Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.838
Filter
1.
Cereb Cortex ; 34(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38981852

ABSTRACT

Previously, we found that dCA1 A1-like polarization of astrocytes contributes a lot to the spatial memory deficit in methamphetamine abstinence mice. However, the underlying mechanism remains unclear, resulting in a lack of promising therapeutic targets. Here, we found that methamphetamine abstinence mice exhibited an increased M1-like microglia and A1-like astrocytes, together with elevated levels of interleukin 1α and tumor necrosis factor α in dCA1. In vitro, the M1-like BV2 microglia cell medium, containing high levels of Interleukin 1α and tumor necrosis factor α, elevated A1-like polarization of astrocytes, which weakened their capacity for glutamate clearance. Locally suppressing dCA1 M1-like microglia activation with minocycline administration attenuated A1-like polarization of astrocytes, ameliorated dCA1 neurotoxicity, and, most importantly, rescued spatial memory in methamphetamine abstinence mice. The effective time window of minocycline treatment on spatial memory is the methamphetamine exposure period, rather than the long-term methamphetamine abstinence.


Subject(s)
Astrocytes , Memory Disorders , Methamphetamine , Microglia , Minocycline , Spatial Memory , Animals , Methamphetamine/toxicity , Microglia/drug effects , Microglia/metabolism , Mice , Memory Disorders/chemically induced , Astrocytes/metabolism , Astrocytes/drug effects , Astrocytes/pathology , Spatial Memory/physiology , Spatial Memory/drug effects , Male , Minocycline/pharmacology , Mice, Inbred C57BL , Substance Withdrawal Syndrome/metabolism , Substance Withdrawal Syndrome/pathology , Central Nervous System Stimulants/toxicity
2.
ACS Appl Mater Interfaces ; 16(28): 36077-36094, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38949426

ABSTRACT

Periodontitis, an inflammatory bone resorption disease associated with dental plaque, poses significant challenges for effective treatment. In this study, we developed Mino@ZIF-8 nanoparticles inspired by the periodontal microenvironment and the unique properties of zeolitic imidazolate framework 8, aiming to address the complex pathogenesis of periodontitis. Transcriptome analysis revealed the active engagement of Mino@ZIF-8 nanoparticles in innate and adaptive inflammatory host defense and cellular metabolic remodeling. Through sustained release of the anti-inflammatory and antibacterial agent minocycline hydrochloride (Mino) and the generation of Zn2+ with pro-antioxidant effects during degradation, Mino@ZIF-8 nanoparticles synergistically alleviate inflammation and oxidative damage. Notably, our study focuses on the pivotal role of zinc ions in mitochondrial oxidation protection. Under lipopolysaccharide (LPS) stimulation, periodontal ligament cells undergo a metabolic shift from oxidative phosphorylation (OXPHOS) to glycolysis, leading to reduced ATP production and increased reactive oxygen species levels. However, Zn2+ effectively rebalances the glycolysis-OXPHOS imbalance, restoring cellular bioenergetics, mitigating oxidative damage, rescuing impaired mitochondria, and suppressing inflammatory cytokine production through modulation of the AKT/GSK3ß/NRF2 pathway. This research not only presents a promising approach for periodontitis treatment but also offers novel therapeutic opportunities for zinc-containing materials, providing valuable insights into the design of biomaterials targeting cellular energy metabolism regulation.


Subject(s)
Nanoparticles , Oxidative Stress , Periodontitis , Oxidative Stress/drug effects , Periodontitis/drug therapy , Periodontitis/metabolism , Periodontitis/pathology , Nanoparticles/chemistry , Humans , Animals , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Minocycline/pharmacology , Minocycline/chemistry , Minocycline/therapeutic use , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Mice , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Lipopolysaccharides/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Reactive Oxygen Species/metabolism , Imidazoles
3.
Eur J Pharmacol ; 977: 176707, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38830456

ABSTRACT

The 5-HT3 receptor and indoleamine 2,3-dioxygenase 1 (IDO1) enzyme play a crucial role in the pathogenesis of depression as their activation reduces serotonin contents in the brain. Since molecular docking analysis revealed lycopene as a potent 5-HT3 receptor antagonist and IDO1 inhibitor, we hypothesized that lycopene might disrupt the interplay between the 5-HT3 receptor and IDO1 to mitigate depression. In mice, the depression-like phenotypes were induced by inoculating Bacillus Calmette-Guerin (BCG). Lycopene (intraperitoneal; i.p.) was administered alone or in combination with 5-HT3 receptor antagonist ondansetron (i.p.) or IDO1 inhibitor minocycline (i.p.), and the behavioral screening was performed by the sucrose preference test, open field test, tail suspension test, and splash test which are based on the different principles. Further, the brains were subjected to the biochemical analysis of serotonin and its precursor tryptophan by the HPLC. The results showed depression-like behavior in BCG-inoculated mice, which was reversed by lycopene administration. Moreover, prior treatment with ondansetron or minocycline potentiated the antidepressant action of lycopene. Minocycline pretreatment also enhanced the antidepressant effect of ondansetron indicating the regulation of IDO1 activity by 5-HT3 receptor-triggered signaling. Biochemical analysis of brain samples revealed a drastic reduction in the levels of tryptophan and serotonin in depressed animals, which were restored following treatment with lycopene and its combination with ondansetron or minocycline. Taken together, the data from molecular docking, behavioral experiments, and biochemical estimation suggest that lycopene might block the 5-HT3 receptor and consequently inhibit the activity of IDO1 to ameliorate BCG-induced depression in mice.


Subject(s)
Brain , Depression , Indoleamine-Pyrrole 2,3,-Dioxygenase , Lycopene , Receptors, Serotonin, 5-HT3 , Animals , Lycopene/pharmacology , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Mice , Depression/drug therapy , Depression/metabolism , Male , Brain/drug effects , Brain/metabolism , Receptors, Serotonin, 5-HT3/metabolism , Phenotype , Molecular Docking Simulation , Serotonin/metabolism , BCG Vaccine/pharmacology , Ondansetron/pharmacology , Behavior, Animal/drug effects , Serotonin 5-HT3 Receptor Antagonists/pharmacology , Antidepressive Agents/pharmacology , Minocycline/pharmacology
4.
J Neuroimmune Pharmacol ; 19(1): 30, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38878098

ABSTRACT

Chronic neuropathic pain precipitates a complex range of affective and behavioural disturbances that differ markedly between individuals. While the reasons for differences in pain-related disability are not well understood, supraspinal neuroimmune interactions are implicated. Minocycline has antidepressant effects in humans and attenuates affective disturbances in rodent models of pain, and acts by reducing neuroinflammation in both the spinal cord and brain. Previous studies, however, tend not to investigate how minocycline modulates individual affective responses to nerve injury, or rely on non-naturalistic behavioural paradigms that fail to capture the complexity of rodent behaviour. We investigated the development and resolution of pain-related affective disturbances in nerve-injured male rats by measuring multiple spontaneous ethological endpoints on a longitudinal naturalistic foraging paradigm, and the effect of chronic oral minocycline administration on these changes. Disrupted foraging behaviours appeared in 22% of nerve-injured rats - termed 'affected' rats - and were present at day 14 but partially resolved by day 21 post-injury. Minocycline completely prevented the emergence of an affected subgroup while only partly attenuating mechanical allodynia, dissociating the relationship between pain and affect. This was associated with a lasting downregulation of ΔFosB expression in ventral hippocampal neurons at day 21 post-injury. Markers of microglia-mediated neuroinflammation were not present by day 21, however proinflammatory microglial polarisation was apparent in the medial prefrontal cortex of affected rats and not in CCI minocycline rats. Individual differences in affective disturbances following nerve injury are therefore temporally related to altered microglial morphology and hippocampal neuronal activation, and are abrogated by minocycline.


Subject(s)
Minocycline , Neuroinflammatory Diseases , Animals , Minocycline/pharmacology , Male , Rats , Neuroinflammatory Diseases/drug therapy , Rats, Sprague-Dawley , Neuralgia/drug therapy , Neuralgia/metabolism , Neuralgia/prevention & control , Hyperalgesia/drug therapy , Hyperalgesia/prevention & control , Individuality , Mood Disorders/drug therapy , Mood Disorders/etiology , Peripheral Nerve Injuries/complications
5.
F1000Res ; 13: 36, 2024.
Article in English | MEDLINE | ID: mdl-38872735

ABSTRACT

Background: Tigecycline, a glycylcycline antibiotic is a promising option for the treatment of single or multidrug resistant pathogens. The aim of the study was to evaluate the in-vitro Tigecycline susceptibility of various pathogens from clinical samples received at the tertiary care hospitals in South India. Methods: The analysis of specimens from patients admitted were carried out in this prospective cross sectional study. The identification and antimicrobial susceptibility testing was performed by semi-automated Vitek 2 systems and Kirby Bauer method. Pattern of data analysis was done by descriptive statistics. Results: Among 2574 isolates, 812 isolates were Gram positive pathogens and 1762 isolates were Gram negative pathogens. Resistance to Tigecycline was more common among Gram negative pathogens (18.62%) in comparison to the Gram positive pathogens (0.49%). Among 740 Extended Spectrum Beta Lactamases (ESBL) producers such as Klebsiella species & E coli, 629 isolates were susceptible, and 93 isolates were resistant to the tigecycline. All the methicillin resistant Staphylococcus aureus (MRSA) isolates were susceptible to tigecycline. Conclusion: Multidrug resistant (MDR) pathogens like Acinetobacter species, and Klebsiella species were found to be highly effective in vitro to tigecycline for elimination of infections caused by both Gram positive and Gram negative pathogens. The use of combination therapy becomes crucial to prevent the development of Pan Drug resistance.


Subject(s)
Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Tertiary Care Centers , Tigecycline , Tigecycline/pharmacology , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Cross-Sectional Studies , Minocycline/analogs & derivatives , Minocycline/pharmacology , Minocycline/therapeutic use , Gram-Negative Bacteria/drug effects , Prospective Studies , India , Gram-Positive Bacteria/drug effects
6.
Nanoscale ; 16(28): 13425-13434, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38913014

ABSTRACT

Dental implant therapy is a reliable treatment for replacing missing teeth. However, as dental implants become more widely used, peri-implantitis increasingly has become a severe complication, making successful treatment more difficult. As a result, the development of effective drug delivery systems (DDSs) and treatments for peri-implantitis are urgently needed. Carbon nanohorns (CNHs) are carbon nanomaterials that have shown promise for use in DDSs and have photothermal effects. The present study exploited the unique properties of CNHs to develop a phototherapy employing a near-infrared (NIR) photoresponsive composite of minocycline, hyaluronan, and CNH (MC/HA/CNH) for peri-implantitis treatments. MC/HA/CNH demonstrated antibacterial effects that were potentiated by NIR-light irradiation, a property that was mediated by photothermal-mediated drug release from HA/CNH. These antibacterial effects persisted even following 48 h of dialysis, a promising indication for the clinical use of this material. We propose that the treatment of peri-implantitis using NIR and MC/HA/CNH, in combination with surgical procedures, might be employed to target relatively deep affected areas in a timely and efficacious manner. We envision that this innovative approach will pave the way for future developments in implant therapy.


Subject(s)
Anti-Bacterial Agents , Carbon , Hyaluronic Acid , Infrared Rays , Minocycline , Peri-Implantitis , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Peri-Implantitis/drug therapy , Peri-Implantitis/therapy , Minocycline/chemistry , Minocycline/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Carbon/chemistry , Animals , Humans , Mice , Nanostructures/chemistry , Nanostructures/therapeutic use , Drug Delivery Systems , Drug Liberation
7.
Gene ; 922: 148553, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38734190

ABSTRACT

The global mortality rate has been significantly impacted by the COVID-19 pandemic, caused by the SARS CoV-2 virus. Although the pursuit for a potent antiviral is still in progress, experimental therapies based on repurposing of existing drugs is being attempted. One important therapeutic target for COVID-19 is the main protease (Mpro) that cleaves the viral polyprotein in its replication process. Recently minocycline, an antimycobacterium drug, has been successfully implemented for the treatment of COVID-19 patients. But it's mode of action is still far from clear. Furthermore, it remains unresolved whether alternative antimycobacterium drugs can effectively regulate SARS CoV-2 by inhibiting the enzymatic activity of Mpro. To comprehend these facets, eight well-established antimycobacterium drugs were put through molecular docking experiments. Four of the antimycobacterium drugs (minocycline, rifampicin, clofazimine and ofloxacin) were selected by comparing their binding affinities towards Mpro. All of the four drugs interacted with both the catalytic residues of Mpro (His41 and Cys145). Additionally, molecular dynamics experiments demonstrated that the Mpro-minocyline complex has enhanced stability, experiences reduced conformational fluctuations and greater compactness than other three Mpro-antimycobacterium and Mpro-N3/lopinavir complexes. This research furnishes evidences for implementation of minocycline against SARS CoV-2. In addition, our findings also indicate other three antimycobacterium/antituberculosis drugs (rifampicin, clofazimine and ofloxacin) could potentially be evaluated for COVID-19 therapy.


Subject(s)
COVID-19 Drug Treatment , Coronavirus 3C Proteases , Drug Repositioning , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2 , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Anti-Bacterial Agents/pharmacology , Minocycline/pharmacology , Rifampin/pharmacology , COVID-19/virology , Computer Simulation
8.
Front Cell Infect Microbiol ; 14: 1368684, 2024.
Article in English | MEDLINE | ID: mdl-38779565

ABSTRACT

Introduction: Quorum-quenching enzyme Est816 hydrolyzes the lactone rings of N-acyl homoserine lactones, effectively blocking the biofilm formation and development of Gram-negative bacteria. However, its applications in the oral field is limited. This study aimed to evaluate the efficacy of enzyme Est816 in combination with antibiotics against periodontitis induced by Aggregatibacter actinomycetemcomitans in vitro and in vivo. Methods: The antimicrobial efficacy of enzyme Est816 in combination with minocycline, metronidazole, and amoxicillin was determined using the minimum inhibitory concentration test. The anti-biofilm effect of enzyme Est816 was assessed using scanning electron microscopy, live/dead bacterial staining, crystal violet staining, and real-time quantitative PCR. Biocompatibility of enzyme Est816 was assessed in human gingival fibroblasts (HGF) by staining. A rat model of periodontitis was established to evaluate the effect of enzyme Est816 combined with minocycline using micro-computed tomography and histological staining. Results: Compared to minocycline, metronidazole, and amoxicillin treatment alone, simultaneous treatment with enzyme Est816 increased the sensitivity of biofilm bacteria to antibiotics. Enzyme Est816 with minocycline exhibited the highest rate of biofilm clearance and high biocompatibility. Moreover, the combination of enzyme Est816 with antibiotics improved the antibiofilm effects of the antibiotics synergistically, reducing the expression of the virulence factor leukotoxin gene (ltxA) and fimbria-associated gene (rcpA). Likewise, the combination of enzyme Est816 with minocycline exhibited a remarkable inhibitory effect on bone resorption and inflammation damage in a rat model of periodontitis. Discussion: The combination of enzyme Est816 with antibiotics represents a prospective anti-biofilm strategy with the potential to treat periodontitis.


Subject(s)
Aggregatibacter actinomycetemcomitans , Anti-Bacterial Agents , Biofilms , Disease Models, Animal , Metronidazole , Microbial Sensitivity Tests , Periodontitis , Quorum Sensing , Animals , Aggregatibacter actinomycetemcomitans/drug effects , Biofilms/drug effects , Anti-Bacterial Agents/pharmacology , Periodontitis/drug therapy , Periodontitis/microbiology , Rats , Humans , Metronidazole/pharmacology , Quorum Sensing/drug effects , Minocycline/pharmacology , Amoxicillin/pharmacology , Rats, Sprague-Dawley , Male , Fibroblasts/drug effects , Gingiva/microbiology
9.
J Neuroimmune Pharmacol ; 19(1): 23, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775885

ABSTRACT

Hyperbilirubinemia is one of the most common occurrence in newborns and is toxic to the brain, resulting in neurological sequelae such as auditory impairment, with potential to evolve to chronic bilirubin encephalopathy and long-term cognitive impairment in adults. In the early postnatal period, neurogenesis is rigorous and neuroinflammation is detrimental to the brain. What are the alterations in neurogenesis and the underlying mechanisms of bilirubin encephalopathy during the early postnatal period? This study found that, there were a reduction in the number of neuronal stem/progenitor cells, an increase in microglia in the dentate gyrus (DG) and an inflammatory state in the hippocampus, characterized by increased levels of IL-6, TNF-α, and IL-1ß, as well as a decreased level of IL-10 in a rat model of bilirubin encephalopathy (BE). Furthermore, there was a significant decrease in the number of newborn neurons and the expression of neuronal differentiation-associated genes (NeuroD and Ascl1) in the BE group. Additionally, cognitive impairment was observed in this group. The administration of minocycline, an inhibitor of microglial activation, resulted in a reduction of inflammation in the hippocampus, an enhancement of neurogenesis, an increase in the expression of neuron-related genes (NeuroD and Ascl1), and an improvement in cognitive function in the BE group. These results demonstrate that microglia play a critical role in reduced neurogenesis and impaired brain function resulting from bilirubin encephalopathy model, which could inspire the development of novel pharmaceutical and therapeutic strategies.


Subject(s)
Hippocampus , Kernicterus , Microglia , Minocycline , Neurogenesis , Animals , Neurogenesis/drug effects , Neurogenesis/physiology , Microglia/drug effects , Microglia/metabolism , Rats , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Male , Minocycline/pharmacology , Disease Models, Animal , Rats, Sprague-Dawley , Inflammation/metabolism , Inflammation/pathology , Neuroinflammatory Diseases/drug therapy
10.
Alzheimers Dement ; 20(6): 3852-3863, 2024 06.
Article in English | MEDLINE | ID: mdl-38629936

ABSTRACT

INTRODUCTION: Cerebral small vessel disease (SVD) is a common cause of stroke/vascular dementia with few effective treatments. Neuroinflammation and increased blood-brain barrier (BBB) permeability may influence pathogenesis. In rodent models, minocycline reduced inflammation/BBB permeability. We determined whether minocycline had a similar effect in patients with SVD. METHODS: MINERVA was a single-center, phase II, randomized, double-blind, placebo-controlled trial. Forty-four participants with moderate-to-severe SVD took minocycline or placebo for 3 months. Co-primary outcomes were microglial signal (determined using 11C-PK11195 positron emission tomography) and BBB permeability (using dynamic contrast-enhanced MRI). RESULTS: Forty-four participants were recruited between September 2019 and June 2022. Minocycline had no effect on 11C-PK11195 binding (relative risk [RR] 1.01, 95% confidence interval [CI] 0.98-1.04), or BBB permeability (RR 0.97, 95% CI 0.91-1.03). Serum inflammatory markers were not affected. DISCUSSION: 11C-PK11195 binding and increased BBB permeability are present in SVD; minocycline did not reduce either process. Whether these pathophysiological mechanisms are disease-causing remains unclear. INTERNATIONAL CLINICAL TRIALS REGISTRY PORTAL IDENTIFIER: ISRCTN15483452 HIGHLIGHTS: We found focal areas of increased microglial signal and increased blood-brain barrier permeability in patients with small vessel disease. Minocycline treatment was not associated with a change in these processes measured using advanced neuroimaging. Blood-brain barrier permeability was dynamic but MRI-derived measurements correlated well with CSF/serum albumin ratio. Advanced neuroimaging is a feasible outcome measure for mechanistic clinical trials.


Subject(s)
Blood-Brain Barrier , Cerebral Small Vessel Diseases , Minocycline , Positron-Emission Tomography , Humans , Minocycline/pharmacology , Cerebral Small Vessel Diseases/drug therapy , Cerebral Small Vessel Diseases/diagnostic imaging , Male , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Double-Blind Method , Female , Aged , Magnetic Resonance Imaging , Inflammation/drug therapy , Middle Aged
11.
Brain Behav Immun ; 119: 236-250, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38604269

ABSTRACT

Mounting evidence suggests that high-fat diet (HFD) consumption increases the risk for depression, but the neurophysiological mechanisms involved remain to be elucidated. Here, we demonstrated that HFD feeding of C57BL/6J mice during the adolescent period (from 4 to 8 weeks of age) resulted in increased depression- and anxiety-like behaviors concurrent with changes in neuronal and myelin structure in the hippocampus. Additionally, we showed that hippocampal microglia in HFD-fed mice assumed a hyperactive state concomitant with increased PSD95-positive and myelin basic protein (MBP)-positive inclusions, implicating microglia in hippocampal structural alterations induced by HFD consumption. Along with increased levels of serum free fatty acids (FFAs), abnormal deposition of lipid droplets and increased levels of HIF-1α protein (a transcription factor that has been reported to facilitate cellular lipid accumulation) within hippocampal microglia were observed in HFD-fed mice. The use of minocycline, a pharmacological suppressor of microglial overactivation, effectively attenuated neurobehavioral abnormalities and hippocampal structural alterations but barely altered lipid droplet accumulation in the hippocampal microglia of HFD-fed mice. Coadministration of triacsin C abolished the increases in lipid droplet formation, phagocytic activity, and ROS levels in primary microglia treated with serum from HFD-fed mice. In conclusion, our studies demonstrate that the adverse influence of early-life HFD consumption on behavior and hippocampal structure is attributed at least in part to microglial overactivation that is accompanied by an elevated serum FFA concentration and microglial aberrations represent a potential preventive and therapeutic target for HFD-related emotional disorders.


Subject(s)
Anxiety , Diet, High-Fat , Fatty Acids, Nonesterified , Hippocampus , Mice, Inbred C57BL , Microglia , Animals , Hippocampus/metabolism , Diet, High-Fat/adverse effects , Microglia/metabolism , Mice , Male , Anxiety/metabolism , Fatty Acids, Nonesterified/blood , Fatty Acids, Nonesterified/metabolism , Depression/metabolism , Behavior, Animal , Minocycline/pharmacology
12.
J Antimicrob Chemother ; 79(6): 1294-1302, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38574003

ABSTRACT

OBJECTIVES: To elucidate the mechanism of tigecycline resistance in Escherichia coli that is mediated by the tet(A) variant gene. METHODS: E. coli strain 573 carried a plasmid-borne tet(A) variant gene, tentatively designated tet(A)TIG, that conferred decreased tigecycline susceptibility (MIC 0.5 mg/L). When exposed to increasing concentrations of tigecycline (0.25-8 mg/L), mutants growing at 2, 4 and 8 mg/L were obtained and sequenced. Copies of plasmid and tet(A)TIG relative to the chromosomal DNA in the mutants were determined by WGS and quantitative PCR (qPCR). Expression of tet(A)TIG in the mutants was evaluated by RT-qPCR. The tet(A)TIG-carrying plasmids were visualized by S1-PFGE and Southern blot hybridization. PCR served for the detection of a tet(A)TIG-carrying unconventional circularizable structure (UCS). RESULTS: Tigecycline resistance with maximum MICs of 16 mg/L was seen in E. coli mutants selected in the presence of tigecycline. Compared with the parental strain, the relative copy number and transcription level of tet(A)TIG in the mutants increased significantly in the presence of 2, 4 and 8 mg/L tigecycline, respectively. With increasing tigecycline selection pressure, the tet(A)TIG-carrying plasmids in the mutants increased in size, correlating with the number of tandem amplificates of a ΔTnAs1-flanked UCS harbouring tet(A)TIG. These tandem amplificates were not stable in the absence of tigecycline. CONCLUSIONS: Tigecycline resistance is due to the tandem amplification of a ΔTnAs1-flanked tet(A)TIG-carrying plasmid-borne segment in E. coli. The gain/loss of the tandem amplificates in the presence/absence of tigecycline represents an economic way for the bacteria to survive in the presence of tigecycline.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Microbial Sensitivity Tests , Plasmids , Tigecycline , Tigecycline/pharmacology , Escherichia coli/genetics , Escherichia coli/drug effects , Plasmids/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Minocycline/pharmacology , Minocycline/analogs & derivatives , Gene Amplification , Drug Resistance, Bacterial/genetics , Whole Genome Sequencing , Antiporters
13.
J Endod ; 50(7): 962-965, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38615826

ABSTRACT

INTRODUCTION: Various strategies have been researched to enhance the susceptibility of biofilms, given their tolerance to antibiotics. This study evaluated the effect of the anti-microbial peptide nisin in association with antibiotics used in regenerative endodontics, exploring different treatment times and biofilm growth conditions. METHODS: A mixture of 10 bacterial species was cultivated on dentin specimens anaerobically for 21 days. Biofilms were treated with 1 mL of high-purity nisin Z (nisin ZP, 200 µg/mL) and a triple antibiotic mixture (TAP: ciprofloxacin + metronidazole + minocycline, 5 mg/mL), alone or in combination. The effectiveness of antimicrobial agents was assessed after 1 and 7 days. During the 7-day period, biofilms were treated under 2 conditions: a single dose in a nutrient-depleted setting (ie, no replenishment of growth medium) and multiple doses in a nutrient-rich environment (ie, renewal of medium and antimicrobial agents every 48 h). After treatments, biofilm cells were dispersed, and total colony-forming units were counted. RESULTS: After 1 d-treatment, nisin ZP + TAP resulted in 2-log cell reduction compared to TAP alone (P < .05). After 7 d-treatment with a single dose, nisin ZP + TAP and TAP reduced bacteria to nonculturable levels (P < .05), whereas repeated antimicrobial doses did not eliminate bacteria in a nutrient-rich environment. No bacterial reduction was observed with nisin ZP alone in any treatment time. CONCLUSIONS: The additional use of nisin improved the TAP activity only after a short exposure time. Longer exposure to TAP or nisin + TAP in a nutrient-deprived environment effectively eliminated biofilms.


Subject(s)
Anti-Bacterial Agents , Biofilms , Ciprofloxacin , Metronidazole , Nisin , Regenerative Endodontics , Biofilms/drug effects , Anti-Bacterial Agents/pharmacology , Regenerative Endodontics/methods , Nisin/pharmacology , Metronidazole/pharmacology , Humans , Ciprofloxacin/pharmacology , Minocycline/pharmacology , Microbial Sensitivity Tests , Drug Combinations
14.
Toxins (Basel) ; 16(4)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38668612

ABSTRACT

Accidents caused by Bothrops jararaca (Bj) snakes result in several local and systemic manifestations, with pain being a fundamental characteristic. The inflammatory process responsible for hyperalgesia induced by Bj venom (Bjv) has been studied; however, the specific roles played by the peripheral and central nervous systems in this phenomenon remain unclear. To clarify this, we induced hyperalgesia in rats using Bjv and collected tissues from dorsal root ganglia (DRGs) and spinal cord (SC) at 2 and 4 h post-induction. Samples were labeled for Iba-1 (macrophage and microglia), GFAP (satellite cells and astrocytes), EGR1 (neurons), and NK1 receptors. Additionally, we investigated the impact of minocycline, an inhibitor of microglia, and GR82334 antagonist on Bjv-induced hyperalgesia. Our findings reveal an increase in Iba1 in DRG at 2 h and EGR1 at 4 h. In the SC, markers for microglia, astrocytes, neurons, and NK1 receptors exhibited increased expression after 2 h, with EGR1 continuing to rise at 4 h. Minocycline and GR82334 inhibited venom-induced hyperalgesia, highlighting the crucial roles of microglia and NK1 receptors in this phenomenon. Our results suggest that the hyperalgesic effects of Bjv involve the participation of microglial and astrocytic cells, in addition to the activation of NK1 receptors.


Subject(s)
Bothrops , Crotalid Venoms , Ganglia, Spinal , Hyperalgesia , Receptors, Neurokinin-1 , Animals , Hyperalgesia/chemically induced , Hyperalgesia/metabolism , Crotalid Venoms/toxicity , Male , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Receptors, Neurokinin-1/metabolism , Minocycline/pharmacology , Spinal Cord/drug effects , Spinal Cord/metabolism , Early Growth Response Protein 1/metabolism , Early Growth Response Protein 1/genetics , Microglia/drug effects , Microglia/metabolism , Neuroglia/drug effects , Neuroglia/metabolism , Rats , Glial Fibrillary Acidic Protein/metabolism , Calcium-Binding Proteins/metabolism , Astrocytes/drug effects , Astrocytes/metabolism , Microfilament Proteins/metabolism , Neurokinin-1 Receptor Antagonists/pharmacology , Rats, Sprague-Dawley
15.
J Immunother Cancer ; 12(4)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38621815

ABSTRACT

BACKGROUND: Cancer immunotherapy including immune checkpoint inhibitors is only effective for a limited population of patients with cancer. Therefore, the development of novel cancer immunotherapy is anticipated. In preliminary studies, we demonstrated that tetracyclines enhanced T-cell responses. Therefore, we herein investigated the efficacy of tetracyclines on antitumor T-cell responses by human peripheral T cells, murine models, and the lung tumor tissues of patients with non-small cell lung cancer (NSCLC), with a focus on signaling pathways in T cells. METHODS: The cytotoxicity of peripheral and lung tumor-infiltrated human T cells against tumor cells was assessed by using bispecific T-cell engager (BiTE) technology (BiTE-assay system). The effects of tetracyclines on T cells in the peripheral blood of healthy donors and the tumor tissues of patients with NSCLC were examined using the BiTE-assay system in comparison with anti-programmed cell death-1 (PD-1) antibody, nivolumab. T-cell signaling molecules were analyzed by flow cytometry, ELISA, and qRT-PCR. To investigate the in vivo antitumor effects of tetracyclines, tetracyclines were administered orally to BALB/c mice engrafted with murine tumor cell lines, either in the presence or absence of anti-mouse CD8 inhibitors. RESULTS: The results obtained revealed that tetracyclines enhanced antitumor T-cell cytotoxicity with the upregulation of granzyme B and increased secretion of interferon-γ in human peripheral T cells and the lung tumor tissues of patients with NSCLC. The analysis of T-cell signaling showed that CD69 in both CD4+ and CD8+ T cells was upregulated by minocycline. Downstream of T-cell receptor signaling, Zap70 phosphorylation and Nur77 were also upregulated by minocycline in the early phase after T-cell activation. These changes were not observed in T cells treated with anti-PD-1 antibodies under the same conditions. The administration of tetracyclines exhibited antitumor efficacy with the upregulation of CD69 and increases in tumor antigen-specific T cells in murine tumor models. These changes were canceled by the administration of anti-mouse CD8 inhibitors. CONCLUSIONS: In conclusion, tetracyclines enhanced antitumor T-cell immunity via Zap70 signaling. These results will contribute to the development of novel cancer immunotherapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Mice , Humans , CD8-Positive T-Lymphocytes , Minocycline/metabolism , Minocycline/pharmacology , Signal Transduction , Lymphocyte Activation
16.
Front Cell Infect Microbiol ; 14: 1289396, 2024.
Article in English | MEDLINE | ID: mdl-38655285

ABSTRACT

The global emergence of antimicrobial resistance to multiple antibiotics has recently become a significant concern. Gram-negative bacteria, known for their ability to acquire mobile genetic elements such as plasmids, represent one of the most hazardous microorganisms. This phenomenon poses a serious threat to public health. Notably, the significance of tigecycline, a member of the antibiotic group glycylcyclines and derivative of tetracyclines has increased. Tigecycline is one of the last-resort antimicrobial drugs used to treat complicated infections caused by multidrug-resistant (MDR) bacteria, extensively drug-resistant (XDR) bacteria or even pan-drug-resistant (PDR) bacteria. The primary mechanisms of tigecycline resistance include efflux pumps' overexpression, tet genes and outer membrane porins. Efflux pumps are crucial in conferring multi-drug resistance by expelling antibiotics (such as tigecycline by direct expelling) and decreasing their concentration to sub-toxic levels. This review discusses the problem of tigecycline resistance, and provides important information for understanding the existing molecular mechanisms of tigecycline resistance in Enterobacterales. The emergence and spread of pathogens resistant to last-resort therapeutic options stands as a major global healthcare concern, especially when microorganisms are already resistant to carbapenems and/or colistin.


Subject(s)
Anti-Bacterial Agents , Enterobacteriaceae , Tigecycline , Tigecycline/pharmacology , Anti-Bacterial Agents/pharmacology , Enterobacteriaceae/drug effects , Enterobacteriaceae/genetics , Humans , Drug Resistance, Multiple, Bacterial/genetics , Drug Resistance, Bacterial/genetics , Minocycline/analogs & derivatives , Minocycline/pharmacology , Microbial Sensitivity Tests , Plasmids/genetics , Enterobacteriaceae Infections/drug therapy , Enterobacteriaceae Infections/microbiology
17.
Behav Pharmacol ; 35(4): 211-226, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38651984

ABSTRACT

Stimulation of the innate immune system prior to stress exposure is a possible strategy to prevent depression under stressful conditions. Based on the innate immune system stimulating activities of zymosan A, we hypothesize that zymosan A may prevent the development of chronic stress-induced depression-like behavior. Our results showed that a single injection of zymosan A 1 day before stress exposure at a dose of 2 or 4 mg/kg, but not at a dose of 1 mg/kg, prevented the development of depression-like behaviors in mice treated with chronic social defeat stress (CSDS). The prophylactic effect of a single zymosan A injection (2 mg/kg) on CSDS-induced depression-like behaviors disappeared when the time interval between zymosan A and stress exposure was extended from 1 day or 5 days to 10 days, which was rescued by a second zymosan A injection 10 days after the first zymosan A injection and 4 days (4×, once daily) of zymosan A injections 10 days before stress exposure. Further analysis showed that a single zymosan A injection (2 mg/kg) 1 day before stress exposure could prevent the CSDS-induced increase in pro-inflammatory cytokines in the hippocampus and prefrontal cortex. Inhibition of the innate immune system by pretreatment with minocycline (40 mg/kg) abolished the preventive effect of zymosan A on CSDS-induced depression-like behaviors and CSDS-induced increase in pro-inflammatory cytokines in the brain. These results suggest that activation of the innate immune system triggered by zymosan A prevents the depression-like behaviors and neuroinflammatory responses in the brain induced by chronic stress.


Subject(s)
Depression , Hippocampus , Stress, Psychological , Zymosan , Animals , Zymosan/pharmacology , Mice , Stress, Psychological/immunology , Male , Depression/drug therapy , Hippocampus/drug effects , Hippocampus/metabolism , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Cytokines/metabolism , Behavior, Animal/drug effects , Social Defeat , Immunization/methods , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/immunology , Mice, Inbred C57BL , Disease Models, Animal , Minocycline/pharmacology , Dose-Response Relationship, Drug
18.
J Photochem Photobiol B ; 255: 112910, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663337

ABSTRACT

The prognosis for patients with advanced-stage pancreatic ductal adenocarcinoma (PDAC) remains dismal. It is generally accepted that combination cancer therapies offer the most promise, such as Folforinox, despite their associated high toxicity. This study addresses the issue of chemoresistance by introducing a complementary dual priming approach to attenuate the DNA repair mechanism and to improve the efficacy of a type 1 topoisomerase (Top1) inhibitor. The result is a regimen that integrates drug-repurposing and nanotechnology using 3 clinically relevant FDA-approved agents (1) Top1 inhibitor (irinotecan) at subcytotoxic doses (2) benzoporphyrin derivative (BPD) as a photoactive molecule for photodynamic priming (PDP) to improve the delivery of irinotecan within the cancer cell and (3) minocycline priming (MNP) to modulate DNA repair enzyme Tdp1 (tyrosyl-DNA phosphodiesterase) activity. We demonstrate in heterotypic 3D cancer models that incorporate cancer cells and pancreatic cancer-associated fibroblasts that simultaneous targeting of Tdp1 and Top1 were significantly more effective by employing MNP and photoactivatable multi-inhibitor liposomes encapsulating BPD and irinotecan compared to monotherapies or a cocktail of dual or triple-agents. These data are encouraging and warrant further work in appropriate animal models to evolve improved therapeutic regimens.


Subject(s)
Carcinoma, Pancreatic Ductal , Irinotecan , Minocycline , Pancreatic Neoplasms , Photochemotherapy , Humans , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Cell Line, Tumor , Minocycline/pharmacology , Minocycline/therapeutic use , Irinotecan/pharmacology , Irinotecan/therapeutic use , Spheroids, Cellular/drug effects , Spheroids, Cellular/pathology , Phosphoric Diester Hydrolases/metabolism , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/therapeutic use , Topoisomerase I Inhibitors/pharmacology , Topoisomerase I Inhibitors/therapeutic use , Topoisomerase I Inhibitors/chemistry , Liposomes/chemistry
19.
Brain Behav Immun ; 119: 465-481, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38552926

ABSTRACT

Microglia modulate synaptic refinement in the central nervous system (CNS). We have previously shown that a mouse model with innate high anxiety-related behavior (HAB) displays higher CD68+ microglia density in the key regions of anxiety circuits compared to mice with normal anxiety-related behavior (NAB) in males, and that minocycline treatment attenuated the enhanced anxiety of HAB male. Given that a higher prevalence of anxiety is widely reported in females compared to males, little is known concerning sex differences at the cellular level. Herein, we address this by analyzing microglia heterogeneity and function in the HAB and NAB brains of both sexes. Single-cell RNA sequencing revealed ten distinct microglia clusters varied by their frequency and gene expression profile. We report striking sex differences, especially in the major microglia clusters of HABs, indicating a higher expression of genes associated with phagocytosis and synaptic engulfment in the female compared to the male. On a functional level, we show that female HAB microglia engulfed a greater amount of hippocampal vGLUT1+ excitatory synapses compared to the male. We moreover show that female HAB microglia engulfed more synaptosomes compared to the male HAB in vitro. Due to previously reported effects of minocycline on microglia, we finally administered oral minocycline to HABs of both sexes and showed a significant reduction in the engulfment of synapses by female HAB microglia. In parallel to our microglia-specific findings, we further showed an anxiolytic effect of minocycline on female HABs, which is complementary to our previous findings in the male HABs. Our study, therefore, identifies the altered function of synaptic engulfment by microglia as a potential avenue to target and resolve microglia heterogeneity in mice with innate high anxiety.


Subject(s)
Anxiety , Microglia , Minocycline , Sex Characteristics , Animals , Minocycline/pharmacology , Microglia/metabolism , Microglia/drug effects , Female , Anxiety/metabolism , Anxiety/drug therapy , Male , Mice , Brain/metabolism , Brain/drug effects , Mice, Inbred C57BL , Hippocampus/metabolism , Hippocampus/drug effects , Disease Models, Animal , Synapses/drug effects , Synapses/metabolism , Phagocytosis/drug effects
20.
J Antimicrob Chemother ; 79(5): 1101-1108, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38501368

ABSTRACT

OBJECTIVES: To evaluate the in vitro activity of the combination of apramycin with colistin, meropenem, minocycline or sulbactam, against some well-characterized XDR Acinetobacter baumannii clinical isolates from Greece, to understand how apramycin can be best incorporated into clinical practice and optimize effectiveness. METHODS: In vitro interactions of apramycin (0.5×, 1× and 2× the MIC value) with colistin (2 mg/L), meropenem (30 mg/L), minocycline (3.5 mg/L) or sulbactam (24 mg/L) were tested using time-kill methodology. Twenty-one clinical A. baumannii isolates were chosen, exhibiting apramycin MICs of 4-16 mg/L, which were at or below the apramycin preliminary epidemiological cut-off value of 16 mg/L. These isolates were selected for a range of colistin (4-32 mg/L), meropenem (16-256 mg/L), minocycline (8-32 mg/L) and sulbactam (8-32 mg/L) MICs across the resistant range. Synergy was defined as a ≥2 log10 cfu/mL reduction compared with the most active agent. RESULTS: The combination of apramycin with colistin, meropenem, minocycline or sulbactam was synergistic, at least at one of the concentrations of apramycin (0.5×, 1× or 2× MIC), against 83.3%, 90.5%, 90.9% or 92.3% of the tested isolates, respectively. Apramycin alone was bactericidal at 24 h against 9.5% and 33.3% of the tested isolates at concentrations equal to 1× and 2× MIC, while the combination of apramycin at 2× MIC with colistin, meropenem or sulbactam was bactericidal against all isolates tested (100%). The apramycin 2× MIC/minocycline combination had bactericidal activity against 90.9% of the tested isolates. CONCLUSIONS: Apramycin combinations may have potential as a treatment option for XDR/pandrug-resistant (PDR) A. baumannii infections and warrant validation in the clinical setting, when this new aminoglycoside is available for clinical use.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , Microbial Sensitivity Tests , Nebramycin , Nebramycin/analogs & derivatives , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/isolation & purification , Greece , Anti-Bacterial Agents/pharmacology , Humans , Acinetobacter Infections/microbiology , Acinetobacter Infections/drug therapy , Nebramycin/pharmacology , Sulbactam/pharmacology , Drug Synergism , Meropenem/pharmacology , Colistin/pharmacology , Drug Resistance, Multiple, Bacterial , Microbial Viability/drug effects , Minocycline/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...