer (WPT) system by incorporating a ME transducer and a suitable interface power management circuit (PMC) for potentially powering implantable medical devices (IMD) wirelessly. A ME heterostructure is micromachined to obtain desired device dimensions of 3.5 × 5 mm 2 and to restrict the operating frequency at a clinically approved frequency of 50 kHz. The proposed work also aims to address the trade-off between the device miniaturization, power attenuation and limiting the specific absorption rate (SAR) in the human tissue. By limiting the operating frequency to 50 kHz, the SAR is reduced to less than 1 µW/kg. The fabricated device is characterized with low-intensity AC magnetic field up to 40 µT without using any DC bias, resulting in 0.4 V output voltage and 6.6 µW power across 8 k Ω load. Alignment misorientation between the Tx and Rx is studied for in-plane and out-of-plane angular rotations to confirm the device's reliability against angular misalignment. By eliminating the bulky biasing magnets, the proposed device achieves a significant size reduction compared to the previously reported works. In addition, a self-powered interface PMC is incorporated with the ME system. The PMC generates 3.5 V regulated DC voltage from the input AC voltage range 0.7 V to 3.3 V. The PMC is fabricated on a 2-layered PCB and the over all ME WPT system consumes 12 × 12 mm 2 area. The overall PMC has intrinsic current consumption less than 550 nA with peak power conversion efficiency higher than 85 %. The in vitro cytotoxicity analysis in the human hepatic cell line WRL-68 confirmed the biocompatibility of the Parylene-C encapsulated ME device for up to 7 days, suggesting its potential use in implantable electronic devices for biomedical and clinical applications.


Subject(s)
Electric Power Supplies , Wireless Technology , Humans , Reproducibility of Results , Prostheses and Implants , Miniaturization
19.
SLAS Technol ; 29(1): 100118, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37981010

ABSTRACT

The Droplet Microarray (DMA) has emerged as a tool for high-throughput biological and chemical applications by enabling miniaturization and parallelization of experimental processes. Due to its ability to hold hundreds of nanoliter droplets, the DMA enables simple screening and analysis of samples such as cells and biomolecules. However, handling of nanoliter volumes poses a challenge, as manual recovery of nanoliter volumes is not feasible, and traditional laboratory equipment is not suited to work with such low volumes, and small array formats. To tackle this challenge, we developed the Automated Nanoliter Droplet Selection device (ANDeS), a robotic system for automated collection and transfer of nanoliter samples from DMA. ANDeS can automatically collect volumes from 50 to 350 nL from the flat surface of DMA with a movement accuracy of ±30 µm using fused silica capillaries. The system can automatically collect and transfer the droplets from DMA chip into other platforms, such as microtiter plates, conical tubes or another DMA. In addition, to ensure high throughput and multiple droplet collection, the uptake of multiple droplets within a single capillary, separated by air gaps to avoid mixing of the samples within the capillary, was optimized and demonstrated. This study shows the potential of ANDeS in laboratory applications by using it for the collection and transfer of biological samples, contained in nanoliter droplets, for subsequent analysis. The experimental results demonstrate the ability of ANDeS to increase the versatility of the DMA platform by allowing for automated retrieval of nanoliter samples from DMA, which was not possible manually on the level of individual droplets. Therefore, it widens the variety of analytical techniques that can be used for the analysis of content of individual droplets and experiments performed using DMA. Thus, ANDeS opens up opportunities to expand the development of miniaturized assays in such fields as cell screening, omics analysis and combinatorial chemistry.


Subject(s)
Miniaturization
20.
Biotechnol J ; 19(1): e2300306, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37882254

ABSTRACT

There is broad interest in producing electrospun films embedded with biological materials. It is well known that electrospinning requires careful control of the process conditions, especially the environmental conditions such as relative humidity (RH). Given that commercial electrospinning systems are expensive (> $10,000) and are typically too large to be used in standard biological safety cabinets (BSC), we designed and built a miniaturized electrospinning box (E-Box) that will fit inside a BSC, and the RH can be easily controlled using simple instrumentation (gas cylinder, regulator, needle valve, rotameter). It uses an inexpensive computerized numerical control machine to control the spinneret positioning and collector rotational speed-all the parts for the device (except the syringe pump and voltage supply) can be purchased for approximately $1000. We demonstrate the usefulness of our design in optimizing the production of Escherichia coli-embedded pullulan-trehalose films to be used as rapidly dissolving biosensors for environmental monitoring. At a fixed electrospinning recipe, we showed that decreasing the RH from approximately 48% to 22% resulted in the average fiber diameter increasing from 240 (± 11) nm to 314 (± 8) nm. We also demonstrate the usefulness of our design in performing sequential electrospinning experiments to evaluate process performance reproducibility. For example, from just 1 mL of a polymer solution, we produced 16 electrospun films (approximately 3 cm by 8 cm each)-from those films we hole-punched approximately 80 biosensor discs which were then used in subsequent experiments to determine the amount of two different biocides (Grotan BK and triclosan) in aqueous samples. The technique developed in this study is ideal for creating electrospun materials in high quantities that are highly reproducible through the precise control of RH.


Subject(s)
Polymers , Reproducibility of Results , Miniaturization
SELECTION OF CITATIONS
SEARCH DETAIL
...