Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.320
Filter
1.
Pestic Biochem Physiol ; 202: 105963, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879311

ABSTRACT

The long-term use of pesticides in the field, and the high fertility and adaptability of phytophagous mites have led to resistance problems; consequently, novel safe and efficient active substances are necessary to broaden the tools of pest mite control. Natural enemies of arthropods typically secrete substances with paralytic or lethal effects on their prey, and those substances are a resource for future biopesticides. In this study, two putative venom peptide genes were identified in a parasitic mite Neoseiulus barkeri transcriptome. Recombinant venom NbSP2 peptide injected into Tetranychus cinnabarinus mites was significantly more lethal than recombinant NBSP1. NbSP2 was also lethal to Spodoptera litura when injected but not when fed to third instar larvae. The interaction proteins of NbSP2 in T. cinnabarinus and S. litura were identified by affinity chromatography. Among these proteins, ATP synthase subunit ß (ATP SSß) was deduced as a potential target. Four binding sites were predicted between NBSP2 and ATP SSß of T. cinnabarinus and S. litura. In conclusion, we identified a venom peptide with activity against T. cinnabarinus and S. litura. This study provides a novel component for development of a new biological pesticide.


Subject(s)
Peptides , Spider Venoms , Animals , Spider Venoms/chemistry , Spider Venoms/genetics , Peptides/pharmacology , Peptides/chemistry , Mites/drug effects , Spodoptera/drug effects , Tetranychidae/drug effects , Tetranychidae/genetics , Pest Control, Biological/methods , Amino Acid Sequence , Arthropod Proteins/genetics , Arthropod Proteins/metabolism , Arthropod Proteins/chemistry , Predatory Behavior/drug effects
2.
Pestic Biochem Physiol ; 202: 105960, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879342

ABSTRACT

Dermanyssus gallinae, a worldwide pest in birds, has developed varying degrees of resistance to insecticides. The ATP-binding cassette (ABC) transporters are essential for the removal of xenobiotics from arthropods. However, our knowledge about ABC transporter proteins in D. gallinae is limited. Forty ABC transporters were identified in the transcriptome and genome of D. gallinae. The resistant population displayed an augmented metabolic rate for beta-cypermethrin compared to the susceptible group, with a remarkable increase in the content of ABC transporters. Verapamil was found able to increase the toxicity of beta-cypermethrin in the resistant population. Results from qRT-PCR analysis showed that eleven ABC transcripts were more highly expressed in the resistant population than the susceptible group at all stages of development, and beta-cypermethrin was observed to be able to induce the expression of DgABCA5, DgABCB4, DgABCD3, DgABCE1 and DgABCG5 in D. gallinae. RNAi-mediated knockdown of the five genes was observed to increase the susceptibility of resistant mites to beta-cypermethrin. These results suggest that ABC transporters, DgABCA5, DgABCB4, DgABCD3, DgABCE1 and DgABCG5 genes, may be related to beta-cypermethrin resistance in D. gallinae. This research will serve as a foundation for further studies on mechanism of insecticide resistance, which could be beneficial for controlling D. gallinae.


Subject(s)
ATP-Binding Cassette Transporters , Mites , Pyrethrins , Animals , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Pyrethrins/pharmacology , Pyrethrins/toxicity , Mites/drug effects , Mites/genetics , Insecticides/pharmacology , Insecticides/toxicity , Poultry , Insecticide Resistance/genetics
3.
Sci Rep ; 14(1): 13705, 2024 06 14.
Article in English | MEDLINE | ID: mdl-38871833

ABSTRACT

Of the early Eocene amber deposits known across the world, Belgian amber has been mostly absent from the relevant literature. We reinvestigated amber held in the palaeobotanical collection of the Royal Belgian Institute of Natural Sciences, Brussels, which derived from three localities in Belgium that originated from two geographical areas (Leval-Trahegnies and Orp-le-Grand). Using Fourier transform infrared (FTIR) spectroscopy we show the close chemical relationship of Belgian amber to the early Eocene Oise amber from the Paris Basin, and highlight the potential effect of weathering on the amber chemistry. The amber derives from a very similar botanical source as the Oise amber (Combretaceae or Leguminosae-Caesalpinioideae), but from different coeval basins. The two Leval-Trahegnies localities provided amber that exhibit different stages of weathering (heavily fissured and crazed, darkened) and lacking any inclusions. The Orp-le-Grand locality provided the least weathered amber, with one amber piece containing two inclusions: a mite and a new genus and species of hemipteran (Cativolcus uebruum gen. et sp. nov.), and a second one that preserved the impression of insect wings pressed into the surface.


Subject(s)
Amber , Fossils , Belgium , Amber/chemistry , Animals , France , Spectroscopy, Fourier Transform Infrared , Mites , Hemiptera/anatomy & histology , Paleontology/methods
4.
Exp Appl Acarol ; 93(1): 141-153, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38869729

ABSTRACT

Bory Tucholskie National Park, founded in 1996, is one of the most recently established national parks in Poland, and therefore, has not been thoroughly examined yet. The authors of the current study present results of their research concerning communities of mites from the suborder Uropodina (Acari: Mesostigmata), inhabiting bird nesting boxes within the area of Bory Tucholskie National Park. The mite community comprises two nidicolous species, i.e. Leiodinychus orbicularis (C.L. Koch, 1839) and Chiropturopoda nidiphila (Wisniewski and Hirschmann 1993). The former is a species characteristic of various types of nests, as well as nesting boxes, where it is usually the eudominant species. The latter is an extremely rare and scarce species of Uropodina, known thus far from woodpeckers' hollows. The population of L. orbicularis in the analysed communities in the realm of Bory Tucholskie National Park has been estimated to be over 6,000 specimens, and in the case of Ch. nidiphila - over 400 specimens.


Subject(s)
Biodiversity , Birds , Mites , Parks, Recreational , Animals , Mites/physiology , Poland , Birds/parasitology , Nesting Behavior , Ecosystem
5.
Exp Appl Acarol ; 93(1): 197-210, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38869725

ABSTRACT

The goji berry psyllid, Bactericera gobica Logniova (Homoptera: Psyllidae), is one of the most important pests on goji berry plants (Lycium barbarum L.), whose fruits are widely used in traditional Chinese medicine and food. However, chemical control is still the predominant control strategy of this pest. Recently, two species of predatory mites, Neoseiulus setarius Ma, Meng & Fan and Neoseiulus barkeri Hughes were found to be associated with B. gobica in China. To assess their predation potential against B. gobica, the functional responses of these two phytoseiid species feeding on different densities (2, 4, 8, 12, 16, 24 and 32 individuals) of B. gobica eggs and 1st instar nymphs were compared at a temperature of 25ºC ± 1º C. Logistic regression analysis revealed that both predatory mite species exhibited type Holling-II functional responses on eggs and 1st instar nymphs of B. gobica, with the predation number increased for both predators as the density of prey increased. Overall, N. setarius consumed more prey compared to N. barkeri across all levels of prey densities. Meanwhile, the highest attack rate (α = 0.0283), the lowest handling time (Th = 1.1324 h prey- 1), and the highest estimated maximum predation rate (T/Th = 21.19 prey day- 1) were all observed for N. setarius fed with 1st instar nymphs of B. gobica. These findings suggest that it is worthy considering utilizing N. setarius and N. barkeri as candidate biocontrol agents of B. gobica, with N. setarius appearing to be a more effective predator than N. barkeri.


Subject(s)
Hemiptera , Mites , Nymph , Ovum , Pest Control, Biological , Predatory Behavior , Animals , Mites/physiology , Nymph/growth & development , Nymph/physiology , Ovum/physiology , Ovum/growth & development , Hemiptera/physiology , Female , Population Density
6.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 36(2): 174-178, 2024 Apr 29.
Article in Chinese | MEDLINE | ID: mdl-38857962

ABSTRACT

OBJECTIVE: To investigate the bacterial community diversity in human Demodex mites, so as to provide insights into unraveling the role of human Demodex mites in them caused infectious diseases. METHODS: From June to July 2023, Demodex mites were collected from the faces of college students in a university in Wuhu City using the adhesive tape method, and the V4 region of 16S ribosomal RNA (16S rRNA) gene and the internal transcribed spacer (ITS) gene of nuclear ribosomal DNA were amplified on an Illumina PE250 high-throughput sequencing platform. Sequencing data were spliced according to the overlapping relations and filtered to yield effective sequences, and operational taxonomic units (OTUs) was clustered. The diversity index of obtained OUTs was analyzed, and the structure of the bacterial community was analyzed at various taxonomic levels. RESULTS: A total of 57 483 valid sequences were obtained using 16S rRNA gene sequencing, and 159 OUTs were classified according to similarity. Then, OUTs at a 97% similarity were included for taxonomic analyses, and the bacteria in Demodex mites belonged to 14 phyla, 20 classes, 51 orders, 72 families, and 94 genera. Proteobacteria was the dominant phylum, and Vibrio, Bradyrhizobium and Variovorax were dominant genera. A total of 56 362 valid sequences were obtained using ITS gene sequencing, and 147 OTUs were obtained, which belonged to 5 phyla, 17 classes, 34 orders, 68 families, and 93 genera and were annotated to Ascomycota, Basidiomycota and Chytridiomycota, with Ascomycota as the dominant phylum, and Alternaria alternata, Epicoccum, Penicillium, and Sarocladium as dominant genera. CONCLUSIONS: There is a high diversity in the composition of bacterial communities in human Demodex mites, with multiple types of microorganisms and high species abundance.


Subject(s)
Bacteria , Mites , RNA, Ribosomal, 16S , Humans , Animals , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Mites/microbiology , Mites/genetics , Mites/physiology , RNA, Ribosomal, 16S/analysis , RNA, Ribosomal, 16S/genetics , Biodiversity , Phylogeny
7.
Chemosphere ; 359: 142301, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38740337

ABSTRACT

Bioplastics are considered sustainable alternatives to conventional microplastics which are recognized as a threat to terrestrial ecosystems. However, little is known about the potential ecotoxicological effects of bioplastics on soil fauna and ecosystems. The present study assessed the toxicity of microplastics [Polystyrene (PS), Polyethylene (PE)] and bioplastics [Polyvinyl alcohol (PVA), Sodium polyacrylate (NaPa) on a key soil fauna Oppia nitens, a soil oribatid mite, and investigated the ecological relevance of O. nitens avoidance response as a valuable tool for the risk assessment of contaminated soils such as the Superfund sites. Findings showed that the mites' net response indicated avoidance behavior such that in most cases as concentrations of micro- and bioplastics increased, so did the avoidance responses. The avoidance EC50 endpoints showed PS < PE < PVA < NaPa, indicating higher deleterious effects of microplastics. High toxicity of PS in soils to O. nitens at EC50 of 165 (±25) mg/kg compared to bioplastics and other known contaminants poses an enormous threat to soil. For bioplastics in this study, there were no significant avoidances at concentrations up to 16,200 mg/kg compared to PS and PE which showed avoidance responses at 300 and 9000 mg/kg respectively, implying that bioplastics might be relatively safer to soil mites compared to conventional microplastics. Also, results indicated that long-term heavy metal pollution such as in contaminated Superfund sites decreased microbial biomass; a useful bioindicator of soil pollution. Furthermore, O. nitens avoidance of heavy metals contaminated sites demonstrated the ecological relevance of avoidance response test when assessing the habitat integrity of contaminated soil. The present study further supports the inclusion of the oribatid mite, O. nitens in the ecological risk assessment of contaminants in soil.


Subject(s)
Microplastics , Mites , Soil Pollutants , Animals , Microplastics/toxicity , Soil Pollutants/toxicity , Mites/drug effects , Ecotoxicology , Soil/chemistry , Environmental Monitoring/methods , Polyethylene/toxicity , Ecosystem , Risk Assessment , Plastics/toxicity , Avoidance Learning/drug effects
8.
J Agric Food Chem ; 72(23): 13431-13438, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38815265

ABSTRACT

In order to speculate the three-dimensional structure of the potential binding pocket of the chitin synthase inhibitor, a series of 2,4-diphenyloxazoline derivatives with different lengths of alkyl chains and heteroatoms were designed and synthesized by a homologous strategy. The bioassay results indicate that both the length of the alkyl chains and the type of substituents can affect the acaricidal activity against mite eggs. Compounds containing chloropropyl, alkoxyalkyl, and para-substituted phenoxyalkyl or phenylthioalkyl groups exhibit good activity, while those containing steric hindrance substituents or carbonyl substituents on the benzene ring exhibit reduced activity. Three-dimensional quantitative structure-activity relationship (3D-QSAR) study showed that there may be a narrow hydrophobic region deep in the pocket, and the steric effect plays a more important role than the electrostatic effect. The current work will provide assistance for future molecular design and target binding research.


Subject(s)
Acaricides , Quantitative Structure-Activity Relationship , Acaricides/chemistry , Acaricides/pharmacology , Animals , Mites/drug effects , Mites/chemistry , Oxazoles/chemistry , Oxazoles/pharmacology , Drug Design , Molecular Structure , Chitin Synthase/chemistry , Chitin Synthase/antagonists & inhibitors , Chitin Synthase/metabolism
9.
J Econ Entomol ; 117(3): 951-962, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38733331

ABSTRACT

Predatory mites biologically control a range of arthropod crop pests and are often central to agricultural IPM strategies globally. Conflict between chemical and biological pest control has prompted increasing interest in selective pesticides with fewer off-target impacts on beneficial invertebrates, including predatory mites. However, the range of predatory mite species included in standardized pesticide toxicity assessments does not match the diversity of naturally occurring species contributing to biocontrol, with most testing carried out on species from the family Phytoseiidae (Mesostigmata). Here, we aim to bridge this knowledge gap by investigating the impacts of 22 agricultural pesticides on the predatory snout mite, Odontoscirus lapidaria (Kramer) (Trombidiformes: Bdellidae). Using internationally standardized testing methodologies, we identified several active ingredients with minimal impact on O. lapidaria mortality, including Bacillus thuringiensis, nuclear polyhedrosis virus, flonicamid, afidopyropen, chlorantraniliprole, and cyantraniliprole, which may therefore be good candidates for IPM strategies utilizing both chemical and biological control. Comparison of our findings with previous studies on Phytoseiid mites reveals important differences in responses to a number of chemicals between predatory mite families, including the miticides diafenthiuron and abamectin, highlighting the risk of making family-level generalizations from acute toxicity assessments. We also tested the impacts of several pesticides on a second Bdellidae species (Trombidiformes: Bdellidae) and found differences in the response to chlorpyrifos compared with O. lapidaria, further highlighting the taxon-specific nature of nontarget toxicity effects.


Subject(s)
Mites , Animals , Mites/drug effects , Predatory Behavior/drug effects , Pest Control, Biological , Toxicity Tests, Acute , Acaricides/toxicity , Pesticides/toxicity
10.
Vet Parasitol ; 328: 110191, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723410

ABSTRACT

Small ruminants (sheep and goats) constantly suffer from endoparasitoses caused by gastrointestinal nematodes. Among these, the species Haemonchus contortus (Rudolphi, 1803) is considered to be the one of greatest importance within sheep farming. This nematode is difficult to control due to its resistance to most commercial anthelmintics. The aim of the present study was to assess the potential of macrochelid mites as macrobiological agents for controlling endoparasitoses of sheep caused by the nematode, H. contortus. For this, novel in vitro methodology was used, in which assessments were made not only of the predatory ability but also the population growth of mite species (Macrocheles merdarius, Macrocheles robustulus and Holostaspella bifoliata) when offered larvae of the nematode, H. contortus. The predatory ability of the mites, M. merdarius and H. bifoliata were efficient regarding their predatory ability against H. contortus nematode larvae. The mite, M. merdarius exhibited the highest predation rate with mean distribution values for the treated group of 18656 ± 10091 and for the control group of 1178 ± 712 (P < 0.0001). The species, H. bifoliata presented the highest population growth rate, with a percentage acarid recovery rate of 263% in relation to the number added initially. The data from this in vitro predation experiment suggest that, M. merdarius and H. bifoliata showed promise as macrobiological agents for controlling gastrointestinal endoparasitoses of sheep caused by the nematode, H. contortus given that both species reduced the population of this helminth by more 70% and the number of mites recovered was three times greater than the number added.


Subject(s)
Haemonchiasis , Mites , Pest Control, Biological , Sheep Diseases , Haemonchus , Haemonchiasis/prevention & control , Mites/physiology , Larva , Predatory Behavior , Pest Control, Biological/standards , Population Growth , Female , Animals , Sheep , Sheep Diseases/parasitology , Sheep Diseases/prevention & control , Feces/parasitology , Species Specificity , In Vitro Techniques
11.
Ophthalmic Plast Reconstr Surg ; 40(3): e72-e74, 2024.
Article in English | MEDLINE | ID: mdl-38738719

ABSTRACT

Due to their relatively high prevalence and commensalism, the pathogenicity of Demodex mites has been debated. Recent data, however, show Demodex to be associated with skin and ocular surface diseases such as rosacea, blepharitis, and keratitis. Here the authors report the first known case, to the best of the their knowledge, of Demodex infestation mimicking preseptal cellulitis in an adult human. A 29-year-old male bilaterally blind from advanced retinopathy of prematurity presented with a 2-month history of right-greater-than-left upper eyelid and periocular/cheek swelling, redness, and ocular discharge that did not resolve with oral antibiotics or oral steroids. Based on MRI findings, biopsies of the right lacrimal gland, right orbital fat, and right upper eyelid preseptal skin were obtained which revealed marked intrafollicular Demodex mite density and budding yeasts in the upper eyelid skin. This case serves to alert clinicians to this entity that may not otherwise be usually considered in ophthalmic clinical practice.


Subject(s)
Cellulitis , Eye Infections, Parasitic , Mite Infestations , Humans , Male , Adult , Mite Infestations/diagnosis , Eye Infections, Parasitic/diagnosis , Eye Infections, Parasitic/parasitology , Diagnosis, Differential , Cellulitis/diagnosis , Cellulitis/microbiology , Animals , Mites , Eyelid Diseases/diagnosis , Eyelid Diseases/parasitology , Eyelid Diseases/drug therapy , Eyelids/parasitology , Eyelids/pathology , Magnetic Resonance Imaging , Biopsy , Orbital Cellulitis/diagnosis , Orbital Cellulitis/microbiology
12.
Exp Appl Acarol ; 93(1): 229-252, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38776058

ABSTRACT

The objective was to quantify and analyze the diversity of mites associated with native and cultivated açaí palms crops, as well as their distribution in the dry and rainy seasons in the municipalities of Bragança and Augusto Corrêa, state of Pará. Rarefaction curves were generated for diversity values using the statistical programming language R, rarefaction curves for estimates of richness and equitability, and analysis of variance with permutations. A total of 2069 mites from 28 families were sampled, being most representative Phytoseiidae (32.4%), Phytoptidae (13%), Cunaxidae (7.7%), Tetranychidae (5.6%) and Tydeidae (4.9%). Among predators, the most abundant species were Amblyseius sp. 1, Armascirus amazoniensis Wurlitzer & Silva, Iphiseiodes zuluagai Denmark & Muma, Scutopalus tomentosus Rocha, Skvarla & Ferla, and the phytophagous mites Acaphyllisa sp., Davisella sp., Oligonychus sp. and Retracus johnstoni Keifer. In the rainy season, more mites were sampled (n = 1176) than in the dry season (n = 893). The greatest richness was observed in the dry period (73 species) and diversity was also greater in this period. In the municipality of Bragança there was greater richness (78 species) and the cultivated açaí trees had greater acarine abundance (74.7%) than the native ones. However, natives had slightly higher wealth (6%) than those cultivated. The diversity and richness of predatory mites show the potential of the Amazon biome to be used in applied biological control.


Subject(s)
Biodiversity , Euterpe , Mites , Animals , Brazil , Mites/physiology , Seasons , Animal Distribution
13.
Exp Appl Acarol ; 93(1): 99-114, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38722436

ABSTRACT

The immature development and reproduction of the predatory mites Amblyseius largoensis (Muma), Proprioseiopsis lenis (Corpuz and Rimando), and Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae) were investigated using both thrips eggs and first instars of the western flower thrips, Frankliniella occidentalis Pergande, as prey in a controlled laboratory environment at 25 °C and 60% relative humidity. When provided with thrips eggs as food, A. largoensis exhibited a notably shorter immature development period for both males (7.05 days) and females (6.51 days) as compared with A. swirskii (8.05 and 7.19 days, respectively) and P. lenis (8.10 days and 7.05 days, respectively). Amblyseius largoensis also displayed a higher oviposition rate (2.19 eggs/female/day) than A. swirskii and P. lenis (1.79 and 1.78 eggs/female/day, respectively). Moreover, it exhibited the highest fecundity (25.34 eggs/female), followed by P. lenis (24.23 eggs/female) and A. swirskii (22.86 eggs/female). These variations led to A. largoensis having the highest intrinsic rate of increase (rm) at 0.209, followed by A. swirskii at 0.188, and P. lenis at 0.165. However, when the predatory mites were provided with first instars of F. occidentalis, A. swirskii demonstrated a faster immature development period for both males (7.67 days) and females (7.59 days) as compared with P. lenis (9.00 days and 7.86 days, respectively) and A. largoensis (8.47 days and 8.61 days, respectively). While the oviposition rates of P. lenis (1.92 eggs/female/day) and A. swirskii (1.90 eggs/female/day) were similar when feeding on this prey, A. largoensis produced fewer eggs (1.83 eggs/female/day). Further, A. swirskii exhibited the highest fecundity (31.93 eggs/female), followed by A. largoensis (25.71 eggs/female) and P. lenis (23 eggs/female). Consequently, the intrinsic rate of increase (rm) on thrips first instars was highest in A. swirskii (0.190), followed by A. largoensis (0.186), and P. lenis (0.176). In summary, our findings indicate that in terms of life history parameters A. largoensis performs optimally when feeding on thrips eggs, whereas A. swirskii performs best when preying on the mobile first instars of the thrips. These insights into the dietary preferences and reproductive capabilities of the studied predatory mite species have important implications for their potential use as biological control agents against F. occidentalis in agricultural settings.


Subject(s)
Larva , Mites , Oviposition , Predatory Behavior , Thysanoptera , Animals , Female , Male , Mites/physiology , Mites/growth & development , Larva/growth & development , Larva/physiology , Thysanoptera/physiology , Thysanoptera/growth & development , Ovule/growth & development , Ovule/physiology , Ovum/growth & development , Ovum/physiology , Fertility
14.
Exp Appl Acarol ; 93(1): 169-195, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744726

ABSTRACT

Trichomes are well-known efficient plant defense mechanisms to limit arthropod herbivory, especially in Solanaceae. The present study aims to evaluate the impact of trichome types on the development, survival and dispersal of Tetranychus urticae, and the phytoseiid predatory mite Typhlodromus (Anthoseius) recki. Six Solanum lycopersicum cultivars and two wild Solanum species, S. cheesmaniae and S. peruvianum, presenting contrasting densities and types of trichomes, were considered. Cultivars and species were characterized by counting each trichome type on leaves, petioles and stems. Mites stuck on petiole and stem and alive mites on the leaflet used for mite release and in the whole plant were counted three weeks after T. urticae plant infestation. Tetranychus urticae settlement and dispersal were differently affected by trichomes. Trichome types V and VI did not affect settlement and dispersal, whereas trichome types I and IV on the petiole had the highest impacton mites. Trichomes on leaves slightly affected mite establishment, there appears to be a repellent effect of trichome types I and IV. The low densities of both T. urticae and its predator detected for the cv. Lancaster could not be clearly associated to the trichome types here considered. The predator did not seem to be affected by plant characteristics, but rather by T. urticae numbers on the plant. The trichome traits unfavorable to T. urticae, did not affect the predator which showed high efficiency to control this pest on all the plant genotypes considered, but at a favorable predator:prey ratio (1:1). Altogether, these results are encouraging for the use of T. (A.) recki as a biological control agent of T. urticae regardless of the trichome structure of the tomato cultivars, but other conditions should be tested to conclude on practical implementations.


Subject(s)
Mites , Predatory Behavior , Solanum lycopersicum , Tetranychidae , Trichomes , Animals , Tetranychidae/physiology , Mites/physiology , Solanum lycopersicum/parasitology , Food Chain , Pest Control, Biological , Plant Leaves/parasitology , Herbivory
15.
J Gen Virol ; 105(5)2024 May.
Article in English | MEDLINE | ID: mdl-38695734

ABSTRACT

Members of the family Fimoviridae are plant viruses with a multipartite negative-sense enveloped RNA genome (-ssRNA), composed of 4-10 segments comprising 12.3-18.5 kb in total, within quasi-spherical virions. Fimoviruses are transmitted to plants by eriophyid mites and induce characteristic cytopathologies in their host plants, including double membrane-bound bodies in the cytoplasm of virus-infected cells. Most fimoviruses infect dicotyledonous plants, and many cause serious disease epidemics. This is a summary of the ICTV Report on the family Fimoviridae, which is available at ictv.global/report/fimoviridae.


Subject(s)
Genome, Viral , Plant Diseases , Plant Viruses , Plant Diseases/virology , Animals , Plant Viruses/genetics , Plant Viruses/classification , Plant Viruses/physiology , RNA, Viral/genetics , Virion/ultrastructure , Plants/virology , Negative-Sense RNA Viruses/genetics , Negative-Sense RNA Viruses/classification , Mites/virology , Phylogeny
16.
Viruses ; 16(5)2024 05 18.
Article in English | MEDLINE | ID: mdl-38793687

ABSTRACT

Tomato fruit blotch virus (ToFBV) (Blunervirus solani, family Kitaviridae) was firstly identified in Italy in 2018 in tomato plants that showed the uneven, blotchy ripening and dimpling of fruits. Subsequent High-Throughput Sequencing (HTS) analysis allowed ToFBV to be identified in samples collected in Australia, Brazil, and several European countries, and its presence in tomato crops was dated back to 2012. In 2023, the virus was found to be associated with two outbreaks in Italy and Belgium, and it was included in the EPPO Alert list as a potential new threat for tomato fruit production. Many epidemiologic features of ToFBV need to be still clarified, including transmission. Aculops lycopersici Massee (Acariformes: Eriophyoidea), the tomato russet mite (TRM), is a likely candidate vector, since high population densities were found in most of the ToFBV-infected tomato cultivations worldwide. Real-time RT-PCR tests for ToFBV detection and TRM identification were developed, also as a duplex assay. The optimized tests were then transferred to an RT-ddPCR assay and validated according to the EPPO Standard PM 7/98 (5). Such sensitive, reliable, and validated tests provide an important diagnostic tool in view of the probable threat posed by this virus-vector system to solanaceous crops worldwide and can contribute to epidemiological studies by simplifying the efficiency of research. To our knowledge, these are the first molecular methods developed for the simultaneous detection and identification of ToFBV and TRM.


Subject(s)
Mites , Plant Diseases , Solanum lycopersicum , Solanum lycopersicum/virology , Plant Diseases/virology , Animals , Mites/virology , Plant Viruses/isolation & purification , Plant Viruses/genetics , Fruit/virology , Crops, Agricultural/virology , High-Throughput Nucleotide Sequencing/methods , Real-Time Polymerase Chain Reaction/methods
17.
Sci Rep ; 14(1): 11634, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773202

ABSTRACT

Oribatid mites are an ancient group that already roamed terrestrial ecosystems in the early and middle Devonian. The superfamily of Ameronothroidea, a supposedly monophyletic lineage, represents the only group of oribatid mites that has successfully invaded the marine coastal environment. By using mitogenome data and nucleic ribosomal RNA genes (18S, 5.8S, 28S), we show that Ameronothroidea are a paraphyletic assemblage and that the land-to-sea transition happened three times independently. Common ancestors of the tropical Fortuyniidae and Selenoribatidae were the first to colonize the coasts and molecular calibration of our phylogeny dates this event to a period in the Triassic and Jurassic era (225-146 mya), whereas present-day distribution indicates that this event might have happened early in this period during the Triassic, when the supercontinent Pangaea still existed. The cold temperate northern hemispheric Ameronothridae colonized the marine littoral later in the late Jurassic-Early Cretaceous and had an ancient distribution on Laurasian coasts. The third and final land-to-sea transition happened in the same geological period, but approx. 30 my later when ancestors of Podacaridae invaded coastal marine environments of the Gondwanan landmasses.


Subject(s)
Metagenomics , Mites , Phylogeny , Animals , Mites/genetics , Mites/classification , Metagenomics/methods , Genome, Mitochondrial , Mitochondria/genetics , Metagenome , Evolution, Molecular , Ecosystem
18.
Arch Dermatol Res ; 316(6): 231, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787449

ABSTRACT

Rosacea is a chronic cutaneous disease that manifests with facial erythema, telangiectasia, papules and pustules on the central face. Although the pathogenesis is not well established, rosacea appears to have a close relationship with Demodex mites. The aim of the study was to elucidate the factors influencing Demodex mite density by standardized superficial skin biopsy (SSSB) in patients with rosacea. This prospective, cross-sectional study included 200 patients with rosacea. Clinical characteristics of the patients were recorded and SSSB was used to measure Demodex density (Dd). If Dd was < 5 D/cm2 in the first SSSB, SSSB was repeated 4 more times to avoid false negative results. Of 200 patients, 152 (76%) were females and 48 (24%) males with a mean age of 43.47 ± 11.87 years. Ninety-nine patients (49.5%) had erythematotelangiectatic (ETR) and 101 patients (50.5%) had papulopustular (PPR) subtype of rosacea. Among 200 patients, the ratio of cumulative positive results of the consecutive SSSBs were as follows: 1st SSSB = 125 (62.5%), 2nd SSSB = 155 (77.5%), 3rd SSSB = 170 (85%), 4th SSSB = 173 (86.5%) and 5th SSSB = 174 (87%). The ratio of detecting Demodex infestation in the first SSSB was significantly lower in patients with PPR (55/101, 54.5%) than in patients with ETR (70/99, 70.7%). Median total Demodex mite density and D. folliculorum density were significantly higher in the ETR group than in the PPR group. There was a statistically significant relationship between density of Demodex tails in dermoscopy and positive/negative results of Demodex infestation in SSSB. As a conclusion, Demodex mite density by SSSB was influenced by various factors such as subtypes of rosacea, types of Demodex species, and dermoscopic findings.


Subject(s)
Mite Infestations , Mites , Rosacea , Skin , Humans , Rosacea/diagnosis , Rosacea/pathology , Rosacea/parasitology , Male , Cross-Sectional Studies , Female , Middle Aged , Prospective Studies , Adult , Biopsy , Skin/pathology , Skin/parasitology , Animals , Mite Infestations/diagnosis , Mite Infestations/pathology , Aged
19.
Sci Data ; 11(1): 498, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750068

ABSTRACT

Tropilaelaps mercedesae, an ectoparasitic mite of honeybees, is currently a severe health risk to Apis mellifera colonies in Asia and a potential threat to the global apiculture industry. However, our understanding of the physiological and developmental regulation of this pest remains significantly insufficient. Using ultra-high resolution mass spectrometry, we provide the first comprehensive proteomic profile of T. mercedesae spanning its entire post-embryonic ontogeny, including protonymphs, deutonymphs, mature adults, and reproductive mites. Consequently, a total of 4,422 T. mercedesae proteins were identified, of which 2,189 proteins were significantly differentially expressed (FDR < 0.05) throughout development and maturation. Our proteomic data provide an important resource for understanding the biology of T. mercedesae, and will contribute to further research and effective control of this devastating honeybee pest.


Subject(s)
Bees , Mites , Proteomics , Animals , Bees/parasitology , Mass Spectrometry , Mites/growth & development
20.
Biol Chem ; 405(6): 367-381, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38662449

ABSTRACT

Structural and allergenic characterization of mite profilins has not been previously pursued to a similar extent as plant profilins. Here, we describe structures of profilins originating from Tyrophagus putrescentiae (registered allergen Tyr p 36.0101) and Dermatophagoides pteronyssinus (here termed Der p profilin), which are the first structures of profilins from Arachnida. Additionally, the thermal stabilities of mite and plant profilins are compared, suggesting that the high number of cysteine residues in mite profilins may play a role in their increased stability. We also examine the cross-reactivity of plant and mite profilins as well as investigate the relevance of these profilins in mite inhalant allergy. Despite their high structural similarity to other profilins, mite profilins have low sequence identity with plant and human profilins. Subsequently, these mite profilins most likely do not display cross-reactivity with plant profilins. At the same time the profilins have highly conserved poly(l-proline) and actin binding sites.


Subject(s)
Cross Reactions , Profilins , Animals , Cross Reactions/immunology , Profilins/immunology , Profilins/chemistry , Profilins/metabolism , Humans , Mites/immunology , Mites/chemistry , Amino Acid Sequence , Hypersensitivity/immunology , Plants/immunology , Plants/chemistry , Plants/metabolism , Models, Molecular , Allergens/immunology , Allergens/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...